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Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading

susceptibility region for lung cancer. However, the pathogenic pathways, through which sus-

ceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We

analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression

quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying

pathways and to investigate the combined effect of genes from the identified susceptibility

pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways,

and 22 Gene Ontology terms were identified and replicated to be significantly associated with

lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of

eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated

channel activity were involved in lung cancer risk. These pathways provide important insights for

the etiology of lung cancer.
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Lung cancer, accounting for 13% of all cancer cases and 23%
of all cancer-related deaths worldwide, is a leading cause of
cancer death in the US and around the world, and represents

a major public health problem1. Several genome-wide association
studies (GWAS) have been published and identified the chro-
mosome 15q25.1 locus as a susceptibility region for lung cancer2–
4, smoking behavior5,6, and nicotine addiction4 in Caucasians2,
African-Americans7, and Asians8. Epigenetic analyses provided
evidence that epigenetic silencing of nAChR-encoding genes
clustered at the 15q25.1 locus may contribute to lung cancer risk9.
In addition, expression quantitative trait loci (eQTL) studies
showed an influence of alleles in this region on the expression of
several genes at chromosome 15q25.1, providing a mechanism by
which these variations might affect lung cancer risk10. Our pre-
vious GWA studies found that variants in chromosome 15q25.1,
including single-nucleotide polymorphisms (SNPs) and haplo-
types, are involved in the etiology of overall lung cancer sus-
ceptibility and by histology and smoking status2,11. However,
lung cancer, being a disease of complex origin, is usually con-
sidered to result from complex effects of smoking along with
multiple genetic variants affecting a number of pathways or
biological process. Common SNPs are not individually known to
add greatly to individual risk, unless more complex gene–gene
interactions play a crucial role in the genetic architecture of
pathogenesis of complex disorders12, such as lung cancer. The
pathogenic pathways, through which lung cancer susceptibility
SNPs within chromosome 15q25.1 affect disease etiology and
development of lung cancer, have not been studied comprehen-
sively, limiting mechanistic understanding.

The objective of this study was to explore the underlying
pathways that are involved in the molecular mechanisms by
which variants at the chromosome 15q25.1 locus modify lung
cancer risk and increase lung cancer occurrence and develop-
ment. We first performed a GWAS analysis with a cohort of
1923 lung cancer cases and 1977 healthy controls of Italian
origin combined with a cohort of 2995 lung cases and 3578
controls of European ancestry, and then conducted a meta-
analysis to identify the index SNPs within the chromosome
15q25.1 locus that were significantly associated with lung
cancer risk. We then investigated the SNP–SNP interaction
between the index SNPs within the chromosome 15q25.1 locus
and the entire genome to identify the SNPs that interact with
the 15q25.1 index SNPs, and are therefore involved in lung
cancer etiology through interaction. Furthermore, using the
index SNPs and their related SNPs in the whole genome, we
explored the pathogenic pathways that may be relevant to lung
cancer etiology, and replicated the findings with an indepen-
dent cohort of 18,439 lung cancer cases and 14,026 healthy
controls. We also studied genome-wide gene expression data in
human lung tissues and conducted an eQTL analysis to inves-
tigate whether the functional annotation of the eQTL results
can validate the susceptibility pathways from our GWAS ana-
lyses. Finally, we explored whether genes from our suscept-
ibility pathways might jointly affect the process by which the
chromosome 15q25.1 locus influences lung cancer risk. Our
findings suggest that common genetic variations within chro-
mosome 15q25.1 are likely to affect lung cancer etiology by
influencing the expression/structure and thereby the function of
genes that comprise the neuroactive ligand receptor interaction
pathway or gated channel activity and related terms. Such new
biologic insights from pathway analysis will provide a better
understanding of the etiology and development of lung cancer,
potentially shortening the interval between increasing biologic
knowledge and translation to patient care.

Results
The study design is presented in Fig. 1. Demographic char-
acteristics and sample sizes of the two discovery cohorts and the
replication cohort for GWAS pathway analyses are summarized
in Table 1. Demographic characteristics of the lung eQTL study
are summarized in Supplementary Table 1.

Selection of index SNPs and candidate SNPs in discovery. To
determine the most important susceptibility loci for lung cancer
and to identify multiple association signals within observed loci,
we performed association analyses using the 1st and 2nd dis-
covery cohort, separately, and conducted a meta-analysis of the
two cohorts in the discovery phase. We identified the most sig-
nificant susceptibility loci for lung cancer on chromosomes
15q25.1 in both discovery cohorts, and confirmed the finding in
the meta-analysis. Eight signals within chromosome 15q25.1 were
defined as lung cancer risk-associated SNPs based on P values of
association with lung cancer of less than 5 × 10−8 in the 1st
discovery cohort and in the meta-analysis (Table 2). After Bon-
ferroni correction, the eight signals maintained a significant
impact on lung cancer risk in the 1st discovery cohort and in the
meta-analysis. We defined the eight significant SNPs, which were
rs1051730 in CHRNA3; rs1996371, rs6495314, rs11638372,
rs4887077, and rs6495309 in CHRNB4; and rs8034191 and
rs2036534 in HYKK, as the index SNPs for lung cancer risk, and
used these eight SNPs to further select the candidate SNPs, which
interacted with the eight index SNPs.

To evaluate potential functional connections between genes
mapping throughout the genome and those on chromosome
15q25.1, to further elucidate the role of the chromosome 15q25.1-
related pathway in lung cancer risk, we investigated SNP–SNP
interactions between the eight index SNPs within chromosome
15q25.1 and the whole genome in both discovery cohorts, and
conducted a meta-analysis of SNP–SNP interaction with both
cohorts. A total of 5883 SNP pairs between the eight index SNPs
and candidate SNPs in the whole genome exhibited epistasis P value
of less than 0.05 in the 1st discovery cohort and in the meta-analysis
results and showed epistasis P value of less than 0.10 in the 2nd
discovery cohort (Supplementary Data 1). In total, 3409 candidate
SNPs within the whole genome were identified and validated to
interact with the eight index SNPs (Supplementary Data 2).

Susceptibility pathways and GO terms in discovery. In order to
identify chromosome 15q25.1-associated pathogenic pathways
and biological processes that may be relevant to lung cancer
etiology, we then conducted enrichment analyses using i-
GSEA4GWAS13 in discovery phase with the meta-analysis
results of 2530 SNPs, which were pruned from eight index
SNPs and 3409 candidate SNPs for linkage disequilibrium (LD)
to reduce the possibility of biased results. We applied mapping
rules of SNPs to genes by incorporating a region 20 kb upstream
and downstream of each gene (Supplementary Data 2 and 3). In
total, one Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway, three Reactome pathways, and 22 Gene Ontology (GO)
terms were significantly associated with lung cancer risk with
improved gene set enrichment analysis (i-GSEA)13 P values less
than 0.05 and FDR less than 0.25 for each pathway (Table 3). The
KEGG pathway was the neuroactive ligand receptor interaction
pathway (i-GSEA P= 0.001 and FDR= 0.006). The 22 GO terms
included substrate-specific channel activity (i-GSEA P < 0.001
and FDR= 0.005), ion channel activity (i-GSEA P < 0.001 and
FDR= 0.005), gated channel activity (i-GSEA P= 0.002 and
FDR= 0.006), and several similar terms.
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Susceptibility pathways and GO terms in replication. We also
examined whether our findings of chromosome 15q25.1-related
pathways could be validated as involved in lung cancer patho-
genesis and conducted an independent GWAS with a population-
based case-control study among 18,439 lung cancer cases and
14,026 healthy controls in the replication phase using i-
GSEA4GWAS. Of the eight index SNPs and the 3409 candidate
SNPs in the discovery phase, 3411 SNPs were found in the
replication cohort and, after pruned, 2525 SNPs were applied for
enrichment (Supplementary Data 2). The replication cohort
analysis confirmed that the eight index SNPs within chromosome
15q25.1 were significantly associated with lung cancer risk with a
logistic regression P value of each index SNP of less than 1 ×

