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Abstract: Artificial intelligence is serving as an impetus in digital health, clinical support, and
health informatics for an informed patient’s outcome. Previous studies only consider classification
accuracies of cardiotocographic (CTG) datasets and disregard computational time, which is a relevant
parameter in a clinical environment. This paper proposes a modified deep neural algorithm to
classify untapped pathological and suspicious CTG recordings with the desired time complexity. In
our newly developed classification algorithm, AlexNet architecture is merged with support vector
machines (SVMs) at the fully connected layers to reduce time complexity. We used an open-source
UCI (Machine Learning Repository) dataset of cardiotocographic (CTG) recordings. We divided
2126 CTG recordings into 3 classes (Normal, Pathological, and Suspected), including 23 attributes that
were dynamically programmed and fed to our algorithm. We employed a deep transfer learning (TL)
mechanism to transfer prelearned features to our model. To reduce time complexity, we implemented
a strategy wherein layers in the convolutional base were partially trained to leave others in the
frozen states. We used an ADAM optimizer for the optimization of hyperparameters. The presented
algorithm also outperforms the leading architectures (RCNNs, ResNet, DenseNet, and GoogleNet)
with respect to real-time accuracies, sensitivities, and specificities of 99.72%, 96.67%, and 99.6%,
respectively, making it a viable candidate for clinical settings after real-time validation.

Keywords: fetus classification; deep neural networks; transfer learning; cardiotocography; artificial
intelligence; clinical settings

1. Introduction

Artificial intelligence (AI) is fueling and reshaping various aspects of healthcare, from
personalized treatments to improved diagnostics [1]. Advances in health informatics and
deep learning (a subset of AI) algorithms allow for modelling, which creates informed and
improved health decision outcomes [2,3]. Deep neural networks (DNNs) are continuously
exploring avenues with tangible impact in real-world clinical systems. DNNs are being
deployed in various decision-support bio-medical systems including fetus classification.
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These are used to determine the compromised fetal status [4–6] to avoid hypoxic injury and
pregnancy-related complications [7]. Cardiotocograms (CTGs) contain imperative informa-
tion with respect to fetal heart rate (FHR), uterine contraction (UC) based on the fetus’s
acceleration, deceleration, baseline heart rate, and heart rate variability. These parameters
indicate the fetus’s hypoxic status and serve as a baseline for medical interventions. The
complex CTG patterns are poorly understood and their visual interpretation by clinicians
is challenging [8]. It is now well understood that the linear features in the CTG datasets
have a more pronounced effect than the nonlinear ones in the modelling of fetuses [9].
Hence, the feature selection algorithms for CTG patterns allow dimensionality reduction
with a slight compromise on the sensitivity and selectivity parameters [10]. Contrary to
conventional machine learning (ML) approaches, convolutional neural networks (CNNs)
do not require the execution of complex feature engineering. DNN models can self-learn
useful features from the input data without compromising informative features.

An intercomparison of seven algorithms, including artificial neural networks (ANNs),
long short-term memory networks (LSTMs), and random forests are reported elsewhere [11,12]
on the CTG datasets, but did not accomplish the desired classification response in predict-
ing the suspicious fetus state. This is attributed to the complexity of fetus dynamics and a
considerable false-positive rate as indicated in previous studies [13,14]. Feedforward, multi-
modal and extreme learning networks (ELNs) are data-driven approaches. However, all these
studies provide limited information on the effect of hyperparameters on the task of embryo
morphological assessments [15,16]. DNNs worked effectively with persistent data using
moving filters and max-pooling operations [16]. However, training DNNs for a converged
solution is both time- and space-intensive and impedes their real-time implementation in
clinical settings [17–22]. The resolve of this paper is to make progress toward a real-time
clinical support system for all classes of CTG recordings.

