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Abstract

Koala populations show marked differences in inbreeding levels and in the presence or absence of the endogenous Koala 
retrovirus (KoRV). These genetic differences among populations may lead to severe disease impacts threatening koala popu-
lation viability. In addition, the recent colonization of the koala genome by KoRV provides a unique opportunity to study the 
process of retroviral adaptation to vertebrate genomes and the impact this has on speciation, genome structure, and func-
tion. The genome build described here is from an animal from the bottlenecked Southern population free of endogenous and 
exogenous KoRV. It provides a more contiguous genome build than the previous koala reference derived from an animal from 
a more outbred Northern population and is the first koala genome from a KoRV polymerase–free animal.
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Significance
This high-quality genome build provides a baseline comparator for studies of koala genetics and retroviral integration. It 
is from a genetically distinct population than the current koala reference genome and does not contain intact endogen-
ous Koala retrovirus.
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Introduction
Koalas are an iconic marsupial species classed as vulnerable 
on the IUCN red list. The species suffers a number of 
threats, including habitat loss and disease, with climate 
change–driven fire events, further decimating numbers in 
recent years (Charalambous and Narayan 2020). The dis-
ease threats to the population are complicated by stark dif-
ferences in the disease patterns in different populations 
driven by underlying genetic differences (Sarker et al. 

2020; Tarlinton et al. 2021). Wild koalas are confined to 
the Eastern Seaboard of Australia. There are five major gen-
etic groups (Lott et al. 2022), but for the purposes of popu-
lation management, two major genetic splits are 
recognized: Northern (New South Wales and Queensland) 
and Southern (Victoria and South Australia), the border be-
tween the states of New South Wales and Victoria forming 
a hard cutoff between the two populations (Neaves et al. 
2016; Quigley et al. 2021).
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Koalas in the southern states were essentially extinct by 
1920 due to hunting pressure and were restocked across 
their southern range from a very small number of animals 
(possibly as few as 18) sourced from offshore island refugia 
(Martin et al. 1999). As a result of this, animals in the south-
ern population have a markedly reduced genetic diversity 
compared with animals in the northern population 
(Neaves et al. 2016; Ruiz-Rodriguez et al. 2016; Johnson 
et al. 2018; Tarlinton et al. 2021). Our own work has de-
monstrated that many genes are homozygous in the south-
ern animals (Tarlinton et al. 2021). Animals in the southern 
populations suffer from a number of diseases such as oxal-
ate nephrosis and testicular aplasia that are not routinely 
seen in northern populations (Fabijan et al. 2020; 
Tarlinton et al. 2021) and are thought to have an underlying 
genetic basis (Cristescu et al. 2009; Speight et al. 2020).

The other major difference both disease- and genetics- 
wise between Northern and Southern animals is the pres-
ence of a functional recently endogenized retrovirus 
(Koala retrovirus or KoRV) in all Northern koalas but not 
in the Southern (Quigley et al. 2021; Blyton et al. 2022). 
Both Southern and Northern animals may have exogenous 
infectious KoRV, but the rate of KoRV-associated neoplasia 
is substantially lower in Southern koalas (Sarker et al. 2020; 
Joyce et al. 2021; Quigley et al. 2021). Although the definitive 
link is less clear than for neoplasia (McEwen et al. 2021), 
KoRV is also thought to cause underlying immunosuppres-
sion predisposing to chlamydia disease, which is also seen 
at a lower rate in Southern populations (Polkinghorne et al. 
2013; Sarker et al. 2020). Endogenous retroviruses are pre-
sent in all vertebrate genomes studied to date, and the en-
trance of these transposable elements into genomes is 
thought to be a major introduction of genetic diversity, po-
tentially triggering speciation. However, most examples in 
genomes are ancient and are essentially represented by in-
active viruses (Zheng et al. 2022). They are thought to be 
the remnants of past infectious viral integrations that have 

managed to enter germline cells and become fixed in a spe-
cies. KoRV is part of a very small group of recently endogen-
ized viruses, integrated sometime between 200 and 49,000 
years ago (Ishida et al. 2015), and is unique in that parts of 
the species range do not yet have endogenous polymerase 
gene containing KoRV at all (Quigley et al. 2021).