10−22 (Table 2). Enrichment analysis in the replication cohort
confirmed that the KEGG pathway, two Reactome pathways, and
22 GO terms were all significantly associated with lung cancer
risk with P values of less than 0.05 and FDR of less than 0.25 for
each pathway, which was in agreement with the findings from the
meta-analysis of the discovery phase (Table 3).

Verification of GWAS pathway analysis. Considering the pos-
sibility that the much more significant lung cancer associated P
values in the index SNPs than in the candidate SNPs might lead
to false positive enrichment if the observed pathways were due
only to the significance of the index SNPs, we performed gene set

Primary GWAS analysis

Discovery 1st cohort : 1977 cases and 1923 controls with 561, 466 SNPs

Discovery 2nd cohort : 2995 cases and 3578 controls with 310, 276 SNPs

Meta–analysis of the two discovery cohorts with 310, 276 SNPs

Chromosome 15q25. 1 SNPs

Association P value < 5 × 10–8 in the discovery 1st cohort

Association P value < 5 × 10–8 in the meta–analysis of discovery
cohorts

Discovery 1st cohort : the tag SNPs × SNPs in whole genome

Discovery 2nd cohort : the tag SNPs × SNPs in whole genome

Meta–analysis of the discovery cohorts

SNPs in whole genome
Epistasis P value < 0.05 in the discovery 1st cohort
Epistasis P value < 0.1 in the discovery 2nd cohort
Epistasis P value < 0.05 in the meta–analysis

Using association P value of the LD pruned SNPs from the index
SNPs and candidate SNPs in meta–analysis of the two discovery
cohorts

Replication cohort : 18,439 cases and 14,026 controls

Association analysis of the index SNPs and candidate SNPs

Pathway analysis

Laval cohort with 409 patients

Genome-wide gene expression levels in the lung tissue and eQTL study

Index SNP selection

Epistasis screening

Candidate SNP selection

GWAS pathway analysis

Independent replication

eQTL study validation

Combined genetic risk in
susceptibility pathways

Stratified GWAS pathway
analysis

1

2

3

4

5

6

7

8

9

Using DAVID

Calculating accumulative genetic risk of genes from our
suceptibility pathways on lung cancer risk

Stratified analyses by smoking status

Fig. 1 Schematic overview of the study design. (1) In the discovery phase, a total of 310,276 SNPs were the same in both the 1st and 2nd discovery cohorts
and were applied for association analyses and meta-analyses. (2) SNPs within the 15q25.1 locus, which were associated with lung cancer risk with logistic
regression P values of less than 5 × 10−8 in the 1st discovery cohort and in the meta-analysis of the discovery cohorts, were selected as index SNPs. (3) The
epistasis test between SNPs in the whole genome and the index SNPs within chromosome 15q25.1 locus were conducted for both discovery cohorts and a
meta-analysis was performed to combine the epistasis results. (4) The SNPs, which interacted with the index SNPs with an epistasis P value of less than
0.05 in the 1st discovery cohort and in the meta-analysis of both discovery cohorts, and less than 0.10 in the 2nd discovery cohort, were selected as the
candidate SNPs. (5) The index SNPs and the candidate SNPs with the logistic regression P values in the meta-analysis of discovery cohorts were applied for
GWAS pathway analysis. (6) In the replication phase, the index SNPs and the candidate SNPs with the logistic regression P values in an independent cohort
were applied for GWAS pathway analysis to validate the susceptibility pathway enriched in step 5. (7) The most significant genes in the whole genome
regulated by SNPs in chromosome 15q25.1, which were selected with the eQTL study, were employed for pathway analysis. (8) The individual and
combined effects of genes in the pathways on lung cancer risk were calculated. (9) A similar process to select index SNPs and candidate SNPs and to carry
out GWAS pathway analyses in the subgroups of smokers and non-smokers were conducted
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enrichment analysis with the index SNPs alone and the candidate
SNPs alone, separately, to clarify the contribution of the index
SNPs alone and the candidate SNPs alone to pathway analysis.
We found that the enrichment analysis with the index SNPs alone
in discovery and replication, respectively, cannot result in any
pathways and GO terms with threshold of FDR < 0.25, but the
analysis with the candidate SNPs alone showed several pathways
and GO terms with threshold of FDR < 0.25 in discovery and
replication, respectively (Supplementary Table 2). To further
elucidate the independent effect of the candidate SNPs on this
pathway enrichment, we conducted an analysis using the
observed logistic regression P values of the candidate SNPs and
setting the P values of the index SNPs to 0.01 to reduce the
impact that these SNPs might have had on the analysis. We
observed that 14 significant GO terms, all of which are from the
22 susceptibility GO terms confirmed by the discovery and
replication phase of GWAS analyses, were associated with lung
cancer risk with i-GSEA P values of less than 0.05 and FDR of less
than 0.25 for each pathway in both the discovery and replication
data. Therefore, our sensitivity analyses deny the possibility that
the observed pathways are due only to effects from only the index
SNPs.

In order to demonstrate that the observed pathways were
independent of the tool-chain, we performed gene set enrichment
analysis using an alternative analytical strategy, namely GSA-
SNP214,15. We found that the KEGG pathway, all of the 22 GO
terms and one Reactome pathways, which were observed from
our previous GWAS analyses with i-GSEA4GWAS, showed
significant association with lung cancer risk with P values of less
than 0.05 for each pathway in both discovery and replication
(Supplementary Table 3). Only one Reactome pathway, neuronal
system pathway, from our previous GWAS analyses was unable to
be confirmed. A few additional pathways, such as receptor
complex term, were identified. In addition, this method provides
more precise P values.

Functional validation by lung eQTL analysis. We next mea-
sured genome-wide gene expression levels in lung tissues of 409
lung cancer patients and mapped eQTLs to determine which
genes can be transcriptionally regulated by SNPs in chromosome
15q25.1, and asked whether genes on chromosome 15q25.1 and

its related genes identified by eQTL studies would indicate shared
pathways with the susceptibility pathways and GO terms from
our GWA study. Because rs16969968 was a functional SNP that
changes signal transduction through CHRNA516, and since
rs16969968 had an estimated R-square LD value of 0.98 with
rs1051730, which was the most significant SNP associated with
lung cancer risk in discovery and replication cohorts, we used
rs16969968 as a surrogate for CHRNA3–CHRNA5 and to inves-
tigate the influence of rs16969968 on whole-genome gene
expression level. In addition, because rs649530917,18 in CHRNB4
and rs80341912,17 in HYKK had been reported to exhibit the
strongest association with lung cancer risk in CHRNB4 and
HYKK, separately, we also explored the effect of rs6495309 and
rs8034191 on whole-genome gene expression level (Supplemen-
tary Data 4).

