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Abstract: Regression models provide prediction frameworks for multivariate mutual information
analysis that uses information concepts when choosing covariates (also called features) that are
important for analysis and prediction. We consider a high dimensional regression framework where
the number of covariates (p) exceed the sample size (n). Recent work in high dimensional regression
analysis has embraced an ensemble subspace approach that consists of selecting random subsets of
covariates with fewer than p covariates, doing statistical analysis on each subset, and then merging
the results from the subsets. We examine conditions under which penalty methods such as Lasso
perform better when used in the ensemble approach by computing mean squared prediction errors
for simulations and a real data example. Linear models with both random and fixed designs are
considered. We examine two versions of penalty methods: one where the tuning parameter is selected
by cross-validation; and one where the final predictor is a trimmed average of individual predictors
corresponding to the members of a set of fixed tuning parameters. We find that the ensemble
approach improves on penalty methods for several important real data and model scenarios. The
improvement occurs when covariates are strongly associated with the response, when the complexity
of the model is high. In such cases, the trimmed average version of ensemble Lasso is often the
best predictor.

Keywords: ensembling; high-dimensional data; Lasso; elastic net; penalty methods; prediction;
random subspaces

1. Introduction

Recent research in statistical science has focused on developing effective and useful
techniques for analyzing high-dimensional data where the number of variables substan-
tially exceeds the number of cases or subjects. Examples of such data sets are genome or
gene expression arrays, and other biomarkers based on RNA and proteins. The challenge
is to find associations between such markers (X’s) and phenotype (Y).

Regression models provide useful frameworks for multivariate mutual information
analysis that uses information concepts when choosing covariates (also called features)
that are important for the analysis and prediction. A recent article that includes both the
concept of mutual information and the Lasso is [1]. This paper develops properties of
methods that use the information in a vector X to reduce prediction error, that is, to reduce
entropy. We consider regression experiments, that is, experiments with a response variable
Y ∈ R and a covariate vector (X1, . . . , Xp)t. The objective is to use a sample of i.i.d. vectors
(xi, yi), 1 ≤ i ≤ n, where xi = (xi1, . . . , xip)

t with xij ∈ R, to construct a predictor Ŷ0 of a
response Y0 corresponding to a covariate vector x0 = (x01, . . . , x0p)

t that is not part of the
sample. Let X = (xij)n×p be the design matrix of explanatory variables (covariates) and
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y = (y1, . . . , yn)t be the vector of response variables. Denote X[, j] as the jth column vector
of the design matrix. We will use the linear model

y = Xβββ + εεε, (1)

where βββ = (β1, . . . , βp)t is the vector of regression coefficients and εεε = (ε1, . . . , εn)t∼
N(0, σ2 I) is the residual error term. In this model, predictors Ŷ0 take the form

Ŷ0 =
p

∑
j=1

β̂ jx0,j,

where β̂ j is an estimator based on the i.i.d. sample (xi, yi), 1 ≤ i ≤ n.
Under n ≥ p, the ordinary least square (OLS) estimator of βββ can be used. When n < p

a unique OLS estimate does not exist. However, for sparse models where most of the β’s
are zero, we can use the Lasso [2] criteria that forces many of the estimated β’s to be set to
zero. For a given penalty level λ ≥ 0, the Lasso estimate of βββ is

β̂ββ = argminβ

{1
2
‖y− xβββ‖2

2 + λ‖βββ‖1
}

,

where ‖.‖2 is the Euclidean distance and ‖β‖1 = ∑ |β j| is the `1-norm. The Lasso not only
sets a subset of β’s to zero, it also shrinks OLS estimates of the remaining β’s towards zero.
It is an effective procedure for experiments when one can assume that the number r of
covariates that are relevant for the response in the sense that their β coefficient is not zero,
satisfies r ≤ n. That is, for sparse models.

Other effective high-dimension methods that we consider are adaptive Lasso, ref. [3],
smoothly clipped absolute deviation (SCAD), ref. [4], least angle regression (LARS), ref. [5],
and elastic net, ref. [6]. The properties of Lasso, and its variants, are well studied to examine
consistency of parameter estimates [7,8], and to assess the prediction error and the variable
selection process [9,10] examined properties of the Lasso in partially linear models. Several
variants of Lasso were introduced by [11] and more recently by [12]. See [13–15] for many
of the extensions of the original Lasso.

In this paper, we examine properties of statistical methods based on Ensemble Linear
Subspace Analysis (ELSA) for analyzing high-dimensional data. ELSA is based on repeated
random selection of subsets of covariates, doing statistical inference on each of the subsets,
and then combing the results from subsets to construct a final inference. One advantages of
this ensemble subspace approach is that it makes the analysis of studies with a million or
more covariates variables more manageable. Another advantage is that for many situations
the ensemble approach is more efficient because it takes advantage of the high efficiency of
statistical methods for the case where the number of covarites is less than or equal to the
sample size.