Our CTG datasets consisted of 2126 data on pregnant women that contained 23 attributes
related to FHR and UC. To process this large number of attributes in time-constrained
settings, we proposed a time-efficient SVM-merged AlexNet classifier. SVMs are added
at the fully connected layers of the AlexNet for the faster convergence of the hyperplane.
Rather than learning from scratch, we partially froze early layers of the architecture and
fine-tuned the learned features through the transfer learning technique [23–25]. We im-
plemented our architecture, and an intercomparison was made with the leading works
reported so far. The proposed architecture recorded the best classification performance
in minimal time compared to other leading architectures making it an evidence-based
choice in time-constrained settings. The proposed algorithm would help in realizing the
development of better AI solutions for maternal–fetal upkeep.

The contributions of this paper may be summarized as follows:

1. By using SVM-merged DNNs on the CTG dataset, we achieved a faster convergence
of the hyperplane, resulting in clinically relevant time performance. DNN auto-
matically extracts features, and the generalized ability of SVMs was exploited for
multiclass classification.

2. We exploited transfer learning to improvise classification speed by bypassing the
training time of the data samples.

3. With the emergence of machine learning operations (MLOps), we presented a compu-
tationally lightweight model to achieve low latency in real-time settings.

4. Our model outperforms the leading algorithms with respect to fetus classification accuracy.

The paper is organized as follows: Section 2 describes the materials and methods used
in this work. It encompasses details regarding the dataset and its preprocessing. Then,
our proposed classification architecture is detailed with respect to hyperparameters and
optimization of the cross-entropy-based loss function. Section 3 is devoted to results and
analysis. Section 4 contains the related discussion on the work under consideration. Finally,
Section 5 is the concluding section.
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2. Materials and Methods
2.1. CTG Dataset and Preprocessing

In this study, the dataset used was obtained from the University of California Irvine
Machine Learning Repository, which is a public dataset and is available for review [20]. It
consisted of data from 2126 pregnant women. This dataset contains 23 attributes used in the
measurement of FHR and UC on CTG as available the dataset [20]. CTG results of pregnant
women were classified by three experts in the field of obstetrics’ interpretations of them.
This labelled dataset is comprised of recordings where and duration of labor is 30 min. We
categorized our CTG set into three classes, namely: Physiological (P), Suspicious (S), and
Pathological (P), as per the guidelines [20]. The data is divided into three classes based on
the different CTG attributes and their profiles, as illustrated in Figure 1.
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Figure 1. A depiction of correlation among different attributes of the CTG dataset, including LB, 
AC, FM, UC, DL, DS, ASTV, MSTV, and ALTV, in addition to min, max, width mode, mean and 
median of the FHR histogram. 

The next process was to remove outliers using the correlations map in Figure 1. Var-
iable predictors that have a strong dependence were excluded and the linearity of the da-
taset was then validated using test plots exhibited in Figure 2. Since the samples in our 
three classes, namely, Normal (N), Suspected (S) and Pathological (P) were imbalanced, 
upsampling was performed to balance the classes. We used the Imblearn library in python 
for data upsampling that works based on the k-nearest neighbors algorithm. We syntheti-
cally generated data points that fall in the proximity of the already existing outnumbered 
class. Since the sampling process is applied only to the training set, our validation 
and testing data remain unchanged. After balancing the data, feature scaling was 
performed before feeding it to our classification algorithm. 

  

  

Figure 1. A depiction of correlation among different attributes of the CTG dataset, including LB, AC,
FM, UC, DL, DS, ASTV, MSTV, and ALTV, in addition to min, max, width mode, mean and median of
the FHR histogram.

Figure 1a,b carry the depiction of scatterplot matrix for visualizing the correlation
between all 21 attributes of the CTG dataset. The left side of the plot displays the scatterplots
for each pair. The right side shows the Pearson correlation coefficients, while the density
plot for each attribute is located on the diagonal. The Pearson correlation determines how
strongly two variables are linearly correlated. A strong linear relationship is implied by
values that are close to 1.