We evaluated whether the epistatistic pathways we previously
identified were significantly related to expression levels. The
KEGG neuroactive ligand receptor interaction pathway from our
GWAS analyses was validated to influence lung cancer risk
through an impact on expression levels. The GWAS pathways of
Reactome showed no significant associations with lung cancer
risk. Of 22 susceptibility GO terms from our GWAS analyses,
gated channel activity was significantly associated with lung
cancer risk (Fisher’s exact test, P= 0.029). Four transporter
activity GO terms, including ion channel activity, cation channel
activity, substrate-specific channel activity, and cation transmem-
brane transporter activity, had borderline significant associations
with lung cancer (Fisher’s exact test, P= 0.071, 0.073, 0.080, and
0.098, respectively) (Table 4 and Fig. 2). Another 17 GO terms
exhibited no significant relationship. We also evaluated whether
the functional eQTL analysis identified the same lung cancer-
related pathways after removing the HYKK and CHRNB4, which
were eQTL related pathways of genes underlying rs16969968,
rs6495309, and rs8034191.

We observed that the KEGG neuroactive ligand receptor
interaction pathway still exhibited an involvement in lung cancer
risk through its effect on expression levels. The gated channel
activity term showed association with lung cancer risk with
borderline significance (Fisher’s exact test, P= 0.088) (Supple-
mentary Table 4).

To aid interpretation of the relationship of the sharing
pathways in both GWAS analysis and eQTL studies, we

Table 1 Participant characteristics of lung cancer cases and controls in GWAS cohorts

Variants 1st Discovery cohort (n= 3900) 2nd Discovery cohort (n= 6573) Replication Cohort (n= 32,465)

Control
(n= 1977)

Case
(n= 1923)

P-value Control
(n= 3578)

Case
(n= 2995)

P-value Control
(n= 14,026)

Case
(n= 18,439)

P-value

No. % No. % No. % No. % No. % No. %

Age (years)
0–64 502 25.4 420 21.8 0.009 2304 64.39 1825 60.9 0.004 8449 60.2 9513 51.6 <0.0001
≥65 1475 74.6 1503 78.2 1274 35.61 1170 39.1 5577 39.8 8926 48.4

Gender
Male 1514 76.6 1520 79.0 0.06 2417 67.55 2093 69.9 0.04 8639 61.6 11,495 62.3 0.37
Female 463 23.4 403 21.0 1161 32.45 902 30.1 5384 38.4 6941 37.6
Omitted 3 0.02 3 0.02

Smoking status
Never 633 32.0 138 7.1 <0.0001 867 24.23 137 4.6 <0.0001 4415 31.5 1800 9.8 <0.0001
Ever 1339 67.7 1774 92.3 2702 75.52 2854 95.3 9930 66.5 16,341 88.6
Omitted 5 0.3 11 0.6 9 0.25 4 0.1 281 2.0 298 1.6

Histology
Squamous 488 25.4 307 10.3 4490 24.3
Adenocarcinoma 788 40.9 620 20.7 6819 37.0
Other 613 31.9 226 7.5 5487 29.8
Omitted 34 1.8 1842 61.5 1643 8.9
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calculated the overlapping genes in the KEGG neuroactive ligand
receptor interaction pathway and the GO terms and clarified the
parent and child terms of the GO terms (Fig. 3). In addition, we
investigated the gene expression level in normal lung tissue from
Genecards database and found that all the genes in the
neuroactive ligand receptor interaction pathway and the gated
channel activity term, as well as the four transporter activity
terms whose functional annotation for eQTL study had border-
line significant association with lung cancer, are normally
expressed in normal lung tissue and may play roles in cell
growth, differentiation, or function of normal lung cell.

Combined effect of genes on lung cancer risk. In order to
explore whether genes from our susceptibility KEGG pathways
and GO terms could jointly affect lung cancer risk, we calculated
the individual and combined effects of multiple functionally-
related genes from our susceptibility pathways and GO terms on
lung cancer risk. Supplementary Data 5 shows the results from
our study of all selected genes, which were identified by our
GWAS enrichment analysis as significant genes constituting the
susceptibility pathways/GO terms, and the reference SNP, as well
as its P value associated with lung cancer risk. Since the combined
effect of weaker SNPs/genes might have minor influence and lead
to difficulties in exploring the systems view, only those genes
whose reference SNPs were associated with lung cancer risk with
border-line significance (association test P < 0.1) in the meta-
analysis of the discovery cohorts and in the replication cohort
were selected to assess the individual and joint effects on lung
cancer risk. With the threshold of P value of the reference SNP
less than 0.1, the same genes/SNPs were selected in gated channel
activity term and the 4 transporter activity terms whose func-
tional annotation for eQTL study were borderline significantly
associated with lung cancer. Therefore, we explored the accu-
mulated risk in the neuroactive ligand receptor interaction
pathway and the gated channel activity term.

In total, for the neuroactive ligand receptor interaction
pathway, CHRNA3 rs1051730 and CHRNB4 rs6495309 reached
the criterion and were included for further analysis of the
independent association and combined effects of SNPs on lung
cancer risk. With respect to the gated channel activity term,
CHRNA3 rs1051730, CHRNB4 rs6495309, KCNJ4 rs138396, and
SCN2B rs7944321 reached the criterion and were included for
further analysis. Because the frequency of CHRNA3 rs1051730 T,
CHRNB4 rs6495309 C, KCNJ4 rs138396 A, and SCN2B rs7944321
A alleles among the cases were slightly higher than among
controls in the discovery cohorts and in the replication cohort, we
assumed these alleles may be putative risk alleles in further
combined analyses.

The association of lung cancer risk and genotypes of each SNP
and the number of risk alleles is shown in Tables 5 and 6. In each
cohort, the observed genotype frequencies among the controls
were all consistent with Hardy–Weinberg equilibrium. Among
the selected genes and their reference SNPs, CHRNA3 rs1051730
was the most significantly associated with increased lung cancer
risk. With respect to CHRNA3 rs1051730, compared with the CC
homozygote, the CT heterozygote was associated with an elevated
risk of lung cancer with ORs being 1.32 (adjusted 95% CI,
1.21–1.44) in meta-analysis of the discovery cohorts and 1.27
(adjusted 95% CI, 1.21–1.33) in replication, while the TT
homozygote was associated with increased lung cancer risk with
ORs being 1.89 (adjusted 95% CI, 1.67–2.14) in meta-analysis of
the discovery cohorts and 1.63 (adjusted 95% CI, 1.52–1.75) in
replication. We also found and validated a significant
dose–response relationship between the number of CHRNA3
rs1051730 T alleles and lung cancer risk (adjusted trend test P=
2.68 × 10−24 for discovery (Table 5) and adjusted trend test P=
1.82 × 10−44 for replication (Table 6)). The risk allele of CHRNB4
rs6495309 also significantly increased lung cancer risk in
discovery and replication. A significant dose–response relation-
ship was demonstrated between the number of risk alleles of
CHRNB4 rs6495309 and the risk of lung cancer. Each of the other
SNPs, including KCNJ4 rs138396 and SCN2B rs7944321,
appeared to have a slightly elevated risk of lung cancer in
discovery and replication.