Classical examples using sub-models whose results are pooled and aggregated into a
final statistical analysis is the bagging method ([16]) and the random forests approach ([17]).
Recent studies that use ensemble ideas include [18,19]. These papers focus on feature
selection, that is, selecting the covariates that are associated with the response variable.
This paper deals with using the selected covariates to construct efficient predictors of the
response. We examine conditions under which penalty methods such as Lasso perform
better when used in the ensemble approach by computing mean squared prediction errors
for simulations and a real data example. Linear models with both random and fixed
designs are considered. We examine two versions of penalty methods: one where the
tuning parameter is selected by cross-validation; and one where the final predictor is a
trimmed average of individual predictors corresponding to the members of a set of fixed
tuning parameters. We find that the ensemble approach improves on penalty methods for
several important real data and model scenarios. The improvement occurs when covariates
are strongly associated with the response, when the complexity of the model (represented
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by r/p) is high. In such cases, the trimmed average version of ensemble Lasso is often the
best predictor.

The rest of this article is organized as follows. In Sections 2 and 3, we introduce six
different approaches to subspace selection. Section 3 describes a new approach for dealing
with tuning parameters λ. Instead of using the standard Lasso based on a λ̂ obtained by
cross validation, it computes Lasso predictors for a fixed set of tuning parameters and uses
the average of these predictors as the fixed predictors. Section 4 outlines other penalty-
based ensemble methods for high dimensional data. Section 5 introduces the concepts of
mean squared Prediction Error (MSPE) and efficiency (EFF) for fixed and random design
experiments as well as for real data. Section 6 gives efficiency of various penalty methods
with respect to CV Lasso, including efficiencies of ensemble subspace version of these
penalty methods. The efficiency results show that when the model complexity r/p is
moderately high, trimmed subspace method perform best in all but one case. Section 7
compares six ensemble subspace Lasso methods to the standard CV Lasso. For models
with a mixture of strong and weak signals, the ensemble methods perform best except
when the models are very sparse. The final section gives a summary of results.

2. Ensembling via Random Subspaces

The following three-step protocol provides the ensemble subspace approach:

• Divide the initial dataset (X, y), X = (xij)n×p, y ∈ Rn randomly into smaller sub-
datasets by selecting at random subsets covariates. The sample size n remains
the same.

• Construct predictors of the future response Y0 within each sub dataset.
• Combine the results obtained from each sub dataset into a final analysis.

We consider three approaches to choosing subsets of X-variables
1. Choose subspaces with p∗ covariates, where p∗ is the number of distinct covariates

after randomly selecting p covariates with replacement from the collection of all covariates.
Here the random variable p∗ is known to have expected value approximately 0.63p. Let
x∗ denote the distinct covariates and X∗ denote the corresponding design matrix. The
subspace data is (X∗, y) where y ∈ Rn and X∗ = (x∗ij)n×p∗ . By repeating this procedure B

times independently and using a method such as Lasso we get predictors {Ŷ0,1, . . . , Ŷ0,B}.
2. Choose n covariates without replacement from the p covariates, repeating B times

independently and using a method such as Lasso thereby obtaining {Ŷ0,1, . . . , Ŷ0,B}.
3. Same as 2., except choose n/2 covariates.
The final prediction of the response based on a covariate vector x0 is Ŷ0(x0) =

B−1 ∑B
b=1 Ŷ0b(x0). Note that the terms in the sum that defines Ŷ0b(x0) are identically

distributed, but not independent. Thus, with Ŷ0 = Ŷ0(x0) and Ŷ0b = Ŷ0b(x0)

Var(Ŷ0b) =
1
B

Var(Ŷ01) +
B− 1

B
Cov(Ŷ01, Ŷ02) = ρσ2 +

1− ρ

B
σ2, (2)

where σ2 is the variance of one predictor Ŷ0 and ρ is the pairwise correlation between two
such predictors. By selecting B large, we can make the second term negligible. When ρ
is sufficiently small ρσ2 can in many cases be smaller than the variance of the predictor
based on all the covariates. When Ŷ0 is prediction unbiased, that is, E(Ŷ0 − Y) = 0, then
Var(Ŷ0) equals the prediction mean squared error (PMSE). When the subspace have n or
fewer variables, OLS is prediction unbiased.

