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Abstract

Motivation: The statistical analysis of single-cell data is a challenge in cell biological studies.

Tailored statistical models and computational methods are required to resolve the subpopulation

structure, i.e. to correctly identify and characterize subpopulations. These approaches also support

the unraveling of sources of cell-to-cell variability. Finite mixture models have shown promise, but

the available approaches are ill suited to the simultaneous consideration of data from multiple ex-

perimental conditions and to censored data. The prevalence and relevance of single-cell data and

the lack of suitable computational analytics make automated methods, that are able to deal with

the requirements posed by these data, necessary.

Results: We present MEMO, a flexible mixture modeling framework that enables the simultaneous,

automated analysis of censored and uncensored data acquired under multiple experimental condi-

tions. MEMO is based on maximum-likelihood inference and allows for testing competing hypothe-

ses. MEMO can be applied to a variety of different single-cell data types. We demonstrate the ad-

vantages of MEMO by analyzing right and interval censored single-cell microscopy data. Our

results show that an examination of censoring and the simultaneous consideration of different ex-

perimental conditions are necessary to reveal biologically meaningful subpopulation structures.

MEMO allows for a stringent analysis of single-cell data and enables researchers to avoid misinter-

pretation of censored data. Therefore, MEMO is a valuable asset for all fields that infer the charac-

teristics of populations by looking at single individuals such as cell biology and medicine.

Availability and Implementation: MEMO is implemented in MATLAB and freely available via

github (https://github.com/MEMO-toolbox/MEMO).

Contacts: eva-maria.geissen@ist.uni-stuttgart.de or nicole.radde@ist.uni-stuttgart.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Cell-to-cell variability is omnipresent in biological systems (Bal�azsi

et al., 2011). Clonal populations can show quantitative differences

in gene expression and qualitatively distinct cellular phenotypes and

subpopulations (Eldar and Elowitz, 2010). The magnitude and na-

ture of variability within a population can differ significantly de-

pending on the system under consideration (Pelkmans, 2012).

Accurate quantification relies on sophisticated statistical models

which have to be tailored to the characteristics of the measurement

technique (Bajikara et al., 2014; Brennecke et al., 2013; Duffy et al.,

2012; Pyne et al., 2009).

One characteristic of experimental data, whose importance is

often underestimated, is censoring (Duffy et al., 2012). Most experi-

mental devices provide censored data due to limited resolution or

experimental constraints (see Supplementary Material, Section S.1).

Left and right censored data provide upper and lower bounds, re-

spectively, while interval censored data provide an interval for a

quantity of interest (Escobar and Meeker, 1998). A quantity of

interest might be the time to an event. If the event occurs before the

start of the observation, the time to the event is left censored.

Accordingly, the time to an event is right censored if the event does

not occur during the observation or if a mutually exclusive event

occurs before (Duffy et al., 2012). These censoring events may also

be randomly distributed. If the system is observed at discrete time

points, only the time interval in which the event occurs is known. In

concentration measurements censoring can occur due to detection

limits or limited resolution. If the quantity of interest can only be de-

tected above a certain detection limit, this limit provides an upper

bound for quantities below, leading to left censored data. Similarly,

saturation effects of the detection method lead to right censoring,

where the saturation threshold serves as a lower bound for quanti-

ties above. Limited resolution naturally leads to interval censoring.

For example, limited time-resolution in single-cell microscopy ex-

periments is due to phototoxicity and photobleaching, requiring

long inter-observation intervals to avoid stress (Schroeder, 2011).

Statistical models accounting for censoring are well-established.

A suitable framework is provided by mixture modeling. While most

mixture modeling approaches do not account for censoring

(Johnsson et al., 2016; Pyne et al., 2009, 2014) others consider se-

lected types of censoring (Lee and Scott, 2012; McLachlan and

Jones, 1988) (see Supplementary Material, Section S.2).

Unfortunately, the latter do not provide a comprehensive, easily ac-

cessible framework. Therefore, such models are infrequently applied

in a biological context, which entails certain risks. In the presence of

mutually exclusive (competing) biological events, for example, disre-

garding right censoring can result in an incorrect interpretation of

experimental data such as correlations between actually uncorre-

lated data (Duffy et al., 2012). Hence, there is a need for simple-

to-use computational methods to analyze censored population data.

Besides censoring, another challenge for computational analysis

methods of single-cell data is the integration of data from multiple

experimental conditions (e.g. different strengths of stimuli or mul-

tiple sampling times after an intervention on the biological system at

hand) or multiple technical and biological replicates. Established

approaches use a two-step procedure for this purpose. First, individ-

ual samples are described independently with finite mixture models.