For the neuroactive ligand receptor interaction pathway, based
on the number of risk alleles of the combined CHRNA3
rs1051730 and CHRNB4 rs6495309 genotypes, we grouped the
individuals into four genotype groups, as follows: zero or one risk
alleles of either gene; only two risk alleles; three risk alleles; and
four risk alleles (Tables 5 and 6). We observed that the combined
genotypes in those carrying four risk alleles, compared with those
carrying zero or one risk allele, had a >2-fold increased risk in
discovery (adjusted OR= 2.07; 95% CI, 1.80–2.38), and exhibited
a 1.74-fold elevated risk in replication (adjusted OR= 1.74; 95%
CI, 1.61–1.89) for lung cancer risk. The difference in CHRNA3
rs1051730 and CHRNB4 rs6495309 combination was associated
with lung cancer risk in a dose-dependent fashion in discovery
(adjusted trend test P= 1.55 × 10−24) and replication (adjusted
trend test P= 4.80 × 10−50).

Based on the number of risk alleles of the combined genotypes
in the gated channel activity term, we grouped the individuals
into four genotype groups, as follows: zero or one risk allele of
either gene; only two or three risk alleles; four or five risk alleles;
and six to eight risk alleles (Tables 5 and 6). Compared with
individuals with zero or one risk allele, we observed that the
combined genotypes in those carrying six to eight risk alleles had

Table 2 Index SNPs in the chromosome 15q25.1 locus which were associated with lung cancer with P < 5.00E-8 in the 1st
discovery cohort and in meta-analysis of the discovery cohorts

SNP Gene Predicted function A1 A2 1st discovery cohort 2nd discovery cohort Meta-analysis of
discovery cohorts

replication cohort

P-value BONFa P-value BONFa P-value BONFa P-value BONFa

rs1051730 CHRNA3 coding T C 2.28E-14 7.77E-11 3.03E-13 1.04E-09 1.64E-25 5.09E-20 3.11E-49 1.06E-45
rs1996371 CHRNB4 intronic G A 9.08E-12 3.10E-08 1.15E-05 3.93E-02 2.05E-14 6.36E-09 2.83E-24 9.65E-21
rs6495314 CHRNB4 intronic C A 1.47E-11 5.01E-08 7.29E-06 2.49E-02 1.47E-14 4.56E-09 8.54E-24 2.91E-20
rs8034191 HYKK intronic C T 3.05E-11 1.04E-07 8.98E-14 3.07E-10 2.40E-23 7.45E-18 2.12E-46 7.23E-43
rs11638372 CHRNB4 intronic T C 3.14E-10 1.07E-06 2.95E-05 1.01E-01 8.11E-13 2.52E-07 5.28E-24 1.80E-20
rs2036534 HYKK 3downstream C T 3.81E-10 1.30E-06 4.29E-06 1.47E-02 7.81E-14 2.42E-08 4.85E-32 1.65E-28
rs4887077 CHRNB4 intronic T C 4.16E-10 1.42E-06 2.39E-05 8.17E-02 7.72E-13 2.40E-07 2.23E-23 7.61E-20
rs6495309 CHRNB4 3downstream T C 3.57E-08 1.22E-04 4.29E-06 1.47E-02 2.18E-12 6.76E-07 9.34E-29 3.19E-25

aP-value was adjusted for multiple comparisons using Bonferroni correction.
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a >2-fold increased risk in discovery (adjusted OR= 2.17; 95%
CI, 1.74–2.70) and a 1.7-fold elevated risk in replication (adjusted
OR= 1.72; 95% CI, 1.52–1.95) for lung cancer risk. The
difference between the four genotype groups had a significant
association with lung cancer risk in a dose-dependent fashion in
discovery (adjusted trend test P= 2.46 × 10−18) and in replication
(adjusted trend test P= 2.09 × 10−37).

Stratified gene enrichment analyses by smoking status. When
we performed the stratified analyses according to smoking status,
we found that chromosome 15q25.1 was the most significant
susceptibility locus for lung cancer risk among smokers in the 1st
and 2nd discovery cohort, and a meta-analysis of discovery
cohorts also supported this finding. Eight SNPs within chromo-
some 15q25.1 were identified and validated as associated with
smoking-related lung cancer and were defined as the index SNPs
for further selection of the candidate SNPs (Supplementary
Table 5). In total, 3401 candidate SNPs (Supplementary Data 6)
in the whole genome were identified and verified to interact with
eight index SNPs in the 1st and 2nd discovery cohort and in the
meta-analysis of discovery. After pruning for LD, we conducted

enrichment analyses with 2522 SNPs (Supplementary Data 7).
Among those SNPs that are significant at P < 0.05, pathway
analysis found the same one KEGG pathway and eight GO terms
were identified and validated as significantly associated with lung
cancer19 risk in the meta-analysis of discovery cohorts and in the
replication cohort with statistically significant P values (Supple-
mentary Table 6). In addition, we found that the KEGG neu-
roactive ligand receptor interaction pathway exhibited a
significant association with smoking-related lung cancer risk in
the meta-analysis results of the discovery phase (i-GSEA P=
0.004 and FDR= 0.017) and in the replication cohort (i-GSEA P
< 0.001 and FDR= 0.003). We did not explore chromosome
15q25.1-related for lung cancer in never smokers because the
association between SNPs within chromosomes 15q25.1 and lung
cancer did not reach genome-wide significance in the discovery
cohorts.

Discussion
The chromosome 15q25.1 locus was first identified as the leading
susceptibility locus for lung cancer in Caucasians in 2008 by our
group2 and by Hung et al.3, and was then replicated in a Chinese
population18, in African-Americans7,17, and by an international
lung cancer consortium20, as well as in smokers21. However, to
our knowledge, no study to date has investigated how this locus
affects lung cancer etiology, nor documented the susceptibility
pathways by which chromosome 15q25.1 modifies lung cancer
risk and is involved in lung cancer pathogenesis. The results
presented here confirm the central role of chromosome 15q25.1
in lung cancer pathogenesis and provide confirmation of the
pathways that affect lung cancer pathogenesis. We identified the
neuroactive ligand receptor interaction pathway is involved as a
mechanism by which the chromosome 15q25.1 locus influences
lung cancer risk, in large discovery cohorts and in the replication
cohort, and confirmed the involvement using functional anno-
tation of an eQTL study with lung tissue from lung cancer

Table 3 Pathways and GO terms in discovery and replication with a threshold of FDR < 0.25 in both phase