3. Prediction on Subspaces

We consider two approaches for dealing with Lasso tuning parameters: the cross-
validated and the Trimmed Lasso. The same approaches will be applied to the other penalty
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methods. Let X∗ = {x∗ij} be the subspace design matrix. The Lasso estimate based on a
linear model on the subspace is

β̂ = argminβ

{1
2
‖y− X∗β‖2

2 + λ‖β‖1
}

,

The standard procedure is to choose the tuning parameter λ using 10-fold cross-validation
(CV), which denoted as CVLasso hereafter. Note, since the size of subspace design X∗ =
{x∗ij} is changed, β̂ is changed as well and correspond the number variables in X∗ = {x∗ij}.
It is implemented in the library “glmnet” in R. Cross validation may sometimes lead to
unfortunate choices of λ because the random choices of training and test sample may not
yield a λ that represents a λ that will give a good predictor. Thus we will consider a method
based on a collection of fixed λ’s. This method, which we call the Trimmed Lasso (TrLasso),
uses as predictor the trimmed average (10% in each tails) of Lasso predictors computed
from a path of 100 λ’s. The path is generated using the library glmnet in R with option
“nlambda”. The largest lambda, λMAX , is the smallest value for which all beta coefficients
are zero while λMIN = λMAXe−6. The λ values are equally spaced on the log scale. We
consider six versions of ensemble subspace methods. In the following, “approach j” for
j = 1, 2 and 3 chooses subspace sizes p∗, n, and n/2, respectively.

ETrLasso (j): For j = 1, 2 and 3 use approach (j) to choose the number of variables in each
subspace. Then apply TrLasso in each subspace.
ECVTLasso (j): For j = 1, 2 and 3 use approach (j) to choose the number of variables in
each subspace. Then apply CVLasso in each subspace.

4. Competitors to Lasso
4.1. Elastic-Net

For highly correlated predictor variables the Lasso tends to select a few of them and
shrink the rest to zero, see [6,15] for an extensive discussion. For such cases the Elastic Net,
denoted ELNET hereafter, is suggested as a compromise between the ridge and the Lasso
methods. The estimates of coefficients can be obtained from:

β̂ = argminβ

{1
2
‖Y− Xβ‖2

2 + λ
(1

2
(1− α)‖β‖2

2 + α‖β‖1
)}

, (3)

where α ∈ [0, 1]. Here α = 1 leads to the regular Lasso. The penalty parameters, λ and α,
are two nonnegative tuning parameters.

We examine properties of ELNET using of α = 0.25, 0.5, and 0.75, while λ is treated as
for the Lasso. Thus we obtain TrELNET(α) and CVELNET(α). For ELNET the ensemble
subspace method is also carried out as for the Lasso but only using the trimmed (10%)
option, resulting in three methods for each α. We use the notation TrELNET(j, α) and
ELNET(j, α), j = 1, 2, 3 for the trimmed and CV ensemble subspace option for subspace of
size p∗, n, and n/2. The calculations of these ELNETs, including the Lasso where α = 1, are
done using the library glmnet in R.

4.2. Adaptive Lasso

Ref. [3] introduced the adaptive Lasso for linear regression. It uses a weighted penalty
of the form ∑

p
j=1 wj|β̂ j| where wj = 1/|β̂ j| and β̂ j is a preliminary estimate of β j and

β̂ = argminβ

{1
2
‖Y− Xβ‖2

2 + λ‖wβ‖1
)}

. (4)

The preliminary beta estimate is typically the Ridge estimate. We use that in our simula-
tion studies. The Adaptive Lasso is also computed as a 10% trimmed average of Lasso
predictors for a sequenced of λ’s and as the predictor obtained when λ is selected using CV.
They are denoted as TrALasso and CVALasso, respectively. We consider these methods
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for the proposed ensembled subspace procedures and denote them as ETrAlasso(j) and
ECVAlasso(j), j = 1, 2, 3.

4.3. Lars

Least angle regression, also called LARS, was developed in [5]. It uses a model
selection algorithms based on forward selection that enables the procedure to select a
parsimonious set of predictors to be used for the efficient prediction of a response variable
from an available large collection of possible covariates. It improves computational effi-
ciency compared to the Lasso. As in Section 3, LARS is considered with trimming and with
CV in prediction. They are denoted as TrLARS and CVLARS, respectively. We consider
the trimmed and CV versions of these methods for the proposed ensembled subspace
procedure and denoted them as ETrLARS(j) and ECVLARS(j), j = 1, 2, 3. The calculation
of LARS is done by using the library LAR in R.