Thereafter, matching-based methods are applied to link the different

samples (Pyne et al., 2009), e.g. to decide upon the appearance of

identical subpopulations. These methods rely on similarity between

distributions under different conditions. In the case of large changes

in the corresponding distribution between experimental conditions,

matching methods are not able to map the populations. To address

this shortcoming, a Joint Clustering and Matching (JCM) approach

(Pyne et al., 2014) has been introduced. JCM allows for a more

rigorous matching across samples and the consideration of inter-

sample variability. For that purpose, a template model is fitted to

the pooled samples and the individual samples are modeled as in-

stances of this template by adding random effect terms to the tem-

plate parameters. This approach is well-suited for analyzing the size

of different distinct subpopulations in different samples. However,

in case of small changes due to altered experimental conditions the

subpopulation structure remains difficult to quantify. Furthermore,

the template is constructed without considering inter-sample vari-

ability and a rigorous comparison of different biological hypotheses

is not straight forward.

In order to cope with these challenges, we introduce MEMO, a

Multi-Experiment mixture MOdeling framework which is able to

analyze samples from different experimental conditions simultan-

eously, can account for censoring and compares competing model

hypotheses. MEMO uses maximum-likelihood inference to deter-

mine the subpopulation structure and properties of heterogeneous

cell populations. MEMO is implemented in MATLAB and freely

available via github (https://github.com/MEMO-toolbox/MEMO).

We expect that MEMO can be used for a broad spectrum of univari-

ate, censored single-cell data, e.g. FACS, CyTOF, qPCR and time-

lapse microscopy data. The data should - as for other statistical

analysis methods - be appropriately preprocessed and the interesting

dimension can be determined using dimension reduction methods

(see, e.g. Angerer et al., 2016).

In this study, we evaluate our method using simulated and ex-

perimental data. In particular, we analyze time-to-event single-cell

microscopy data from multiple yeast strains. These cells were

observed at discrete time points and only for a certain duration.

Hence the data are interval and right censored. We found that, in

contrast to naı̈ve approaches, MEMO inferred the correct subpopu-

lation structure for cases in which it was known. In addition, for

more complex datasets containing multiple experimental conditions,

MEMO revealed the existence of subpopulations for certain strains,

some of which inherit the phenotypic properties of wild type cells.

We demonstrate that MEMO even enables testing of competing

hypotheses about underlying molecular mechanisms of the pheno-

type. In a second application on single-cell protein level data

(Andres et al., 2010) we demonstrate how mechanistic information

can be integrated in MEMO.

Overall, our results demonstrate the additional benefit of a

multi-experiment modeling framework and the importance of ac-

counting for censoring, independent of how little it might be.

2 Approach

Multi-experiment mixture modeling. In the following, we introduce

MEMO’s basics and the workflow. For this purpose we denote the

quantity of interest by X. The distribution of X is described by a fi-

nite mixture model,

pðxjh; uÞ ¼
XS

s¼1

wsðuÞUðxjusðuÞÞ;
XS

s¼1

wsðuÞ ¼ 1

with subpopulation index s ¼ 1; . . . ; S, subpopulation weight wsðuÞ
and subpopulation mixture parameters usðuÞ for experimental con-

dition u. The distributions U can be normal, log-normal, gamma or

Johnson SU, with the latter being extremely flexible. Left, right and
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interval censoring of the distribution pðxjh; uÞ yields distributions

for observed genuine values (realizations within detection range),

and observed censoring values (realizations out of detection range)

(see the MEMO Documentation, Section D.2). Given a set of data,

MEMO infers the mixture weights wsðuÞ and mixture parameters

usðuÞ. Hypotheses about the dependence of wsðuÞ and usðuÞ on the

experimental condition u can be incorporated into functional

dependencies ws ¼ funðh;uÞ and us ¼ funðh; uÞ, parametrized with

meta-parameters h.

Step 1. Formulation of competing model hypotheses. For all

competing hypotheses about subpopulation structures and condition

dependence, the number of subpopulations S is selected and

parametrization of wsðuÞ and usðuÞ is defined. As MEMO exploits

symbolic calculations, any combinations of rudimentary functions

are supported. In case of a normal distribution with mixture

parameters usðuÞ ¼ ðlðuÞ; rðuÞÞ, a stimulus induced shift towards

lower values might for instance be described by a Hill-type function

lðu; hÞ ¼ l0un
0=ðun

0 þ unÞ with meta-parameters h ¼ ðl0; u0Þ. In a

similar way positive dependencies and other dependencies on the

condition u can be modeled. Furthermore, MEMO also allows for

the independent modeling of subpopulations in different conditions,

e.g. lðui; hÞ ¼ li for condition index i. For details we refer to

Sections 4.2 and 4.3 as well as to the MEMO Documentation,

Section D.2.2. In addition to the subpopulation structure and prop-

erties, left or right censoring distributions can be parametrized. This

is not strictly necessary, since MEMO can also use the tail probabil-

ities. It however allows for additional linking of data collected under

different experimental conditions and for a more detailed model-

data comparison in the presence of distributed censoring

(Supplementary Material, Figs S7 and S8) and straight-forward

resampling of data, e.g. for a bootstrap based goodness of fit ana-

lysis (see Supplementary Material, Section S.4.2.2).