Source Pathway/gene set name Meta-analysis of
discovery cohorts

Replication cohort

P-value FDR P-value FDR

KEGG neuroactive ligand receptor interaction 0.001 0.006 0.013 0.042
Reactome neuronal system 0.001 0.015 0.014 0.082

transmission across chemical synapses 0.003 0.023 0.003 0.028
Gene Oncology substrate-specific channel activity <0.001 0.005 0.002 0.004

ion channel activity <0.001 0.005 0.002 0.004
substrate-specific transporter activity 0.001 0.006 0.010 0.013
cation channel activity 0.002 0.006 0.002 0.008
ion transmembrane transporter activity 0.002 0.006 0.004 0.009
metal ion transmembrane transporter activity 0.001 0.006 0.002 0.003
transmembrane transporter activity <0.001 0.006 0.007 0.012
gated channel activity 0.002 0.006 0.001 0.016
substrate-specific transmembrane transporter activity <0.001 0.006 0.006 0.012
cation transmembrane transporter activity 0.001 0.006 0.003 0.006
transmembrane receptor activity 0.001 0.007 <0.001 0.006
receptor activity 0.017 0.021 0.002 0.007
macromolecular complex 0.001 0.008 0.006 0.037
protein complex 0.001 0.012 0.006 0.080
intrinsic to membrane 0.003 0.022 0.002 0.025
intrinsic to plasma membrane 0.004 0.024 0.002 0.030
integral to membrane 0.003 0.027 0.002 0.027
membrane part 0.005 0.028 0.013 0.050
membrane 0.006 0.032 0.024 0.071
plasma membrane part 0.009 0.032 0.005 0.030
integral to plasma membrane 0.003 0.035 0.002 0.051
plasma membrane 0.015 0.044 0.034 0.085

Table 4 Functional annotation of eQTL study results for
our susceptibility GWAS GO terms with a threshold of
P value < 0.1

GO term P-value

gated channel activity 0.029
ion channel activity 0.071
cation channel activity 0.073
substrate-specific channel activity 0.08
cation transmembrane transporter activity 0.098
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patients. Gated channel activity term was verified to be sig-
nificantly associated with the mechanism of chromosome 15q25.1
in conferring lung cancer risk in GWAS pathway analysis of
discovery and replication phase and in the functional annotation
of an eQTL study. In addition, risk alleles in SNPs in the genes in
our susceptibility pathways can be combines to confer the lung
cancer risk.

Pathway analyses, being a complementary approach to single-
point analyses, can determine whether a set of genes from a
biological pathway jointly affects the risk of a disease trait and
uncover insights into disease etiology, and therefore such analyses
are beneficial to better understand the bridge between genotypes
and phenotypes. GWAS pathway analyses together with gene
expression studies identified new pathways involved in the
etiology of cardiovascular disease22, immune-related
disorders23,24, and body fat distribution25. The first wave of
GWA studies to explore lung cancer susceptibility regions iden-
tified several candidate genes and causal variants for lung cancer
risk. Going forward, investigation of the pathogenic pathways will
be essential to provide a better understanding of the process of
lung cancer etiology and will contribute to further control of lung
cancer.

The neuroactive ligand receptor interaction pathway mainly
consists a group of neuroreceptor genes, such as dopamine
receptor26 and proto-oncogene, and is involved in environmental

information processing and signaling molecules and interac-
tion27. This pathway was found to be associated with certain
neuropsychiatric disorders and congenital diseases28,29. A recent
study of 23 lung squamous cell carcinoma and paired normal
lung tissue evaluated gene expression associated with microRNA-
375 and found that the neuroactive ligand receptor interaction
pathway was one of the possible pathways associated with lung
squamous cell carcinoma30. Another study investigated the dif-
ferentially expressed genes in 48 lung adenocarcinomas and 47
controls and revealed this pathway was one possible mechanism
of lung adenocarcinoma31.

These two reports revealed the dysregulation of the neuroactive
ligand receptor interaction pathway in lung cancer and supported
our findings that this pathway plays a role in lung cancer etiology.

The neuroactive ligand receptor interaction pathway is also
implicated in nicotine dependence, which also contributes to
increasing lung cancer risk. Most of the selected genes of this
pathway from the current GWAS pathway analyses, including,
CHRNA5–CHRNA3–CHRNB432, GABBR133, GABBR233, GRM734,
GRM835, GRIN2A35, and CHRND36 are significantly associated with
nicotine dependence and smoking behavior, as well as known
smoking-related diseases such as lung cancer. For example, GRM7
in chromosome 3p26.1 and GRM8 in chromosome 7q31.33 are
important in the biological processes and development of nicotine
dependence, and some of these risks may be shared across diverse
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population34,35. Second, the neurotransmitter receptors in this
pathway (including CHRNA5, CHRNA3, CHRNB4, and CHRND)
participate in the biological process by which smoking induces
nicotine dependence. Thus, the association between chromosome
15q25.1, this pathway, lung cancer likely reflects, at least partially, an
indirect effect of these genes on lung cancer risk through their effects
on smoking behavior. Aside from nicotine dependence and lung
cancer risk, this pathway also influences other neurotransmitter-
mediated disorders, such as alcohol dependence37, Parkinson’s
disease38, schizophrenia drug therapy39, and autism spectrum dis-
orders40. Thus this pathway may have many complex effects on
lung cancer risk, either directly by influencing lung tissues or lung
cancers as suggested by expression studies, indirectly through
smoking behavior or even through effects on other
neurotransmitter-related diseases.

Another important finding in our study is that a few trans-
porter activity GO terms, such as gated channel activity, were
implicated in the mechanisms of chromosome 15q25.1-modified
lung cancer risk. Although we first reported the association
between the transporter activity GO terms and lung cancer risk,
this finding could be supported by previous studies. First,
numerous studies have shown that a few transporter activity GO
terms are involved in the processes driving the malignancy, such
as calcium channels41,42, which belong to the gated channel group
or ion channel group. Second, CHRNA5–CHRNA3–CHRNB4
within chromosome 15q25.1 has been documented to modify
some pathways of gated channel activity and ion channel activity,
and therefore to play a crucial role in leading to and maintaining

malignant phenotypes43. Finally, the majority of genes which
were chosen as the significant or selected genes in the current
GWAS pathway analyses, such as KCNJ444, CACNB245, and
SLC14A46, have been reported to be involved in cancer etiology
and development. In addition, our finding that genes from our
susceptibility transporter activity GO terms jointly affected the
chromosome 15q25.1-related lung cancer risk also supported the
hypothesis that these pathways were implicated in the mechan-
isms of lung cancer. Therefore, we speculated that the accumu-
lated effects of multiple functionally-related genes from our
susceptibility pathways caused lung cancer occurrence, even
though a single gene in any pathway may have only a moderate or
weak effect on lung cancer risk. However, more biological
mechanism research involving these pathways needs to be carried
out in future.