4.4. Scad

Ref. [4] introduced the SCAD penalty for linear regression. It is a symmetric and
quadratic spline on the reals whose first order derivative is

SCAD′λ,a(x) = λ
{

I(|x| ≤ λ) +
(aλ− |x|)+
(a− 1)λ

I(|x| > λ)
}

, (5)

where λ > 0 and a = 3.7 as recommended by [4]. The SCAD penalty is continuously
differentiable and can produce sparse solutions and nearly unbiased estimates for sparce
models with large beta coefficients. The CV and trimmed version of SCAD will be labeled
as CVSCAD and TrSCAD, while the ensemble subspace methods will be ECVSCAD(j) and
ETrSCAD(j), j = 1, 2, 3.

5. Mean Squared Prediction Error (MSPE)
5.1. (a) Random Covariates, Simulated Data

To examine prediction error, we generate a training set D = {(x1, y1), . . . , (xn, yn)}
using the simulation model under consideration, and for each method considered obtain a
predictor of the form ŷi = ∑

p
j=1 β̂ jxij, i = 1, . . . , n. To explore the performance of proposed

methods on data not used in producing the prediction formula, we independently generate
a test set D0 = {(x01, y01), . . . , (x0n0 , y0n0)} and compute

MSPE =
1
n0

n0

∑
i=1

(y0i − ŷ0i)
2,

where

ŷ0i =
p

∑
j=1

β̂ jx0ij, i = 1, . . . , n0,

is the predicted value of y0i based on x0i. We use n0 = 0.3n in the simulation studies.
We repeat the process of generating independent collections for training and test sets
M = 2000 times, therby obtaining MSPE1, . . . , MSPEM. We measure the efficiency of a
predictor Ŷ by comparing it to the standard method, Lasso with cross-validation

EFF(Ŷ) =
1
M ∑

b

MSPEb(CVLasso)
MSPEb(Ŷ)

, (6)

where the sum is over the simulation, and as mentioned earlier for the Lass the standard
procedure is to choose the tuning parameter λ using 10-fold cross-validation (CV).
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5.2. (b) Fixed Covariate, Simulated and Real Data

Let D = {(x1, y1), . . . , (xn, yn)}, x ∈ Rp and y ∈ R, denote a real or simulated data set
with random y’s and fixed x’s. Split this set into a test set D0 with n0 data vectors and a
training set D1 with the remaining n1 data vectors, where n0 = 0.3n and n1 = 0.7n. For
each of the discussed methods, the training set is used to produce a prediction algorithm
that is used to predict the y’s in the test set. The MSPE is then MSPE = 1

n0
∑n0

i=1(ŷ0i − y0i)
2,

where ŷ0i is the predicted value of y0i based on x’s in the test set. Next we compute the ratio
with respect to CVLasso(MSPE). This procedure is repeated 2000 times and the average
is the final EFF(Ŷ). For simulated experiments, an additional M = 2000 repetitions is
carried out.

6. Efficiency Result for Lasso Competitors

In the following, we compare the accuracy of the methods presented in Sections 3 and 4.
The results are presented with B = 250 subspaces; we also tried B = 500, but since the result
were nearly the same, they are not presented here. We examine the relative performance of
the methods as a function of the complexity index which is defined as the ratio r/p of the
number of covariates that are relevant for the response y to the total number of covariates.

6.1. Syndrome Gene Data

Ref. [20] studied expression quantitative trait locus mapping in the laboratory rat to
gain a broad perspective of gene regulation in the mammalian eye and to identify genetic
variation relevant to human eye disease. The dataset which is from the flare library in
R has n = 120 with p = 200 predictors, it includes the expression level of TRIM32 gene
which can be considered as dependent variable. To compare the accuracy of the proposed
methods on this dataset, we randomly select 30% of the data as a test set and consider the
rest as a training set, and calculate the relative efficiency EFF(Ŷ) to CVLasso. We repeat the
procedure of selecting training and test set 2000 times which provide good accuracy. The
results are reported in Table 1.

Among the seven Lasso Type competitor to CVLasso, the most efficient in terms of
EFF(Ŷ) is the one based on subspaces of sizes n/2 = 60 and based on a trimmed average
of Lasso predictors computed for a sequence of λ tuning parameters. We found that it
improves on CVLasso 83% of the time. However, the average of the mean square prediction
error ratios is EFF(Ŷ) = 1.11, thus the improvement does not appear to be substantial.

Turning to the other procedures in Table 1, we see that, generally, the best performance
is obtained for the trimmed ensemble versions based on subspaces of size n/2, expect for
adaptive Lasso which is best for subspace size n. Generally, the improvement ensemble
over CvLasso is about 1.1 in terms of EFF(Ŷ). Moreover, the performance of these methods
are very close, including ELNET methods with different α. That is, using subspaces and a
robust trimmed average of response predictors obtained from the path of glment lambdas
is more efficient than using the predictor based on the lambda selected by glment cross
validation. The improvement achieved by the trimmed ensemble versions of SCAD based
on subspaces of size n/2 over the basic (CV and trimmed) versions of SCAD is striking.
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Table 1. Efficiencies with respect to CVLasso for the Syndrome Gene data.