This includes LB (medical expert baseline values), fetal accelerations (AC), fetal move-
ment (FM), percentage of time with abnormal short-term variability (ASTV), percentage of
time with abnormal long-term variability (ALTV), light fetal decelerations (DL), severe fetal
decelerations (DS), prolonged decelerations (DP), and repetitive decelerations (DR). Multi-
collinearity upturns the variance of the coefficient estimates extremely and makes the estimates
very sensitive to minor changes in the model. Identifying the degree of multicollinearity
in the preprocessing phase contributed to achieving the required correlation between each
pair of explanatory variables. Min is the minimum of FHR histogram, Max represents the
maximum of FHR; Nmax is histogram peaks; Nzeros are histogram zeros; Mode, Mean, and
Median are FHR statistical data parameters. The correlation between 0.6–1.0 was considered
a strong positive correlation. The topology of correlation is presented in Figure 1. Pair-wise
correlation was found to be high for the pairs, including Median/Mode (0.933), Median/Mean
(0.948), Min/Width (−0.899), Mean/Mode (0.893) and Nmax/Width (0.747). The purpose of
this exercise is to identify the key attributes that have a strong dependence on the model
performance. Using Figure 2, nine correlated attributes include: class, mean, median, mode,
width, Nmax, MSTv, and variance of the CTG dataset. Since the pair-wise correlation be-
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tween the explanatory variables is not a sufficient condition to determine multicollinearity,
the Farrar–Glauber (FG) test was performed. The calculated value of the FG Chi-square test
statistic was 33,529.57. The FG test also determined the diagnostic output for variance inflation
factor (VIF) to be 26.87, in addition to the variables of mean (20.1283), min (19.6931), width
(17.7735), and mode (9.0131). The results are exhibited in Figure 1.
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Figure 2. This figure is the validation of the linearity of the dataset using test plots: (a) indicates
that there is a linear link between predictor factors and outcome variables and residuals have linear
patterns; (b) illustrates that the residuals are normally distributed because a straight dashed line is
well lined with residuals; (c) is the scale-location plot and confirmed that residuals are distributed
evenly across the predictors’ range; (d) exhibits the significant data points by using Cook’s distance.

The next process was to remove outliers using the correlations map in Figure 1. Vari-
able predictors that have a strong dependence were excluded and the linearity of the dataset
was then validated using test plots exhibited in Figure 2. Since the samples in our three
classes, namely, Normal (N), Suspected (S) and Pathological (P) were imbalanced, upsam-
pling was performed to balance the classes. We used the Imblearn library in python for
data upsampling that works based on the k-nearest neighbors algorithm. We synthetically
generated data points that fall in the proximity of the already existing outnumbered class.
Since the sampling process is applied only to the training set, our validation and testing
data remain unchanged. After balancing the data, feature scaling was performed before
feeding it to our classification algorithm.

Since nonlinearity amongst different CTG parameters is important. Therefore, a linear
regression analysis was performed to determine the degree of nonlinearity in our dataset,
as presented in Figure 2. Residual against the fitted plot in Figure 2a indicates that the
relationship between attributes in our dataset is linear as the data points are evenly spaced
around the zero line and the zero line corresponds to our estimated regression line for
CTG attributes. In our QQ plot, CTG data attributes represent the y-axis, and theoretical
quantiles from a standard normal are on the x-axis. The middle and tails of our distribution
are the same as a true normal distribution, as illustrated in Figure 2b. This helped us to
validate that our data is normally distributed. Figure 2c is a spread location plot and it
reflects that our residuals are evenly spread along with the range of predictor variables.
The red line is horizontal across the plot, implying that the spread of CTG attributes around



Sensors 2022, 22, 5103 5 of 14

it is symmetric. A residual against leverage plot was performed to identify influential
CTG parameters in our CTG dataset. We observed no influential points that would change
our statistical distribution as presented in Figure 2d. We used Cook’s distance to impose
this condition.