Our GWAS pathway analyses also suggest that receptor activity
GO terms and membrane terms, might play roles in the
mechanism via which the chromosome 15q25.1 locus is involved
in the pathogenesis of lung cancer, though the involvement
exhibits nonsignificant association in the functional annotation of
eQTL studies. This finding was supported by the fact that most
selected genes in the two pathways from current GWAS pathway
analyses, including CHRNA3, CHRNB4, TGFBR247, RTPRG48,
FGFR149, OPCML50,51, and ROR152,53, were involved in influ-
encing lung cancer risk. It is thus likely that combined effects and
interaction of the genes in the two susceptibility pathways trig-
gered lung cancer pathogenesis. Although we do not know at this
stage whether the biological pathways identified in our study have

Table 5 Individual and combined effects of SNPs from our susceptibility pathways on lung cancer risk in the meta-analysis of
Discovery Cohorts

Univariate analysis Multivariate analysis*

OR L95 U95 P P_trend OR L95 U95 P P_trend

CHRNA3

rs1051730 0 1 1.29E-25 2.68E-24
1 1.31 1.21 1.43 3.46E-10 1.32 1.21 1.44 1.23E-09
2 1.86 1.65 2.09 8.80E-25 1.89 1.67 2.14 7.44E-24

CHRNB4

rs6495309 0 1 2.35E-12 4.56E-11
1 1.22 1 1.5 0.05 1.21 0.98 1.49 0.08
2 1.58 1.3 1.93 5.21E-06 1.56 1.27 1.91 2.67E-05

KCNJ4

rs138396 0 1 0.06 0.04
1 1 0.91 1.09 0.94 1.01 0.92 1.1 0.89
2 1.13 1.01 1.26 0.03 1.15 1.02 1.29 0.02

SCN2B

rs7944321 0 1 0.07 0.14
1 1.07 0.98 1.16 0.13 1.06 0.97 1.15 0.19
2 1.12 0.94 1.34 0.22 1.09 0.91 1.32 0.35

neuroactive ligand receptor interaction pathway

(CHRNA3 rs1051730 and CHRNB4 rs6495309)

0-1 1 2.80E-26 1 1.55E-24
2 1.32 1.18 1.47 8.45E-07 1.32 1.18 1.48 1.82E-06
3 1.48 1.32 1.65 4.94E-12 1.47 1.31 1.65 6.14E-11
4 2.04 1.79 2.33 2.22E-26 2.07 1.8 2.38 4.99E-25

gated channel activity term

(CHRNA3 rs1051730, CHRNB4 rs6495309, KCNJ4 rs138396 and SCN2B rs7944321)

0-1 1 4.39E-19 2.46E-18
2-3 1.29 1.08 1.53 5.50E-03 1.3 1.08 1.56 5.50E-03
4-5 1.6 1.34 1.9 1.84E-07 1.63 1.36 1.96 1.65E-07
6-8 2.15 1.74 2.65 9.31E-13 2.17 1.74 2.7 4.01E-12

*Adjusted by age sex smoke status in the Logistic Models.
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a direct functional role in affecting lung cancer etiology, the
susceptibility pathways represent attractive candidates.

Despite these intriguing findings in this well-characterized
pathway study, our investigation still had some limitations.
First, we performed the epistasis test between SNPs in the
univariate model; this may have led to the omission of the
effects of other cofactors, such as age, gender, and smoking
status, on the interaction between SNPs. However, not including
cofactors typically reduces power rather than false positive
findings, so that a model ignoring cofactors seems a reasonable
first step to analysis. In addition, we only retained the SNP
pairs, which exhibited statistically significant interactions in the
1st discovery cohort and in the meta-analysis results and
showed at least a borderline significant interaction in the 2nd
discovery cohort, for further analysis, which ensured the relia-
bility of this study. Second, only GWAS data without genome-
wide expression data were applied to identify the SNPs and their
related genes that interact with the chromosome 15q25.1 locus.
However, the susceptibility pathways and GO terms from our
GWA study can share pathways with the functional annotation
of genes in chromosome 15q25.1 and its related genes identified
by eQTL studies, which supports the interpretation of some of
our findings. A concern in this study is the large number of tests
that were performed to identify epistatically acting SNPs.
However, the purpose of conducting SNP–SNP interaction test
in the current study is to select a group of candidate SNPs which
are the most associated with the index SNPs in chromosome
15q25.1. On the other hand, majority of SNPs/genes in the
pathways have weak and minor influence on the pathogenesis of

complex disorder12. Therefore, we applied a pathway-based
approach to identify the sets of pathways that were significantly
associated with cancer risk. To correct for multiple testing
associated with pathway analysis we followed a false discovery
rate approach. Identification and verification of the suscept-
ibility pathways in both GWAS analysis of discovery and
replication and the eQTL study confirmed the reliability of our
study. Nevertheless, our results should be confirmed in the
future with genome-wide expression data and protein–protein
interaction data, and more biological mechanism research
involving these pathways needs to be carried out. Finally, we
realized that, in the GWAS pathway analyses, all subjects used
in both discovery and replication phase are of European
ancestry, and that the subjects in the lung eQTL study are
French Canadians, which suggest that our findings can be
applied to the population of European ancestry.

Many genetic variants certainly contribute to the large unex-
plained portion of lung cancer pathogenesis, and it is expected
that more mechanisms contributing to increased lung cancer risk
will be identified in the future. The data presented here suggest
that common genetic variations within chromosome 15q25.1 are
likely to affect lung cancer etiology by influencing the expression/
structure and thereby the function of genes that comprise the
neuroactive ligand receptor interaction pathway or gated channel
activity and related terms. To the best of our knowledge, this is
the first study to explore the pathogenic pathways related to the
mechanisms through which the chromosome 15q25.1 locus
modifies lung cancer risk. These pathways provide important
leads to a better understanding of the etiology and development

Table 6 Individual and combined effects of SNPs from our susceptibility pathways on lung cancer risk in Replication Cohort

Univariate analysis Multivariate analysis*

OR L95 U95 P P_trend OR L95 U95 P P_trend

CHRNA3

rs1051730 0 1 1.70E-51 1 1.82E-44
1 1.28 1.22 1.34 3.43E-23 1.27 1.21 1.33 2.62E-20
2 1.65 1.54 1.77 2.47E-46 1.63 1.52 1.75 1.22E-40

CHRNB4

rs6495309 0 1 1.40E-29 1 1.55E-24
1 1.14 1.02 1.28 0.02 1.12 1 1.26 0.05
2 1.46 1.31 1.63 1.32E-11 1.42 1.27 1.6 2.13E-09

KCNJ4

rs138396 0 1 2.00E-04 1 5.00E-04
1 1.06 1.01 1.11 0.03 1.05 1 1.11 0.08
2 1.13 1.06 1.21 2.00E-04 1.13 1.06 1.21 4.00E-04

SCN2B

rs7944321 0 1 8.90E-03 1 0.01
1 1.06 1.01 1.11 0.026 1.05 1 1.11 0.04
2 1.1 0.99 1.22 0.083 1.1 0.99 1.23 0.08

neuroactive ligand receptor interaction pathway

(CHRNA3 rs1051730 and CHRNB4 rs6495309)

0-1 1 1.11E-58 1 4.80E-50
2 1.21 1.14 1.28 1.79E-09 1.21 1.14 1.29 2.96E-09
3 1.44 1.36 1.54 1.44E-30 1.42 1.33 1.52 2.43E-26
4 1.77 1.64 1.91 2.65E-49 1.74 1.61 1.89 3.32E-43

gated channel activity term

(CHRNA3 rs1051730, CHRNB4 rs6495309, KCNJ4 rs138396 and SCN2B rs7944321)

0-1 1 3.36E-44 1 2.09E-37
2-3 1.18 1.07 1.3 8.00E-04 1.15 1.04 1.28 5.40E-03
4-5 1.51 1.37 1.67 4.89E-17 1.47 1.33 1.63 7.77E-14
6-8 1.79 1.59 2.02 2.84E-22 1.72 1.52 1.95 8.27E-18

*Adjusted by age sex smoke status in the Logistic Model
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of lung cancer, potentially shorten the interval between biologic
knowledge and improved patient care, and are beneficial to the
design of future functional studies to increase understanding of
these mechanisms.