Step 2. Parametrization of multi-experiment mixture models.

For the model hypotheses, maximum-likelihood estimation is em-

ployed to infer the unknown parameters h (see Section 3 and the

MEMO Documentation, Section D.2.3). MEMO uses an efficient

global optimization method based on multi-start local optimization

with analytically derived gradients (see the MEMO Documentation,

Section D.2.6). This method outperformed other global optimiza-

tion methods in a variety of test runs and provided accurate esti-

mates (Raue et al., 2013). The uncertainty of the estimated

parameters can be assessed by using profile likelihood methods

(Murphy and van der Vaart, 2000) or Bayesian statistics (Haario

et al., 2006), both supported by MEMO. The output of Step 2 is a

set of parametrized models that correspond to different hypotheses,

and the corresponding sets of parameters characterizing the subpo-

pulations as well as model and prediction uncertainties.

Step 3. Testing of hypotheses via model selection. The competing

model hypotheses can be compared in MEMO using model selection

criteria, such as the Akaike information criterion (AIC), the

Bayesian information criterion (BIC) or the likelihood ratio test

(see the MEMO Documentation, Section D.2.4). For an automated

analysis of the subpopulation structure a backward model selection

algorithm is implemented, which enables unsupervised exploration.

Step 4. Interpretation and further analysis. Steps 1–3 provide a

multi-experiment model or a set of mixture models capturing the

data. MEMO supports visualization of these mixture models, as

well as a model-data comparison (see the MEMO Documentation,

Section D.2.5). The mixture model and its parameters can be used

for subsequent analysis, e.g. to identify dependencies on input sig-

nals. Furthermore, the parameters may inform mechanistic modeling

approaches (Heinrich et al., 2013).

3 Materials and methods

3.1 Experimental data
The functionality of the spindle assembly checkpoint (SAC) was as-

sessed using live-cell imaging on a DeltaVision Core system (Applied

Precision/GE Healthcare), see Heinrich et al. (2013).

The NGF-induced Erk1/2 phosphorylation snapshot data were

derived by quantitative automated microscopy (QuAM) as described

in Hasenauer et al. (2014b).

3.2 Modeling of genuine value and censoring value

generating processes
MEMO models genuine values and censoring values to be outcomes

of different stochastic processes, in the sense of distributions, that

compete for realization. Therefore, it discriminates between the dis-

tributions generating the data and the observed distributions of

data, which differ if the supports of the outcomes of the data gener-

ating distributions overlap. MEMO implements normal, log-nor-

mal, gamma and Johnson-SU distributions to model the data

generating distributions. For interval censored data, the probability

of a data point lying within an inter-observation interval is com-

puted by integrating over the respective part of the distributions.

The observed distributions are used to compute the likelihood of

the data given the parameters. In the case of right censoring, the like-

lihood of data D with parameters h is given by

pðDjhÞ /
Y

i

Y
j

pðxj
i;x

j
i � Xi;�c jhÞ

 ! Y
k

pð�xk
i ; �xk

i � XijhÞ
 !

;

in which i indexes the experimental conditions while j and k index

the measured cells. Since in this case right censoring is considered as

competing process, the censoring quantity is denoted by Xi;�c . The

uncensored and right censored data in experiment i are denoted by

xj
i and �xk

i , respectively. The likelihood consists of the probabilities

of observing a value xj
i or a censoring value �xk

i . These are given by

the joint probability of a certain value together with the probability

that this value is smaller than or equal to a realization of the compet-

ing process. For more details and different censoring types see the

MEMO Documentation, Section D.2.1.

3.3 Model calibration
MEMO exploits multi-start local optimization with analytical de-

rivatives to optimize the likelihood. These analytical derivatives are

automatically derived from the model equations by using the

Matlab Symbolic Math Toolbox. A space filling Latin hypercube

initialization of the optimization with at least 100 starting points is

used. Convergence is assessed visually using methods illustrated in

Raue et al. (2013). MEMO provides Markov chain Monte Carlo

methods (e.g. via the MATLAB toolbox DRAM (Haario et al.,

2006)) and profile likelihood methods (Murphy and van der Vaart,

2000) for uncertainty analysis. These methods enable an assessment

of the model reliability and its predictive power in a rigorous statis-

tical manner. For more details see the MEMO Documentation,

Section D.2.3.