2.2. Proposed Classification Architecture

We employed our newly created hybrid AlexNet-SVM architecture with an input layer,
a convolution layer, a pooling layer, modified SVM fully connected layers, and an output
layer. AlexNet algorithm [26–29] learns from filters in the convolution layer. The extracted
features are delivered to the subsequent layer carrying multiple feature maps [29,30].
To deliver a concatenated output using max pooling or average pooling algorithms, the
pooling layer concentrates on a cluster of neurons to reduce the number of weights. The
dimensionality of each feature map was then reduced by downsampling it using Numpy
(Python). In the pooling layers, we selected the stride, padding factor, and kernel size based
on our optimization experiment. In the fully linked layer, class scores were computed. The
SoftMax layer then produced a 3-dimensional vector that corresponded to the number of
classes concerned. In the SoftMax classification layer as the loss function, cross-entropy
was calculated [30,31]. During the training step, by setting random activations to zero,
overfitting is avoided in our model by using a dropout layer followed by a fully connected
layer. Figure 3 represents our proposed algorithm where input and output feature maps of
each block are presented. We replaced the fully connected layers in the AlexNet with SVMs.
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Figure 3. The model we employ in our dataset with the fully connected layers is replaced with SVM
within the AlexNet.

As illustrated in Figure 3, the cross entropy-based fully connected layers were replaced
with SVMs. The training layer passed the data to the next layer when the loss function
converged to zero. We classified based on the particular label vs. the rest. Our SVM layers
contribute to updating the weights of all hidden layers to conserve computational time.
The training process with a layer size of 25 was fed with an input tensor with a dimension
of 227 × 227 × 3. The learning rate was kept initially at 0.5 along with a bias rate of 2 for
low-level feature learning. Data transference was achieved and the learning rate at the fully
connected layer was set to a higher value of 17 to enable the network to learn high-level
abstract features in a smaller span of time from the pretrained layers. For model training,
we used the Adam optimizer. It computes individual adaptive learning rates for different
parameters from estimates of first and second moments of gradients. The learning rate for
initial layers was set to 0.3 and for end layers, it was Lr = 10−4. The exponential decay rates
(β1 and β2) of the first and second moment estimates were 0.9 and 0.99, respectively, with
Є = 1 × 10−8. To find the optimal solution in minimal time, we reduced the learning rate
by a factor of two when the validation error saturated. The algorithm for our newly created
model is presented in Algorithm 1.
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Algorithm 1 Function AlexNet-SVM (A, T, W).

1: Input: AlexNet Model: A, Kernel Dimensions: Ki,
2: Pre-trained weights of individual layers: [w1, w2, . . . ,wn]
3: Output: SVM Merged AlexNet Model: Asvm,
4: Define model parameters # classifier, bias, optimizer
5: For i← 1 to Layers do # classes in data load
6: if layers = = Conv then
7: Min Batch = 10; # Minimum Batch Size
8: Learning Rate = 1 × 10−4;
9: output= AlexNet (data)
10: loss← cross_entropy (output, classes) # Loss Calculation
11: optimizer. zero_grad (); # Update weights
10: loss, Backward ();
12: end
13: LT=← net.Layers (1:end-3) # Replacing Fully Connected Layers (FCL)
14: Layers = LT, FCL (3, LF’20, b’20)); # LT (Layer Transfer), LF (Learn factor)
15: SVM_L← concatenate ((train_L), (validate_L)); # SVM_L (SVM Label)
16: Asvm = (A, Wm, FCL) # Wm (modified weights of layers)
17: end

As illustrated in Algorithm 1, the number of convolution layers is equal to the con-
volution operations to be performed. Our model considers an input dimensional feature
of 227 × 227 × 3. Then we apply the first convolution layer with 96 filters of size 11 × 11
with a stride of 4. The output feature map is 55 × 55 × 96. Next, we apply max pooling
and produce the resulting feature map with the size of 27 × 27 × 96. After this, we apply
the second convolution operation with 256 filters to obtain an output size of 27 × 27 × 256.
Then we receive a max-pooling layer of size 3 × 3 with stride 2 and the resulting feature
map becomes size 13 × 13 × 256. Similarly, after applying third and fourth convolution lay-
ers the feature map, the dimensions remained 13 × 13 × 384. The mini-batch size remained
at 10 during these operations, as indicated in Algorithm 1. The final convolutional layer
has a feature map of 13 × 13 × 256. The learning rate was set to 1 × 10−4. The loss was
computed and backpropagated to update the layer weights. We replaced the final three
layers with SVMs in our model and used cross-entropy to converge the loss function by
updating the weights of layers. This concluded in an AlexNet-SVM merged model.