Methods
Study subjects. The study design is presented in Fig. 1. In the discovery phase, two
discovery cohorts were used, to perform SNP selection and GWAS pathway ana-
lysis. The Environment And Genetics in Lung cancer Etiology (EAGLE) study54,
which was composed of 1923 lung cancer cases and 1977 healthy controls, was used
as the 1st discovery cohort. The EAGLE study participants were recruited in Italy
between 2002 and 2005 for a population-based case-control study, which included
incident primary lung cancer cases of any histologic type and healthy population-
based controls, matched by gender, residence, and 5-year age-group. All subjects in
the EAGLE study are of Italian nationality and born in Italy.

We used the M.D. Anderson Cancer Center (MDACC) study2 and the
International Agency for Research on Cancer (IARC) study55 as the second
discovery cohort, in total comprising 2995 lung cancer cases and 3578 healthy
controls. The MDACC study participants were recruited at the University of Texas
MD Anderson Cancer Center between 1997 and 2007 and included 1154 primary
lung cancer cases of adenocarcinoma and squamous cell carcinoma and 1136
healthy controls that were matched to cases by smoking behavior, ethnicity, and 5-
year age-group. The IARC study was a multicenter study from six countries of
central Europe, which recruited newly-diagnosed lung cancer cases of any
histologic type and healthy individuals without diagnosed cancers or any family
history of cancers, matched to cases by sex, age, and center or region within
European countries. The current case-control comparison included 1841 cases and
2442 controls from IARC available data. All subjects used in the current study are
of European ancestry.

The Oncoarray consortium, which analyzed samples of 18,439 European-
descent lung cancer cases and 14,026 European-descent healthy controls, was used
for replication. The Oncoarray consortium is a network created to increase
understanding of the genetic architecture of common cancers and included GWAS
data of a total of 57,776 samples, obtained from 29 studies across North America
and Europe, as well as Asia56. The participants who lacked imputed data, disease
status, were close relatives (second-degree relatives or closer) or had low-quality
DNA, or were non-European, were excluded from the current study. Therefore, a
total of 18,439 cases and 14,026 healthy controls were included in the current case-
control study.

Noncancerous lung tissue from Laval University was obtained from 420
patients undergoing surgical resection for lung cancer. Through quality controls,
409 samples were used for whole-genome gene expression profiling in the lung and
eQTL analysis. All patients in the Laval cohort were from a French Canadian
population and underwent lung cancer surgery between April 2004 and December
2008. Samples were stored at the Institut universitaire de cardiologie et de
pneumologie de Quebec (IUCPQ) site of the Respiratory Health Network Tissue
Bank of the Fonds de la recherche en sante du Quebec (www.tissuebank.ca)57. Lung
tissue samples were obtained in accordance with Institutional Review Board
guidelines. Genotype data and a detailed pathology reports were available for all
patients.

Human participant approval was obtained from the Institutional Review Board
of each participating Hospital and University and by the National Cancer Institute,
Bethesda, MD, USA. Written informed consent was obtained from each
participant.

Genotyping. A total of 561,466 SNPs in EAGLE samples were genotyped using
Illumina HumanHap550v3_B BeadChips (Illumina, San Diego, CA, USA) at the
Center for Inherited Disease Research, part of the Gene Environment Association
Studies Initiative (GENEVA) funded through the National Human Genome
Research Institute. Genotyping of 317,498 SNPs in MDACC samples was carried
out using Illumina 300K HumanHap v1.155. A further 317,139 SNPs in IARC
samples were genotyped using either Illumina 317k or 370Duo arrays55. A novel
technology developed by Illumina to facilitate efficient genotyping was used to
genotype a total of 494,763 SNPs in Oncoarray samples56. rs16969968 in the lung
eQTL study was genotyped using the Illumina Human1M-Duo BeadChip10.

Imputation. To effectively replicate the findings in the discovery phase, we
imputed additional SNPs in Oncoarray samples to allow us to integrate the data
with the common SNPs studied in the discovery cohorts. Imputation was per-
formed with the software package Impute 2 v2.3.258 and 1000 Genomes Project
Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data). Following impu-
tation, 20,734,083 SNPs in the whole genome were available for further analysis.

Association analysis and meta-analysis. Case-control association tests for gen-
otyped data were conducted using 1-degree-of-freedom Cochran–Mantel–Haenszel
tests with the application of PLINK version 1.9. SNPTEST v2.5.2 was used in the
analysis of case-control association for each SNP in imputed data. Meta-analysis of
the 1st and 2nd discovery cohorts was performed on the results of case-control

association analysis using the basic meta-analysis function in PLINK v1.9, which
conducted a fixed-effects analysis using inverse variance weighting to combine the
studies. In the discovery phase, a total of 310,276 SNPs were the same in both the
1st and 2nd discovery cohorts, passed quality control steps and were retained for
association analyses and meta-analyses.

Index SNP selection. SNPs within the 15q25.1 locus spanning 203 kb, which were
associated with lung cancer risk with P values of less than 5 × 10−8 in the 1st dis-
covery cohort and in the meta-analysis of the 1st and 2nd discovery cohort, were
selected as index SNPs. A Bonferroni correction was applied to adjust the association
of the index SNP for multiple comparisons with using PLINK version 1.9 and R
package of adjust P-values for multiple comparisons. Because 310,276 SNPs in the
discovery phase were performed for association analyses and meta-analyses and 3411
SNPs in the replication phase were conducted association analyses, adjustments for
310,276 tests in discovery and 3411 tests in replication were used. After selection,
eight SNPs met the criterion for index SNP selection and were used for further
selection of the candidate SNPs in the whole genome which had potential functional
connections with the index SNPs in the chromosome 15q25.1 locus.

Epistasis test and candidate SNP selection. The epistasis test between SNPs in
the whole genome and the chromosome 15q25.1 locus was performed separately
for the 1st and 2nd discovery cohorts using the application PLINK version 1.9. A
total of 2,482,200 SNP × SNP pairs were calculated in both cohorts. We then
carried out a meta-analysis to combine the epistasis results in the 1st and 2nd
discovery cohorts with the application of the basic meta-analysis function in
PLINK v1.9 that conducted fixed-effects analysis using inverse variance weighting.

The SNPs, which interacted with the index SNPs within the 15q25.1 locus with
an epistasis P value of less than 0.05 in the 1st discovery cohort and in the meta-
analysis of both discovery cohorts, and less than 0.10 in the 2nd discovery cohort,
were selected as the candidate SNPs for further pathway analyses. After selection,
3409 candidate SNPs met the criterion for candidate SNP selection and were
identified to have potential connections with the eight index SNPs in the
chromosome 15q25.1 locus.