Method

CVLasso TrLasso ETrLasso(1) ETrLasso(2) ETrLasso(3)
- 1.048(0.002) 1.059(0.002) 1.079(0.002) 1.102(0.002)

ECVLasso(1) ECVLasso(2) ECVLasso(3)
1.056(0.001) 1.067(0.002) 1.059(0.002)

CVELNET(0.25) TrELNET(0.25) ETrELNET(1,0.25) ETrELNET(2,0.25) ETrELNET(3,0.25)
1.028(0.001) 1.057(0.002) 1.056(0.002) 1.092(0.002) 1.103(0.002)

ECVELNET(1,0.25) ECVELNET(2,0.25) ECVELNET(3,0.25)
1.068(0.001) 1.071(0.002) 1.059(0.002)

CVELNET(0.50) TrELNET(0.50) ETrELNET(1,0.50) ETrELNET(2,0.50) ETrELNET(3,0.50)
1.014(0.000) 1.053(0.002) 1.059(0.002) 1.084(0.002) 1.103(0.002)

ECVELNET(1,0.50) ECVELNET(2,0.50) ECVELNET(3,0.50)
1.062(0.001) 1.069(0.002) 1.060(0.002)

CVELNET(0.75) TrELNET(0.75) ETrELNET(1,0.75) ETrELNET(2,0.75) ETrELNET(3,0.75)
1.006(0.000) 1.049(0.002) 1.059(0.002) 1.081(0.002) 1.103(0.002)

ECVELNET(1,0.75) ECVELNET(2,0.75) ECVELNET(3,0.75)
1.059(0.001) 1.067(0.002) 1.059(0.002)

CVLARS TrLARS ETrLARS(1) ETrLARS(2) ETrLARS(3)
0.963(0.002) 0.990(0.002) 1.076(0.002) 1.100(0.002) 1.083(0.002)

ECVLARS(1) ECVLARS(2) ECVLARS(3)
1.067(0.001) 1.046(0.003) 0.775(0.005)

CVALasso TrAlasso ETrAlasso(1) ETrAlasso(2) ETrAlasso(3)
0.899(0.002) 0.958(0.002) 1.004(0.003) 1.110(0.002) 1.100(0.002)

ECVALasso(1) ECVALasso(2) ECVALasso(3)
1.070(0.002) 1.086(0.002) 1.075(0.002)

CVSCAD TrSCAD ETrSCAD(1) ETrSCAD(2) ETrSCAD(3)
0.837(0.003) 0.891(0.003) 0.954(0.003) 0.969(0.003) 1.099(0.002)

ECVSCAD(1) ECVSCAD(2) ECVSCAD(3)
0.986(0.001) 1.014(0.002) 1.033(0.002)

6.2. Simulation Efficiency Results

We next used a modification of a model set forth by [21]. We set p = 1000, and in
contrast to the syndrome Gene inspired model, we now use i.i.d. random x’s, as indicated
in Model (7). The model provides a large range of β values corresponding to strong,
moderate and weak covariate signals. The correlations between covariates renage from
0.28 and 0.94.

X ∼ N(M, Σ), (7)

M = (µi)i=1,...,p, µi
i.i.d∼ N(5, 2),

Σ = (σi,j)i,j=1,...,p, σi,j = σj,i
i.i.d∼ Uni f (0.4, 0.6), i 6= j

σi,i ∼ Uni f (0.8, 1.2),

β j0+1, . . . , β j0+r
i.i.d∼ Uni f (−2, 2), j0 ∈ {1, . . . , p− r},

β j = 0, for all otherj,

yi =
p

∑
j=1

β jxij + εi, with εi
i.i.d∼ N(0, 0.15), i = 1, . . . , n.
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Using this model, we generate (x1, y1), . . . , (xn, yn), n = 180. Tables 2–5 give the mean
of the efficiency criteria over M = 2000trials. The numbers in parentheses are standard
deviations (SD). We next discuss the result for the case with r = 150 relevant variables.
Here k denotes the number of covariates in the subspaces, and p∗ is the number of distinct
variables in a bootstrap sample from the set of covariates.

Table 2. Efficiencies of trimmed mean methods with respect to the CVLasso for the model (7) with
complexity index r/p = 0.15.