Transfer learning is a key aspect to improving the learning in the target domain, and
overparametrization was avoided by sophisticated feature reuse through data cluster-
ing [32–35]. The labelled data was classified by setting up feature spaces based on their
marginal probabilities. This architecture enabled us to capture different features at different
levels in the network. Typically, any DNN has two parts: a convolutional base that is
composed of convolution and pooling layers for general feature learning, and a classi-
fier that is usually composed of fully connected layers. Rather than following a general
strategy as indicated in Figure 4a, where the training of the entire model is done based
on the dataset, we employed an optimum strategy as illustrated in Figure 4b to preserve
computational time.

Transfer learning is implemented by leveraging the generic features for labels that
are available in both the source and target domains. Feature extraction was performed
using AlexNet, in which FHR signals are passed through a set of preprocessing procedures.
When these generalized features were acquired in layers, we removed the fully connected
layers and added lightweight SVM, as indicated in Figure 4b. Then we trained the newly
added connected layers for specific learning tasks by freezing the weights of the earlier
layers. Freezing the layers allows us to keep the learned data intact through transfer
learning during the training phase of top layers. After the top layers were trained, we
performed fine-tuning to complete the transfer learning phase. We normalized our network
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predictions based on the cross-entropy (CE) between the true label distribution and the
predicted label using Equation (1).
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E = − 1
N ∑

i
yi log(Yi) (1)

where −1/N represents the number of samples, yi is the true label, and Yi indicates our
predicted label.

Cross-entropy was utilized to help predict an outcome compared to the true outcome.
The use of a negative algorithmic function allows us to retrieve the error function for each
data point to determine the predicted label as compared to the true label.

2.3. Performance Evaluation of Proposed Classification Architecture

For the evaluation of our proposed algorithm, several metrics, including accuracy,
precision, and recall were utilized as defined in Equations (2)–(4).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall =
TP

TP + FN
× 100% (4)

where TP represents True Positive, TN is True Negative, FP is False Positive, and FN
indicates False Negative.

For multiclass classification results on each model and their intercomparison with our
proposed model accuracy, precision and recall were calculated. Accuracy captured the
percentage of correct predictions of overall test data, where precision and recall measured
the ability of a model to identify relevant data points within a dataset.

A key performance factor for our proposed algorithm is computational efficiency in
clinical settings. To establish the computational performance, processing time, system time,
and elapsed times for different leading algorithms for our dataset were measured and
compared to our proposed algorithm. We defined processing time as a combination of
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forwarding propagation, backward propagation, and update time for each layer. We split
DNNs into different layers with the fully connected layer as a special convolutional layer.
The algorithm for the processing time is exhibited in Algorithm 2. Elapsed time refers to
the time taken by the CPU to compute the expressions. This is an aggregate of the user
and system time. User time is the time taken by the CPU to execute the code, whereas the
system time is the user time plus the time taken to compute the kernel function. We defined
the parameters a and b, in addition to vector values that are randomly sampled for time
computations. The function proc.time () determined the processing time. We started with
a vector of 100,000, and this value was replaced against the constant in Algorithm 2. The
function proc.time () works as a stopwatch, and we initialized it to a starting time. Then
we added 1 to each of these values and ran our code. Subtracting the starting time from
the ending time provided the processing time of our developed model, as illustrated in
Algorithm 2.

Algorithm 2 Computation of Processing Time.