3.4 Model selection
To select the most likely subpopulation structure and paramet-

rization, MEMO implements different model selection criteria. In

this manuscript, the AIC, the BIC and the likelihood ratio test are

used (and always provide the same results). As MEMO also imple-

ments Markov chain Monte Carlo methods, Bayes factors can also

be calculated. In addition to the comparison of predefined models,
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MEMO also provides a backward model selection algorithm for the

subpopulation structure. This enables a simple, user-friendly explor-

ation of many model alternatives. For more details see the MEMO

Documentation, Section D.2.4.

4 Results

4.1 Evaluation of MEMO for censored data
Initially we evaluated the performance of MEMO using a variety of

simulated test scenarios. In the following the quantities of interest

are event times, such as time to division, differentiation or death. An

event lying outside of the measurement range will be called a censor-

ing time. We simulated interval censored data from a single log-nor-

mal distribution with known distribution parameters (Fig. 1A).

Using these simulated data, we assessed how well the subpopulation

structure, i.e. the number of subpopulations and their parameters,

can be inferred. We used the BIC for model selection and found that

naı̈ve approaches that disregard censoring overestimated the number

of subpopulations, in particular for shorter inter-observation

intervals (Fig. 1B, left). The overestimation was worse for shorter

censoring intervals, since the optimization frequently placed subpo-

pulations at the end of individual censoring intervals. A single distri-

bution was correctly identified only in case that all data lie within

one inter-observation interval, which is the case when the standard

deviation of the log-normal distribution is small compared to the

censoring interval. In contrast, MEMO accurately reconstructed the

underlying distribution and determined the correct subpopulation

structure independently of the censoring interval. For simple distri-

butions already small samples were sufficient to achieve an accurate

reconstruction from interval censored data (Fig. 1B, right and

Supplementary Material, Section S.3, Fig. S1).

A similar evaluation for right censored data yielded comparable

results (Fig. 2A): Simply omitting the right censored data points as

well as disregarding censoring results in an overestimation of the

number of subpopulations (Fig. 2B and C). In both cases the number

of subpopulations was correctly inferred only when the censoring

time is much greater than the distribution mean. By contrast,

MEMO was able to reproduce the correct results in any case

(Fig. 2D and Supplementary Material, Section S.3, Fig. S2). Thus,

statistical models implemented in MEMO, which account for cen-

soring, are more reliable than naı̈ve analysis approaches and provide

an accurate estimate for the number of subpopulations.

4.2 Analysis of SAC time-to-event microscopy data
For a realistic evaluation, we considered data from a study of the

functionality of the SAC in Schizosaccharomyces pombe (S. pombe)

(Heinrich et al., 2013). The SAC is a signaling pathway that protects

genome integrity by detecting and responding to errors in chromo-

some attachment during mitosis (London and Biggins, 2014). In

Heinrich et al. (2013), the functionality of the SAC was assessed by

measuring the time that cells spend in prometaphase (an early phase

in mitosis), after proper chromosome attachment to the mitotic spin-

dle had been experimentally prevented. Prometaphase lengths were

determined using fluorescence live-cell microscopy with Plo1-

mCherry, whose localization to spindle pole bodies marks prometa-

phase (Fig. 3). Images were collected every 5 min for at most 17 h,

leading to interval and right censoring. Furthermore, cells entered

prometaphase at different time points after the start of observation,

leading to a distribution of right censoring times.

4.2.1 Inference of SAC subpopulation structure from censored data

We used MEMO in a hypothesis-driven approach to assess the prop-

erties of the distributions of prometaphase lengths in strains differ-

ing in the expressed amounts of two proteins (Mad2 and Mad3),

which are essential for SAC functionality. We modeled interval
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Fig. 1. Inference of a log-normal distribution using interval censored data. (A)

Illustration of interval censoring (left) and resulting observed distribution of

100 interval censored data points (right). (B) For distributions with different

log-standard deviations and different inter-observation intervals Dt , the num-

ber of subpopulations is inferred using: (left) A model that does not account

for interval censoring (¼naı̈ve approach); and (right) MEMO, which accounts

for censoring. The color of the circles encodes the frequency with which the

correct number of subpopulations, here one, is selected

C

A

D

B

Fig. 2. Inference of a log-normal distribution using right censored data. (A)

Illustration of right censoring and resulting observed distribution of data

points after right censoring. Three different approaches were used to fit a

model with one to five subpopulations: Models that do not account for cen-

soring and (B) censored data are omitted, or (C) the values of censored data

are set to censoring times, and (D) MEMO, which accounts for censoring. The

color of the circles encodes the frequency with which the correct number of

subpopulations, here one, is selected. As a reference, the grey curve indicates

points for which the censoring time equals the mean of the underlying

distribution
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censored prometaphase lengths as weighted mixtures of two log-

normal distributions. Censoring times were described by a Johnson

SU distribution.