Method

TrLasso ETrLasso(1) ETrLasso(2) ETrLasso(3)
1.021(0.002) 1.015(0.003) 0.841(0.004) 0.759(0.004)

TrELNET(0.25) ETrELNET(1,0.25) ETrELNET(2,0.25) ETrELNET(3,0.25)
1.023(0.003) 0.978(0.004) 0.835(0.004) 0.754(0.004)

ETrELNET(0.50) ETrELNET(1,0.50) ETrELNET(2,0.50) ETrELNET(3,0.50)
1.026(0.002) 1.001(0.003) 0.841(0.004) 0.756(0.004)

TrELNET(0.75) ETrELNET(1,0.75) ETrELNET(2,0.75) ETrELNET(3,0.75)
1.023(0.002) 1.009(0.003) 0.841(0.004) 0.756(0.004)

TrLARS ETrLARS(1) ETrLARS(2) ETrLARS(3)
0.998(0.002) 1.049(0.003) 0.880(0.004) 0.733(0.004)

TrAlasso ETrAlasso(1) ETrAlasso(2) ETrAlasso(3)
0.995(0.003) 0.971(0.003) 0.823(0.004) 0.763(0.004)

TrSCAD ETrSCAD(1) ETrSCAD(2) ETrSCAD(3)
0.844(0.005) 1.017(0.003) 0.826(0.004) 0.771(0.004)

Table 3. Efficiencies of cross validated methods with respect to the CVLasso for the model (7) with
complexity index r/p = 0.15.

Method

CVLasso ECVLasso(1) ECVLasso(2) ECVLasso(3)
- 0.974(0.003) 0.727(0.004) 0.671(0.004)

CVELNET(0.25) ECVELNET(1,0.25) ECVELNET(2,0.25) ECVELNET(3,0.25)
1.033(0.002) 0.971(0.003) 0.722(0.004) 0.668(0.004)

CVELNET(0.50) ECVELNET(1,0.50) ECVELNET(2,0.50) ECVELNET(3,0.50)
1.016(0.001) 0.977(0.003) 0.725(0.004) 0.670(0.004)

CVELNET(0.75) ECVELNET(1,0.75) ECVELNET(2,0.75) ECVELNET(3,0.75)
1.006(0.000) 0.976(0.003) 0.726(0.004) 0.671(0.004)

CVLARS ECVLARS(1) ECVLARS(2) ECVLARS(3)
0.953(0.003) 1.040(0.003) 0.822(0.004) 0.680(0.004)

CVALasso ECVAlasso(1) ECVAlasso(2) ECVAlasso(3)
1.015(0.003) 1.073(0.004) 0.711(0.004) 0.732(0.004)

CVSCAD ECVSCAD(1) ECVSCAD(2) ECVSCAD(3)
0.816(0.004) 0.875(0.004) 0.733(0.004) 0.682(0.004)

6.2.1. Results for r/p = 0.15

(a) Lasso Based Methods

Trimmed Lasso based on all p = 1000 covariates performs best, with ensemble
trimmed Lasso with k = p∗, a close second. Ensemble CVLasso performs poorly for all k.
The trimming approach dominates the cross validation approach.
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(b) ELNET Based Methods

CV and trimmed ELNET based on all p = 1000 covariates are close and better than the
ensemble methods and CVLasso. The value α in ELNET does not make much difference.
Among ensemble methods, the trimmed version with k = p∗ and α = 0.75 is the best, it is
slightly better than CVLasso.

(c) LARS Based Methods

The trimmed and CV ensemble subspace methods with k = p∗ are best with the
trimmed version slightly better. Both are better than CV Lasso.

(d) Adaptive Lasso Based Methods

CV ensemble adaptive Lasso based on subspaces with k = p∗ is best among all methods.

(e) SCAD Based Methods

For this model, SCAD does poorly for all but one version, presumably because it
produces poor predictors for β’s that are close to zero. The one version that does well is the
trimmed ensemble method with k = p∗ variables.

6.2.2. Results for r/p = 0.30

(a) Lasso Based Methods

Trimmed ensemble Lasso based on p∗ covariates in the subspaces performs best. The
trimming approach outperforms the CV approach for each of k.

(b) ELNET Based Methods

Trimmed ensemble ELNET based on p∗ covariates performs best. The trimming ap-
proach outperforms the CV approach for each k. The value of α does not make
much difference.

(c) LARS Based Methods

Trimmed ensemble LARS based on p∗ covariates is best among all LARS methods.
Trimmed methods outperform CV methods.

(d) Adaptive Lasso Based Methods

CV Adaptive ensemble Lasso based on subspaces with p∗ covariates is best among all
methods. Trimmed methods outperform CV methods except when k = p∗.