1: Input: Model Parameters: Mp, DNN Architecture: Da,
2: Output: Results for Processing time
3: Define Parameters.
4: a normal (constant)
5: b rep(NA, constant) #replicate numerical values
6: For each layer L belongs to [1, N] do
7: Pt proc. time (); #Start the clock
8: end
9: For (i == constant){
10: b [i] a [i]+1;
11: }
12: proc. time ()-Pt; # Stop the clock
13: output = Pt

3. Results

A train validation-test strategy was used in all the studies discussed in this section.
On the test set, the provided results were computed while the selection of hyperparameters
was made over the validation set. We implemented and tested all leading deep neural
algorithms for our CTG dataset. These include: recurrent neural networks, random forests,
GoogleNet, DesnseNet, NiftyNet, AlexNet, and our proposed SVM AlexNet. As indicated
in Figure 5a–c, our proposed algorithm performed best with respect to time complexity
for user, system and elapsed scenario. Time complexity was gauged in terms of elapsed
time, user time, and system time. Our SVM AlexNet hybrid classification architecture
resulted in faster convergence by avoiding weight recalculation in all layers. Contrary to
our presented method where resources are only spent on determining the global gradient,
leading reported architectures require intense time and space resources to compute local
maxima [32–38].

In AlexNet, the proportion of fully connected and convolution layers is more than
90% as compared to other algorithms. It can be observed that the prediction accuracy
of our model for the fully connected layer is significantly better than the state-of-the-art
algorithms presented in Figure 6. Parameter optimization was performed according to the
validation set with the convolution kernel of size 5 × 5. It has been revealed that when the
mini-batch size was equal to 64, the validation accuracy remained higher, regardless of the
max epoch. Conversely, it was observed that the model 10 epochs required the input data
to learn the maximum possible features of the fetal state.
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To improve the efficiency of the training of the feed-forward neural network, we
used the ADAM optimizer for the backpropagation. After our proposed DNN algorithm
is trained, it immediately starts classifying an unidentified fetus within our three label
classes. The primary advantage of our proposed method is based on the deep architecture’s
convolutional layers, which provide discrete local features to characterize the input data.

To make our findings clinically significant, we calculated a confidence interval (CI)
for each sample. This implies that we anticipate our dataset mean to be found within
95% of these CIs. We compared our proposed algorithm with the commercially available
algorithms, including GoogleNet, DenseNet, and NiftyNet, on the basis of CI. Figure 6
indicates that the 95% CI of our algorithm is where the population parameter is likely to
reside, while CI computations, sample variability, and sample sizes were kept constant for
all algorithms.

Table 1 illustrates the specificity, sensitivity, and balanced accuracy indices of the
proposed algorithm against the leading methods for our chosen dataset. Our presented
classification architecture outperformed the other methods on the same CTG dataset in
accuracy for both the Suspected and Pathological fetal recordings.
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Table 1. Performance indices of the proposed method routine with other leading methods on the
same CTG dataset.

Statistics by Class “Sensitivity” “Specificity” “Pos Pred
Value”

“Neg Pred
Value” “Prevalence” “Detection

Rate”
“Detection

Prevalence”
“Balanced
Accuracy”

Total number of observations: 2126 Normal recordings: 1655

Random Forest [35] 0.9029 0.7632 0.9461 0.6304 0.8216 0.7418 0.7840 0.8330
LS-SVM [36] 0.8128 0.8000 0.9811 0.1739 0.9531 0.7746 0.7840 0.8064
AlexNet [37] 0.9866 0.6875 0.8802 0.9565 0.6995 0.6901 0.784 0.8370

DenseNet [38] 0.8445 0.8236 0.8653 0.8245 0.784 0.784 0.784 0.9367
MLP [39] 0.8394 0.8289 0.8199 0.8083 0.6887 0.8840 0.8840 0.8598

LSTM [40] 0.9744 0.9621 0.9534 0.921 0.833 0.925 0.8870 0.9625
CWT-CNN [41] 0.9012 0.8721 0.8981 0.9873 0.756 0.756 0.757 0.9408