Pathway analysis with GWAS data. We included curated pathways from the
Canonical pathways, Reactome, BioCarta, KEGG databases59, and GO60. The
Reactome database is based on reactions between diverse molecular species rather
than limiting the pathways to protein–protein interactions. The KEGG database
represents experimentally-validated pathways of metabolic processes and gene sets
of human diseases. GO is a major framework for the model of biology that defines
classes used to describe gene function, and relationships between these concepts.

Gene set enrichment analysis was performed by i-GSEA4GWAS. SNPs were
retained for analysis that were within 20 kb upstream or downstream of a gene. We
used gene set databases of canonical pathways, GO biological process, GO
molecular function, and GO cellular component, separately, and applied the
standard input gene set file of KEGG, BioCarta and, Reactome, which were
downloaded from the Molecular Signatures Database (MSigDB) in GSEA (http://
software.broadinstitute.org/gsea/msigdb/collections.jsp), we selected gene sets
whose number of genes were between 21 and 200, and without limiting gene sets by
keyword (e.g. immune) and without masking the MHC region. In order to reduce
the possibility of biased results due to LD patterns from SNP arrays13, we pruned
the set of SNPs, including the index SNPs and the candidate SNPs, for LD and only
inputted SNPs not in LD (r2 < 0.2) to enrich pathways. After pruning, we
performed gene set enrichment analysis with associated P values of the SNPs that
using the option of “−logarithm transformation”, as required by the software, in
the meta-analysis of discovery cohorts and the replication cohort, respectively.

i-GSEA4GWAS performs gene set enrichment to identify pathways that show a
higher proportion of statistically significant genes than randomly expected and,
with some modifications, is based on the GSEA algorithm61,62. i-GSEA4GWAS
implements SNP label permutation to analyze SNP P values and to correct gene
and gene set variation and multiplies a significance proportion ratio factor to the
enrichment score (ES) to yield the significant proportion-based enrichment score
(SPES). SPES multiplies by the proportion of significant SNPs in the pathway so
that i-GSEA4GWAS identifies pathways/gene sets including a high proportion of
significant genes. It is, therefore, more appropriate for study of the combined
effects of possibly modest SNPs/genes and gives i-GSEA improved sensitivity for
complex diseases13. Pathways/gene sets with FDR < 0.25 were regarded as possibly
associated with traits; FDR < 0.05 were regarded as high confidence or with
statistical significance.

Gene set enrichment analysis was also performed by GSA-SNP2, which is a
successor of GSA-SNP14,15, using same SNPs and P value and to retain SNPs with
20 kb upstream or downstream of a gene. We used gene set databases which were
downloaded from the Molecular Signatures Database (MSigDB) in GSEA and
selected gene sets whose number of genes was between 21 and 200.

Genome-wide gene expression levels and eQTL study. All lung samples were
reviewed by an experienced pathologist for clinical diagnosis and staging. Each
lung tissue sample was snap-frozen in liquid nitrogen and stored at −80 °C until
further processing. The SV96 Total RNA Isolation System (Promega) was used to
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extract RNA. Expression profiling was carried out with an Affymetrix custom array
(GEO platform GPL10379). The robust multichip average method63 as imple-
mented in the Affymetrix Power Tools software was used to examine expression
values. Standard quality control parameters64 were applied to check the quality of
the arrays. Through quality controls, 409 patients were available for eQTL analyses
with both genotypes and gene expression levels. R statistical software was used to
perform tests for robust multichip average expression. Association tests between
the expression traits, which were adjusted for age, sex, and smoking status, and the
most significant SNPs in each genes within chromosome 15q25.1 associated with
lung cancer risk in previous reports, including rs1696996816, rs649530917,18, and
rs80341912,17, were estimated with the application of quantitative association tests
implemented in PLINK. A P value of less than 0.05 was considered to be
significant.

Functional validation of pathways with eQTL results. The genes in the whole
genome with a linear regression P value of less than 0.0005 in the eQTL study were
selected as candidate genes for further pathway/gene set analysis. Because the
“Functional annotation table” of DAVID may query associated terms for all genes
and “Functional annotation clustering” of DAVID can cluster functionally similar
genes into groups65, we employed the “Functional annotation table” of DAVID
(version 6.8) to perform functional annotation of biological pathways in Reactome,
BioCarta, and KEGG and used “Functional annotation clustering” of DAVID
(version 6.8) to cluster functionally similar genes into groups of GO terms, with
Species and background being set up as Homo sapiens. We used the candidate
genes in the whole genome with and without the genes in the chromosome 15q25.1
locus to perform the analyses, by choosing ‘Homo sapiens’ selection to limit
annotations by species.

Relationship of the susceptibility pathways and GO terms. We clarified the
relationship of sharing pathways identified by GWAS analysis of both discovery
and replication phase and validated by eQTL studies with information from the
European Bioinformatics Institute (http://www.ebi.ac.uk/QuickGO/) and applied
Cytoscape (version 3.4.0) with EnrichmentMap plugin (version 2.1). The standard
gene sets for EnrichmentMap plugin were downloaded from MSigDB Collections
(http://software.broadinstitute.org/gsea/msigdb/collections.jsp). For the selected
genes in our susceptibility pathways from current GWAS pathway analyses, we
achieved the gene expression level in normal lung tissue from Genecards database
(http://www.genecards.org/).

Accumulating risk of lung cancer. We calculated the individual and combined
effect of genes in the pathways/gene set on lung cancer risk using the SNPs that
were identified by i-GSEA4GWAS as reference SNPs for the selected genes in each
pathway. The genes whose reference SNPs were associated with lung cancer risk
with borderline significance (P < 0.1) in the meta-analysis of discovery cohorts and
in the replication cohort, were selected to assess the individual effect and joint
effects on lung cancer risk. Genotype frequencies between the cases and controls
were evaluated using a chi-square test. Univariate and multivariate logistic
regression models were used to calculate odds ratios (ORs) and 95% confidence
intervals (CIs) of each genotype to estimate its effect on lung cancer risk with or
without adjustment for age, sex and smoking status (never and ever). Statistical
analyses were performed with Statistical Analysis System (SAS) software (version
9.1; SAS Institute, Cary, NC, USA) and P value < 0.05 was considered significant.

Stratified analyses. We determined whether there were different pathways among
the overall group, and in the group when stratified by smoking status (never and
ever). In the subgroups of smokers and non-smokers, we used a similar process to
select index SNPs and candidate SNPs, and to carry out pathway analyses. Among
smokers, eight index SNPs and the 3401 candidate SNPs were selected for further
gene set enrichment analysis in the 1st and 2nd discovery cohort, the meta-analysis
of discovery cohorts and the replication cohort. Among non-smokers, no SNPs in
chromosome 15q25.1 reached the criteria for index SNP selection, and therefore no
subsequent steps for pathway analyses were conducted.

Data availability. The data that support the findings of this study are available.
The access numbers are “phs000336.v1.p1.c1” for EAGLE study, “phs000753.v1.
p1” for MDACC study, and “phs001273” for Oncoarray study in dbGAP. The
IARC study was made available at http://www.ceph.fr/cancer3.
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