Motivated by the results of the simulation study, we initially

compared the performance of MEMO with classical mixture model-

ing approaches that disregard censoring using data of two different

strains. One strain has a completely dysfunctional checkpoint. This

is reflected in the dataset by tight unimodal short prometaphase

lengths (Fig. 4A and B). The other strain has a functional checkpoint

and therefore exhibits much longer prometaphase times, including a

large portion of right censored data (Fig. 4C and D). Using the BIC

as model selection criterion to determine the number of subpopula-

tions, naı̈ve approaches select a statistical model with a mixture of

two log-normal subpopulations for both datasets, while MEMO

was able to identify the biologically plausible result of single log-

normal populations (Fig. 4).

In a second step, we used MEMO to assess the qualitative and

quantitative properties of the distributions of prometaphase lengths

in the different strains. Experimental data for all strains in which

Mad2 abundance was altered are shown in Figure 5A (Mad3 in

Supplementary Material, Section S.4, Fig. S12). The recorded prom-

etaphase lengths indicate the presence of cellular subpopulations

with functional and dysfunctional SAC for certain strains. Cells with

a functional SAC, e.g. wild type cells, have a minimum prometa-

phase time of at least 5 h, while cells with dysfunctional SAC have

shorter prometaphase lengths (Heinrich et al., 2013). For strains

with 65% and 80% Mad2 expression, subpopulations with either

property seem to be present (Fig. 5A). A single parametrization of

the right censoring distribution was used for all strains, as censoring

was statistically identical. The parameters of the distributions of

prometaphase lengths are estimated along with the subpopulation

sizes, i.e. the weights wsðuÞ of the distributions, and the parameters

of the censoring distribution.

The full statistical model possesses many parameters. In order to

find the minimal description of the data, we used MEMO to per-

form backward model selection (Fig. 5B, setup 2). The successive

simplification of the initial model resulted in a 33% reduction of the

number of parameters. As the subpopulations with functional SAC

seemed to possess similar parameters, we considered in the next step

a weighted mixture of the wild type prometaphase lengths distribu-

tion and a strain-specific distribution, and again performed back-

ward model selection (Fig. 5B, setup 1). By comparing the BIC

values for setups 1 and 2, we confirmed that the subpopulations

with functional SAC have the statistical properties of the wild type.

Furthermore, the existence of two subpopulations could be

Fig. 3. Fluorescence microscopy live-cell imaging of different S. pombe

strains to assess mitosis times. Localization of Plo1-mCherry to spindle pole

bodies (SPB) was used to determine the prometaphase lengths. Cells are

imaged every 5 min for 17 h causing interval and right censoring (Color ver-

sion of this figure is available at Bioinformatics online.)

mad3D

Fig. 4. Interval and right censoring has to be considered for accurate reconstruction of SAC functionality from fluorescence live-cell microscopy imaging. Circles

and black bars indicate cells in which the entire prometaphase was recorded (interval censored data). Triangles and gray bars indicate cells that were still in

prometaphase when recording stopped (right censored data). Left panel: For the mad3D strain (0% Mad3, dysfunctional SAC) unimodal prometaphase lengths

are observed. We used the BIC to decide upon the number of subpopulations for different settings. (A) A naı̈ve analysis, disregarding interval censoring, selects a

statistical model with two subpopulations, while (B) MEMO selects a model with a single population. Right panel: For the wild type (WT) strain a large portion of

right censored data are observed. (C) The commonly used approach to set prometaphase length of censored data to censoring time selects a statistical model

with two subpopulations, while (D) MEMO selects a model with a single subpopulation and Johnson SU distributed censoring times. The pink dotted line depicts

the reconstructed overall distribution of prometaphase lengths (i.e. the distribution that would be observed if the observation time was infinite) obtained using

MEMO (Color version of this figure is available at Bioinformatics online.)
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statistically substantiated for the three suspected strains (Fig. 5B,

setup 1, leftmost column). These results were confirmed for

different distribution assumptions (Supplementary Material,

Section S.4, Fig. S5). Moreover, the parameter uncertainties are

small (Supplementary Material, Fig. S10). The selected model (left-

most column in setup 1 of Fig. 5B) quantitatively agrees with the

observed experimental data (Fig. 5A and C).