Proposed architecture 0.9894 0.9877 0.9982 0.9925 0.784 0.784 0.784 0.9991

Pathological recordings: 176

Random Forest [35] 0.8628 0.95610 0.47059 1.000 0.03756 0.03756 0.07981 0.8780
LS-SVM [36] 0.8888 0.95588 0.47059 0.9949 0.04225 0.03756 0.07981 0.9023
AlexNet [37] 0.9232 0.96552 0.58824 1.000 0.04695 0.04695 0.07981 0.8927
Densenet [38] 0.9161 0.98492 0.82353 1.000 0.06573 0.06573 0.07981 0.8724

MLP [39] 0.9411 0.98000 0.76471 1.000 0.06103 0.06103 0.07981 0.9151
LSTM [40] 0.9652 0.9634 0.7921 1.000 0.06521 0.0671 0.07981 0.9210

CWT-CNN [41] 0.9753 0.9843 0.8322 1.000 0.07412 0.0667 0.07981 0.9523
Proposed architecture 1.000 0.99492 0.94118 1.000 0.07512 0.07512 0.07981 0.9974

Suspect recordings: 295

Random Forest [35] 0.5000 0.9235 0.5172 0.91848 0.14085 0.07042 0.13615 0.7117
LS-SVM [36] 0.7200 0.9816 0.8966 0.8696 0.2347 0.1221 0.1221 0.8608
AlexNet [37] 0.8056 0.9783 0.8566 0.9620 0.1690 0.1362 0.1362 0.9028

DenseNet [38] 0.9032 0.9545 0.9615 0.9837 0.1455 0.1315 0.1362 0.8889
MLP [39] 0.8788 0.9655 0.9834 0.9783 0.1549 0.1362 0.1362 0.9194

LSTM [40] 0.8921 0.9678 0.9873 0.9838 0.1564 0.1362 0.1315 0.9675
CWT-CNN [41] 0.9512 0.985 0.9887 0.9765 0.1456 0.1362 0.1362 0.9876

Proposed architecture 0.9667 0.996 1.0000 0.9946 0.1408 0.1362 0.1362 0.9972

4. Discussion
4.1. Merged (AlexNet-SVM) Architecture

Data visualization and the correlation analysis discovered that AC, FM, ASTV, ALTV,
DL, DS, DP, and DR were the most relevant attributes for the fetal-state evaluation. Our
model supplemented the CTG construal rules in the fetus classification. Our regressive
analysis revealed that variability could predict baseline and uterine activity could predict
deceleration movements of the fetus; therefore, fetus baseline, acceleration, and deceleration
variables are essential for a potential clinical decision support system. Figure 1 illustrated
the degree of multicollinearity between each pair of fetus-state variables. DNNs receive
inputs, perform a dot operation, and then express the mapping between test data to their
respected labels. Our model is a very effective way to use DNN as a feature extractor, and
to to SVM with these features to predict a label, resulting in a better time and classification
performance. The high-end layer was substituted by SVM to prevent our network from
overfitting dropout is applied. Compared to our algorithm’s accuracy of 99.72%, the
classification accuracy of SVM, multi-layer perceptron (MLP), and DNN remained at 79.66%,
85.98%, and 93.24%, respectively [18]. Similarly, in a previous study [23], the following
10 pretrained fetus networks: Alexnet, Vgg16, Vgg19, Squeezenet, Googlenet, Inception
v3, Densenet 201, Resnet 18, Resnet 50, and Resnet 101 recorded the highest classification
accuracy of 82.85%. Even smaller datasets of CTG recordings reported accuracy between
80% to 93% [27,31].