(e) SCAD Based Methods

Trimmed ensemble SCAD with p∗ covariates in the supspaces does well. Trimmed
ensemble versions outperform CV version and the k = 1000 version.
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Table 4. Efficiencies of trimmed methods with respect to the CVLasso for the model (7) with r/p = 0.3.

Method

TrLasso ETrLasso(1) ETrLasso(2) ETrLasso(3)
1.056(0.002) 1.135(0.003) 1.092(0.005) 1.002(0.004)

TrELNET(0.25) ETrELNET(1,0.25) ETrELNET(2,0.25) ETrELNET(3,0.25)
1.095(0.002) 1.130(0.003) 1.087(0.004) 0.997(0.004)

TrELNET(0.50) ETrELNET(1,0.50) ETrELNET(2,0.50) ETrELNET(3,0.50)
1.073(0.002) 1.133(0.003) 1.092(0.005) 1.000(0.004)

TrELNET(0.75) ETrELNET(1,0.75) ETrELNET(2,0.75) ETrELNET(3,0.75)
1.062(0.002) 1.133(0.003) 1.096(0.005) 1.003(0.004)

TrLARS ETrLARS(1) ETrLARS(2) ETrLARS(3)
1.037(0.002) 1.146(0.003) 1.121(0.005) 0.957(0.004)

TrAlasso ETrAlasso(1) ETrAlasso(2) ETrAlasso(3)
1.055(0.002) 1.104(0.003) 1.072(0.004) 1.006( 0.004)

TrSCAD ETrSCAD(1) ETrSCAD(2) ETrSCAD(3)
0.836(0.004) 1.098(0.003) 1.054(0.004) 1.021(0.004)

Table 5. Efficiencies of cross validated methods with respect to the CVLasso for the model (7) with
r/p = 0.3.

Method

ECVLasso(1) ECVLasso(2) ECVLasso(3)
- 1.050(0.002) 0.914(0.004) 0.873(0.004)

CVELNET(0.25) ECVELNET(1,0.25) ECVELNET(2,0.25) ECVELNET(3,0.25)
1.060(0.002) 1.082(0.003) 0.920(0.004) 0.875(0.004)

CVELNET(0.50) ECVELNET(1,0.50) ECVELNET(2,0.50) ECVELNET(3,0.50)
1.024(0.001) 1.063(0.002) 0.915(0.004) 0.874(0.004)

ECVELNET(0.75) ECVELNET(1,0.75) ECVELNET(2,0.75) ECVELNET(3,0.75)
1.008(0.000) 1.055(0.002) 0.915(0.004) 0.873(0.004)

CVLARS ECVLARS(1) ECVLARS(2) ECVLARS(3)
0.964(0.003) 1.106(0.002) 1.029(0.004) 0.883(0.004)

CVALasso ECVAlasso(1) ECVAlasso(2) ECVAlasso(3)
1.004(0.003) 1.178(0.004) 0.913(0.004) 0.948(0.004)

CVSCAD ECVSCAD(1) ECVSCAD(2) ECVSCAD(3)
0.888(0.003) 0.936(0.003) 0.899(0.004) 0.874(0.004)

6.2.3. Overall Summary

Tables 2–5 show that the ensemble and trimming methods can improve on the CV
Lasso. Overall, the CV esnsemble Adaptive Lasso based on subspaces with p∗ covariates
performs best. For r/p = 0.30, that is, 30% complexity, ensemble subsace with p∗ covariates
does best overall and the trimmed approach is best except for the Adaptive Lasso. When
r/p = 0.15, the results are less clear, except the ensemble subspaces with p∗ covariates
yields the overall best result when coupled with the Adaptive Lasso. The overall superior
performance of ensemble subspace methods based on p∗ can in part be explained by
formula (2) because the p∗ methods produce predictors that are weakly correlated.
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7. Comparison of Cv and Trimmed Lasso Methods
7.1. Syndrome Gene Data Inspired Simulation Model

Simulation based on real data is very important from an application perspective,
because the structure of the underlying population is often unknown. In this subsection,
we use x from [20] as described in Section 6.1. That is we use non-random covariates to
compare the efficiencies of the proposed Lasso-based methods on this dataset as a function
of the complexity index r/p. We randomly selected r predictor variables from p = 200
predictors, where r/p ranges from 0 to and 0.5, and used the following models with r
covariates relevant to the response Y.

β j0+1, . . . , β j0+r
i.i.d∼ Uni f (−2, 2), j0 ∈ {1, . . . , 200− r}, (8)

β j = 0, for all other j,

yi =
p

∑
j=1

β jxij + εi, with ε
i.i.d∼ N(0, 0.4).