Altogether, MEMO provides results that are consistent with the

available knowledge and the apparent structure of the data without

being provided with this information. Together with the outcome

observed for simulated data, these results indicate that MEMO can

robustly extract the subpopulation structure and allows for rigorous

hypothesis testing.

4.2.2 Study of SAC regulatory mechanisms using multi-experiment

modeling

Its feature to use functional dependencies of the model parameters

on the experimental conditions, e.g. ws ¼ funðh; uÞ, enables MEMO

to compare alternative regulatory mechanisms in addition to the in-

ference of the subpopulation structure. We exploited this feature to

study whether the fraction of wild type-like cells is independently af-

fected by Mad2 and Mad3 perturbations or whether these two pro-

teins act synergistically on this fraction.

To assess these competing hypotheses, we compared two models

encoding these hypotheses. First we modeled the fraction of cells

with a functional (¼wild type-like) SAC for different Mad2 and

Mad3 abundances using a product of two Hill-type functions

(Fig. 6A). The variables of the Hill-type functions were relative

Mad2 and relative Mad3 abundance, respectively. To take synergis-

tic effects into account, as proposed by the second hypothesis, in a

second model the threshold parameters of these functions were

described to be inversely proportional to the amount of the other

protein (Supplementary Material, Section S.4.4). To account for

uncertainties in protein quantification, deviations from the meas-

ured amounts were included as unknown parameters in the param-

etrization of the model.

Comparing the agreement of the two models with data from

three double perturbation strains, 65% Mad2 & 120% Mad3, 65%

Mad2 & 60% Mad3 and 65% Mad2 & 30% Mad3 (Fig. 6B and C,

respectively; data in Supplementary Material, Fig. S18), the results

indicate that a synergistic influence of Mad2 and Mad3 on the frac-

tion of wild type-like cells is more likely. This is consistent with

Mad2 and Mad3 acting in the same complex to inhibit Cdc20/Slp1

(Heinrich et al., 2013), thereby inhibiting cell cycle progression. In

cases when the underlying signaling network is elusive such data-

driven hypothesis testing can give new insights into the signaling

mechanism. The use of functional dependencies furthermore allows

for predictions on yet unobserved experimental conditions.

4.3 Mechanistic parametrization of subpopulation

location in NGF-induced Erk phosphorylation
The ability of MEMO to incorporate functional dependencies of the

mixture parameters on the experimental conditions facilitates the

use of prior knowledge on the population and pathways structure.

In combination with the possibility to study multiple experimental

conditions - time points t and stimulations u - simultaneously,

MEMO enables mechanistic modeling of single-cell data. For a real-

istic assessment of these features, we considered NFG-induced Erk

phosphorylation in primary sensory neurons. Quantitative single-

cell data for Erk phosphorylation and models for the population dy-

namics have been presented by Hasenauer et al. (2014b).

We employed MEMO to reevaluate the best model found by

Hasenauer et al. (2014b). This model accounts for two subpopula-

tions differing in the total TrkA concentration, ½TrkA�0 (Fig. 7A). The

A

C

B

Fig. 5. Analysis of subpopulation structure of SAC functionality in different strains using MEMO. (A) Measured prometaphase lengths distributions for S. pombe

strains with different Mad2 abundances. Circles indicate cells in which the entire prometaphase was recorded (prometaphase lengths, interval censored).

Triangles indicate cells that were still in prometaphase when recording stopped (censoring times). Since cells enter prometaphase asynchronously, the times at

which data are censored are distributed. (B) We considered two initial models for the prometaphase lengths distributions: setup 1 - weighted mixture of wild type

and strain specific distribution; and setup 2 - weighted mixture of two strain-specific distributions. Starting from these initial models, backward model selection

was performed. In each step all possible individual simplifications were performed and the best model was selected. For each setup, the structures of the eight

most plausible models are recorded, ranked according to their BIC. According to the most plausible model, the 200% Mad2 strain is indistinguishable from the

wild type. 0% Mad2, 10% Mad2, 20% Mad2 and 40% Mad2 strains consist of unimodal distributions significantly different from wild type. Both 65% Mad2 strains

and the 80% Mad2 strain consist of two subpopulations. (C) Model fit of distributions for prometaphase lengths (black lines) and censoring times (dashed gray

lines) for the overall most plausible model selected by MEMO. To mimic the bee swarm plots in subfigure A, probability densities are vertically mirrored
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phospho-Erk concentrations in the subpopulations are assumed to be