To complicate matters further, both Northern and 
Southern koalas have evidence of historical KoRV infection 
as defective recombinant sequences between KoRV and 
another older endogenous retroelement (Phascolarctos en-
dogenous retrovirus or PhER), known as recKoRVs (Löber 
et al. 2018; Tarlinton et al. 2022). It is not entirely clear 
how endogenous and exogenous KoRV and recKoRV inter-
act and whether they enhance or inhibit each other’s repli-
cation and disease occurrence, but the scenario provides a 
unique opportunity to study the impacts of the entrance of 
a new class of retroelements into a mammalian genome in 
real time rather than by phylogenetic inference of this fun-
damental genomic process (Tarlinton et al. 2022).

There are two other published koala genomes (Johnson 
et al. 2018) derived from northern animals “Bilbo” and 
“Pacific Chocolate” (Johnson et al. 2018), alongside several 
additional transcriptome resources (Hobbs et al. 2014; Abts 
et al. 2015; Tarlinton et al. 2022). The most complete existing 
genome for Bilbo is assembled at a contig level (into 1,907 con-
tigs with an N50 of 11.6 Mb). Here, we present a genome build 
of a Southern Australian animal “Wilpena” for use in compara-
tive genomics of koala populations and studies of retroviral in-
tegration. This genome is more contiguous than the current 
reference sequence (1,265 contigs, N50 = 48.8 Mb) and from 
an animal known to be free of both endogenous and exogen-
ous replication-competent KoRV (Tarlinton et al. 2022).

Results and Discussion
Using 58 GB of ONT data (consisting of 2,572,260 reads 
with a mean read length of 24 kb and mean Q score of 

Table 1 
Summary of the Genome Assembly

Genome Wilpena 
This Study

Bilbo 
GCA_002099425

Pacific Chocolate 
GCA_900166895

Assembly size 3,234,982,288 bp 3,192,581,492 bp 3,358,707,742 bp
Number of contigs 1,265 1,907 796,464
Contigs ≥5,000 bp 1,222 1,804 16,989
Contigs ≥50,000 bp 651 662 8,361
Contigs N50 48,800,306 bp 11,587,828 bp 880,973 bp
Contigs N75 22,144,309 bp 6,857,650 bp 321,283
Contigs L50 17 85 1,100
Contigs L75 41 173 2,591
Largest contig 232,027,266 bp 40,558,015 bp 5,231,295 bp
GC content (%) 39.09 39.05 39.03
BUSCO completeness (%) 92.9 94.0 90.0
Genes 27,669 32,109 33,654
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13.7), 1,289 million (2 × 150 bp > Q30) Illumina reads were 
assembled into a draft genome using Flye. This resulted in 
an N50 of 48,782,874 bases and a length of 
3,233,824,327 bp. A first-pass polish using Medaka and 
a final polish with Polca using the Illumina data resulted 
in a final high-quality genome assembly with an N50 of 
48,800,306 bases, 1,265 contigs, and a total genome 
size of 3,234,982,288 bp (table 1).

The contigs were assessed for putative contamination 
using Conterminator (Steinegger and Salzberg 2020). From 
1,265 contigs, 1,247 were assigned as koala and 18 were 
flagged as containing potential contamination. Of those 
18, assignments were for North American opossum (n = 2), 
common brushtail (n = 2), gray short-tailed opossum (n = 
2), common wombat (n = 7), and KoRV (n = 2). However, 
the same eight contigs were flagged multiple times with close 
marsupial relatives and so are unlikely to be true contamin-
ation. There were two contigs assigned as KoRV, these are 
nonfunctional partial recKoRV sequences (partial KoRV env 
and LTR) as reported previously in this animal (Tarlinton 
et al. 2022) and are not full-length endogenous or exogenous 
KoRV. The genome was soft-masked using REpeat Detector 
(RED) (supplementary table S1, Supplementary Material
online) and genes predicted used braker2 along with pub-
licly available Koala RNASeq data from multiple biological 
sites, predicting 52,384 putative genes. Functional anno-
tation using the EggNOG mapper identified 27,669 genes 
with transcriptional support (supplementary table S2, 
Supplementary Material online).

Conclusion
A highly contiguous reference genome, from a distinct 
southern population, is invaluable to understanding the 
challenges faced in conservation genetics for future breed-
ing programs of Koalas. Not only will this enable more com-
prehensive comparative genomics to take place but it will 
also allow researchers to fully understand nonfunctional 
KoRV integration sites and whether they appear in similar 
regions of the genome to the northern population.