The average of the standard deviations of the predictors is 0.28, so we considered
ε ∼ N(0, 0.4). We then calculated the discussed efficiencies of the proposed methods using
M = 2000. The result are reported in Figure 1. It shows that for r/p less than 0.29 the Lasso
cross validated method has the best performance. For r/p larger than 0.29, the trimmed
subspace version with n variables in the subspaces is best with cross validatioed ensemble
Lasso with p∗ covariates a close second. This CV ensemble Lasso is also second best for
r/p < 0.29. For r/p <0.29, the performance of subspace methods are poor.
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To summarize, in terms of predictor error, for sparse models, the cross validated lasso
based on all covariates performs best, while for the model with r/p larger than 0.29, the
trimmed ensemble lasso based on subspaces of size n performs best.

7.2. Simulated Models with Random Covariates
7.2.1. (a) Strong and Weak Signals. Strong Covariate Correlations

We consider model (7) with values of r/p ranging from 0 to 0.5. The results in Figure 2
show that the ensemble CV Lasso based on subspaces with p∗ covariates improves on the
CV Lasso for all values of the complexity index r/p. The ensemble trimmed Lasso with p∗

covariates is for best 0.07 < r/p < 0.3 while the ensemble trimmed Lasso with n covariates
in each subspace is best for r/p > 0.3. The ensemble CV Lasso’s with n and n/2 covariates
are slightly worse than CV Lasso.

To summarize, the ensemble methods with p∗ covariates in the subspaces perform
very well when compared to the CV Lasso. The ensemble trimmed Lasso versions are
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best for values of r/p larger than 0.2. This shows that when there are many covariates
with strong and weak signals cross validation may lead to a poor choice of the trimming
parameter λ.
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7.2.2. (b) Strong and Weak Signals. Weak Covariate Correlations

We consider model (7) with σij replaced by

σij ∼ Uni f (0.0, 0.2). (9)

Figure 3 shows that the dominance of the ensemble trimmed Lasso methods holds for
r/p > 0.09. In other words, when there is weak correlations between the covariates, and
the complexity of the model is more than 0.09, it is better to use the trimmed average of
ensemble predictors based ona sequence of fixed trimming parameters than using trimming
parameters obtained by cross validation.
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7.2.3. (c) Strong Signals. Weak Covariate Correlations

We consider model (9) with β replaced by

β ∼ Uni f (2, 3). (10)

Figure 4 shows that for very small complexity (r/p ≤ 0.020), CV Lasso is best, while for
r/p > 0.020, the ensemble trimmed Lasso with p∗ covariates in the subspaces improves an
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CV Lasso and does very well overall. For r/p > 0.15, the ensemble trimmed Lasso with n
covariates in the subspaces is best. The trimmed ensemble versions do better than the CV
ensemble versions for r/p > 0.025.
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7.2.4. (d) Weak Signal. Weak and Strong Correlation between Covariates

These two cases had very similar results. Here we give only the case where we use
model (9) with

β ∼ Uni f (−0.2, 0.2). (11)

Figure 5 shows that in this case the ensemble trimmed Lasso methods with p∗ and with n
covariates in the subspaces do poorly. The ensemble CV Lasso methods performs at the
same level as CV Lasso, as does the ensemble trimmed mean approach with k = n/2.
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8. Conclusions

This article explores the random ensemble subspace approach for high-dimensional
data analysis. This technique splits the data into covariate subspaces and generates models
and methods on each covariate subspace. Merging and assembling the methods provides
a global solution to the high-dimensional data analysis challenge. Let n denote the sam-
ple size and p the member of covariates, under p >> n. We consider three different
approaches of selecting subspaces: repeatedly select subspaces as follows (1) n covariates
with replacement from p covariates, then use the distinct covariates to form subspaces, (2)
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n covariates at random without replacement, and (3) n/2 covariates on random without
replacement. This approach is applied to a variety of penalty methods and compared
to cross-validation (CV) Lasso using mean squared predictor error (MSPE). We consider
MSPE as a function of model complexity, which is defined as r/p where r is the number
of covariates that are associated with the response and find that when r/p is moderate to
large, the cross-validation ensemble subspace approach improves the CVLasso that uses all
p covariates in one step. We also introduced an alternative to cross-validation that consists
of computing predictors for a fixed set of data-based tuning parameters and using these
predictors’ trimmed mean. This approach works well when the ratio r/p is above 0.2.

To facilitate communication among researchers and provide possible collaborations
between scientists across disciplines and as supporters of open-science, the codes are
written in R according to the end-to-end protocol we implemented in this manuscript,
which are available on request.
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