log-normally distributed. The medians of these log-normal distribu-

tions are modeled by ordinary differential equations describing the

biochemical reaction network, i.e. binding of NGF to its receptor

TrkA and subsequent Erk phosphorylation. The state variables are the

activity of the receptor TrkA, x1 ¼ k3½TrkA : NGF�, and the scaled

abundance of phospho-Erk, x2 ¼ s½pErk�, and the system input is the

NGF concentration, u ¼ ½NGF�0. Employing that the receptor dy-

namics are fast, we derived analytical solutions for x1ðt;uÞ and x2ðt;u
Þ (Fig. 7A). The analytical solution of x2ðt; uÞ is used as parametric de-

scription of the subpopulation medians. The parameters of the

population model are the kinetic parameters of the biochemical reac-

tion network, effective subpopulation specific receptor concentrations,

the scale parameters of the log-normal distributions and the subpopu-

lation size (see Supplementary Material, Section S.5).

The multi-experiment modeling of the Erk phosphorylation data

using MEMO enabled the quantitative description of the population

dynamics as well as the tracking of the subpopulations across time

points (Fig. 7B) and NGF concentration (Fig. 7C). To assess the ro-

bustness of parameter estimates with respect to censoring, the un-

censored data as well as (artificially) interval censored data were

considered. We found that the appropriate consideration of intervals

A B C

Fig. 6. Data-driven hypotheses testing of SAC perturbation response using MEMO. (A) A multi-experiment mixture model using a Hill-type description for the

fraction of cells with functional SAC was independently fitted to Mad2 and Mad3 perturbations. Errors in the quantification of Mad2 and Mad3 were modeled

using normally distributed measurement noise. Circles indicate the data for measured abundances, crosses for the protein abundances that result from estima-

tion. (B, C) Comparison of model agreement for independent and synergistic effects of Mad2 and Mad3 with the measured fraction of wild type-like cells in strains

with double perturbations. Crosses indicate data from three double perturbation strains. Curves show the wild type fraction in cut planes through the Mad2-

Mad3 plane as computed from the respective model. The model in (B) reflects independent effects of Mad2 and Mad3 perturbations by just multiplying the mod-

els for the Mad2 and Mad3 perturbations from (A). The model in (C) considers interacting effects of perturbations in Mad2 and Mad3 by modeling the threshold

parameters in each of the two Hill-type functions to be inversely proportional to the amount of the other protein. As indicated by the lower BIC of the model in C,

a synergistic influence of both proteins on the wild type fraction is more likely (Color version of this figure is available at Bioinformatics online.)

A B

C

D

Fig. 7. Mechanistic parametrization of the median of each subpopulation emerging in NGF induced Erk phosphorylation. (A) Schematic of the model for NGF-

induced Erk1/2 signaling as presented in Hasenauer et al. (2014b). Arrows represent conversion reactions and regulatory interactions. The abundance of the pro-

teins is illustrated by its frequency in the schematic. By defining x1 and x2 and assuming x1ðtÞ to be in quasi steady state, x2ðtÞ can be used to describe the de-

pendency of the subpopulation medians on time and stimulus strength. (B) Model fit of kinetic response data. Data are shown as histograms. (C) Model fit of

dose response data. Data are shown as histograms. Vectors h1 and h2 contain all unknown parameters and only differ in containing k3½TrkA�0;1 and k3½TrkA�0;2, re-

spectively. (D) Parameter estimates based on original data (cont.) and artificially interval censored (binned) data for different numbers of bins in data range (Color

version of this figure is available at Bioinformatics online.)
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censoring allows for the robust estimation of kinetic parameters for

a wide-range of bin numbers (Fig. 7D). Hence, censored data allow

for the quantitative assessment of kinetic parameters.

5 Discussion

Mixture modeling of single-cell data is receiving increasing attention

due to a rising number of single-cell technologies (Buettner et al.,

2015; Crane et al., 2014; Grün et al., 2015; Hoppe et al., 2014).

Standard approaches are well established (Pyne et al., 2009; Wang

and Huang, 2007), and several software packages are available.

FLAME (Pyne et al., 2009) and flowClust (Lo et al., 2008) enable

Gaussian, t and skew t mixture modeling of flow cytometry data

and can also be used for other data types. In these implementations,

multiple samples are handled using metaclustering or distribution

matching. JCM (Pyne et al., 2014) improves upon that by construct-

ing template models and matching the individual samples to the

template models. This approach even allows for the consideration of

inter-sample variability, at least in the matching step. However,

JCM does not facilitate an automatic matching of subpopulations

across different experimental conditions, and - like all other meth-

ods - does currently not incorporate hypothesis testing methods.