4.2. Transfer Learning

To achieve multiclassification for our imbalanced CTG dataset and heavy convolution
layers involved in AlexNet, we used transfer learning. Transfer learning allowed us
to skip weight recalculations and upgradations for frozen layers. Figures 4 and 5 and
Algorithm 2 indicate that there is a significant difference in time performance between
training from scratch and fine-tuning. Using grid search, our proposed model removed the
fully connected layers to achieve a less time-intensive solution. This is predominantly useful
for our model with heavy convolutional layers. The pooling layers ensure overlapping
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amongst local receptive fields, hence minimizing the error in our model. We extracted all
layers except the last three. For transfer learning, we set the learning rate high for the new
layers and slower for the older ones by specifying the mini-batch size and validation data.
Fine-tuning after transfer learning is less expensive compared to fine-tuning from scratch
learning due to partial updates of the parameters of the convolutional layers. Our transfer
learning task achieved the desired results when tied to pretrained models.

4.3. Computational Complexity and Classification Accuracy

Another key contribution of the presented work is the reduced computational com-
plexity. This key parameter for real-time settings has never been given due attention in
the reported literature for fetus classification. MLOps suggest that every evolved model
must be gauged under a limited computational budget for real-time implementations. This
motivates a series of works toward a speed–accuracy tradeoff using lightweight architec-
tures [33]. It has been reported that DNNs achieve classification accuracy between 84–93%
at the cost of intense computational effort that ranges from 118.90 s to 1330 s [33,34]. In [35],
random forests were used for the classification of the same dataset with achieved accuracy
of 93.6%. The intense computational nature of this model hindered its automation for fetus
classification. SVMs provide reasonable accuracy but they are not preferred for large CTG
datasets, as the complexity of the algorithm’s training is a direct function of the dataset
size [36]. DNNs [37] can be trained with a high-dimensional CTG dataset but excessive con-
nections severely decrease computational efficiency, as reported previously [38]. In [38,41],
DenseNet is reported to exploit dense concatenation blocks for feature mapping, but the
heavy processing time makes them unsuitable for clinical settings. Multilayer perceptron
and long short-term memory (LSTM) networks [39,40] are characterized by several layers
of input nodes connected as a directed graph with the output. They both include a very
dense web of parameters, resulting in redundancy and inefficiency. An intercomparison of
all these models with our proposed model on the CTG dataset with respect to computa-
tional efficiency is presented in Figure 5. Our proposed model outperformed the leading
architectures in processing time by merging a lightweight SVM at the high-end layers.
Our proposed model utilizes broader temporal information to extract CTG features and
integrate them at higher layers using lightweight SVMs for classification. Since we have
imbalanced classes, we presented an intercomparison between our model and other cutting
classification architectures. Our model outpaced the classification accuracy, sensitivity, and
specificity of cutting-edge models.

5. Conclusions

The translational fusion of deep learning algorithms with CTG data resulted in promis-
ing results in terms of time computations and classification accuracy. We achieved better
time-performance results that are needed for clinical time settings. Our algorithm out-
performed the leading architectures with an accuracy of 99.72%, sensitivity of 96.67%,
and classification specificity of 99.6%. Compared to the cutting-edge algorithms, our
model resulted in a more local objective function. The incorporation of our model to
predict compromised fetuses would enable timely referral and informed decision-making
in clinical practice.
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AI Artificial Intelligence
ALTV Abnormal Long-Term Variability
ANNs Artificial Neural Networks
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CE Cross-Entropy
CI Confidence Interval
CNNs Convolutional Neural Networks
CTG Cardiotocographic
CTGs Cardiotocograms
DL Light Fetal Decelerations
DNNs Deep Neural Networks
DP Prolonged Decelerations
DR Repetitive Decelerations
DS Severe Fetal Decelerations
ELNs Extreme Learning Networks
FG Farrar Glauber
FHR Fetal Heart Rate
FM Fetal Movement
LB Baseline
LSTM Long Short-Term Memory
LSTMs Long Short-Term Memory Networks
ML Machine Learning
MLOps Machine Learning Operations
MLP Multilayer Perceptron
N Normal
P Pathological, Physiological
S Suspicious, Suspected
SVMs Support Vector Machines
TL Transfer Learning
UC Uterine Contraction
VIF Variance Inflation Factor
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