Materials and Methods

Sample Collection

DNA was derived from liver tissue from a 3-year-old female 
south Australian Koala, housed in a collection in the United 
Kingdom. The animal was originally derived from the Mt 
Lofty Ranges and Kangaroo Island populations in South 
Australia. Sample collection and nanopore sequencing 
from this animal were described in Tarlinton et al. (2022). 
Ethics approval for the use of postmortem material was 
granted by the University of Nottingham, School of 
Veterinary Medicine and Science, Committee for Animal 
Care and Research Ethics.

Sample Preparation

DNA was extracted from frozen liver tissue using the 
QIAGEN Genomic-tip 100/G Kit and the QIAGEN 
Genomic Buffer Set (QIAGEN; 10243 and 19060). Frozen 
tissue was ground under liquid and 100 mg of frozen pow-
der was added to 9.2 ml of buffer G2 containing 5 µl of 
RNase A (100 mg/ml) (QIAGEN; 19101), and the suspen-
sion was incubated at room temperature for 10 min. 
Proteinase K (100 µl) (QIAGEN; 19131) was added and 
the suspension was incubated at 50 °C for 1.5 h. The 
genomic-tip protocol was then followed, according to the 
QIAGEN Genomic DNA Handbook 06/2015.

Genome Sequencing

Genomic DNA was needle-sheared 30 times with a 26 G needle 
(BD; 300300) and then treated with the Short Read Eliminator 
Kit (Circulomics; SS-100-101-01) to remove fragments <10 kb 
and progressively deplete fragments shorter than 25 kb. The 
processed DNA was used to generate a sequencing library 
using the Genomic DNA by Ligation PromethION Kit (Oxford 
Nanopore Technologies; SQK-LSK109). Library quantification 
was performed using the Qubit fluorometer and the Qubit 
dsDNA HS Assay Kit (ThermoFisher; Q32854), and 600 ng of 
the library was run over one PromethION flow cell (Oxford 
Nanopore Technologies; FLO-PRO002) on a PromethION 
Beta device. The same DNA preparation was subjected to 
Illumina NovaSeq 6000 paired-end 150 bp read sequencing 
(with an automated plant and whole-genome library prepar-
ation) by Novogene, Cambridge, United Kingdom.

Read Processing

Illumina reads (both RNA and DNA) were trimmed to re-
move adaptors and reads with an overall quality of <Q30 
using FastP v0.23.1 (Chen et al. 2018). The raw Nanopore 
data were base-called using Guppy v6.1.7 + 21b93d1a5 
and the super-accurate mode (https://community. 
nanoporetech.com/downloads). Nanopore adaptors were 
removed using Porechop v0.2.4 (Wick et al. 2017) and 
reads shorter than 1,000 bp and with a quality of<Q10 
were removed with NanoFilt v2.6.0 (De Coster et al. 2018).

Assembly

The Nanopore reads were assembled using Flye v2.9.1 with 
the –nano-hq and –keep-haplotypes flags. The Flye draft 
assembly was first polished with Medaka v1.6.1 (https:// 
github.com/nanoporetech/medaka) and then with the 
Illumina reads using POLCA (from MaSuRCA v4.0.9) 
(Zimin and Salzberg 2020). The resulting polished assembly 
was then gap-filled using Samba (from MaSuRCA v4.0.9) 
(Zimin and Salzberg 2022) before being assessed for com-
pleteness using BUSCO v5.4.2 (Manni et al. 2021) in gen-
ome mode with the Mammalian lineage database.
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Contamination Assessment

Each contig was assigned a taxonomic ID using BlastN 
(Altschul et al. 1990); this was parsed into a Conterminator 
(Steinegger and Salzberg 2020) to identify potential regions 
of contamination in the genome.

Annotation

The final version of the genome was parsed through RED 
v1.16 (Girgis 2015) to soft-mask regions of repetitive elements. 
An index was created using HISAT2 v2.2.1 (Kim et al. 2019), 
and RNASeq data from accession: PRJNA230900 (Hobbs 
et al. 2017) were aligned producing SAM files. SAMTools 
v1.15 (Danecek et al. 2021) was used to convert SAM to 
BAM before being used in Braker2 v2.1.6 (Brůna et al. 2021) 
for genome annotation. Functional annotation was completed 
using EggNOG mapper v2.1 (Cantalapiedra et al. 2021).

Supplementary material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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