Furthermore, these packages do not account for censoring, which

might lead to misinterpretations (Duffy et al., 2012; Kuchina et al.,

2011). In this study we show that disregarding censoring generally

results in an overestimation of the number of subpopulations. In

case of interval censoring the severity depends on the ratio of censor-

ing interval and inter-cell variability (Fig. 1B).

Multi-experiment mixture modeling using MEMO enables ac-

curate reconstruction of subpopulation structures and properties

from interval, left and right censored data. Inter-sample variability

can be modeled using sample-specific scaling and offset parameters.

By simultaneously analyzing multiple experiments, MEMO facili-

tates the comparison of different regulatory mechanisms. Thus, mix-

ture modeling is no longer restricted to data analysis, but also allows

to formulate and compare hypotheses how subpopulations are

linked across different experimental conditions. As demonstrated,

MEMO can also be combined with mechanistic modeling

approaches. Furthermore, the characterization of experiment-de-

pendent subpopulations is improved, since variability quantification

is enriched by the entire dataset from multiple experiments.

The results of MEMO can be used for subsequent modeling

(Heinrich et al., 2013; Song et al., 2010). Applications to a broad

range of data types, e.g. single-cell time-lapse (Section 4.2), and sin-

gle-cell protein level snapshot data (Section 4.3) are possible. The

approach can also be used in medical studies, where patients are not

observed continuously or may drop out from the study.

The current implementation of MEMO supports analytical func-

tions to link experimental conditions. These functions encode

hypotheses and can be derived from measurement data or mechanis-

tic models, such as for example ordinary differential equation

(ODE) constrained mixture models (ODE-MM) as described in

Hasenauer et al. (2014b). ODE-MMs use mechanistic models of sin-

gle cell behavior and subpopulation structure to integrate data col-

lected under different experimental conditions (Hasenauer et al.,

2014a; Thomas et al., 2014), and could be used to reconstruct dif-

ferences between subpopulations. MEMO provides an extension to

ODE-MM as censored data can be studied and knowledge about the

signaling pathway is not required. This renders MEMO more flex-

ible and easier to use for explorative data analysis. The mechanistic

modeling of single-cell snapshot data using MEMO demonstrated

its flexibility concerning the data types and established that causal

relations can be extracted. Furthermore, it revealed that parameter

estimates using different data resolutions are consistent.

For the inference of model parameters, MEMO uses a maximum-

likelihood method along with efficient gradient-based optimization.

Expectation maximization (EM) algorithms suitable for multi-experi-

ment mixture models with censored data could reduce the computa-

tion time further and add to the robustness. Existing EM methods for

censored data (Lee and Scott, 2012) will have to be extended to a

multi-experiment setting. Model selection criteria implemented in

MEMO could be complemented by deviance information criteria and

Bayesian model selection (Steele and Raftery, 2010).

MEMO is currently restricted to the analysis of censored and un-

censored univariate data. An extension of MEMO to truncated and

multivariate data is possible, the latter poses however several chal-

lenges. Among other, the evaluation of the likelihood for censored

data requires the calculation of multivariate integrals (McLachlan

and Jones, 1988), which is already computationally intensive for the

bivariate case (Cadez et al., 2002). Potential solutions might be pro-

vided by sparse grids (see (Burkardt, 2014) and references therein).

As the analysis of multivariate data is currently not possible with

MEMO, MEMO needs to be combined with preprocessing and di-

mension reduction approaches (Angerer et al., 2016). Moreover, de-

pending on the experimental setup, prior to analysis the data may

have to be corrected for experimental biases that mask the biological

population structure (Buettner et al., 2015). To facilitate the biolo-

gical interpretation of the results, a hierarchical view on cell popula-

tions should be incorporated in MEMO (Usoskin et al., 2015).

We also note that a full exploitation of the possibilities of

MEMO requires some expertise in the biological system. This con-

cerns the choice of the number of subpopulations to start with and

in particular the generation of hypotheses on the relations between

different experimental conditions. Furthermore, the user must pro-

vide reasonable parameter bounds for the optimization procedure.

In this sense MEMO is an advanced tool that is not fully automatic.

Nevertheless, its modular concept and the symbolic programming

make MEMO’s basic functionality intuitively accessible.

In summary, we introduced a computational method for the effi-

cient and integrated analysis of censored data that allows for rigor-

ous hypothesis testing. The implementation of this method, MEMO,

can facilitate the coherent and reliable analysis of single-cell data

across experimental platforms. Such standardized analysis pipelines

are essential in the age of single-cell data (Pelkmans, 2012).
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