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Abstract: RNA aptamers that bind non-fluorescent dyes and activate their fluorescence are highly
sensitive, nonperturbing, and convenient probes in the field of synthetic biology. These RNA
molecules, referred to as light-up aptamers, operate as molecular nanoswitches that alter folding and
fluorescence function in response to ligand binding, which is important in biosensing and molecular
computing. Herein, we demonstrate a conceptually new generation of smart RNA nano-devices
based on malachite green (MG)-binding RNA aptamer, which fluorescence output controlled by
addition of short DNA oligonucleotides inputs. Four types of RNA switches possessing AND, OR,
NAND, and NOR Boolean logic functions were created in modular form, allowing MG dye binding
affinity to be changed by altering 3D conformation of the RNA aptamer. It is essential to develop
higher-level logic circuits for the production of multi-task nanodevices for data processing, typically
requiring combinatorial logic gates. Therefore, we further designed and synthetized higher-level
half adder logic circuit by “in parallel” integration of two logic gates XOR and AND within a single
RNA nanoparticle. The design utilizes fluorescence emissions from two different RNA aptamers:
MG-binding RNA aptamer (AND gate) and Broccoli RNA aptamer that binds DFHBI dye (XOR gate).
All computationally designed RNA devices were synthesized and experimentally tested in vitro.
The ability to design smart nanodevices based on RNA binding aptamers offers a new route to
engineer “label-free” ligand-sensing regulatory circuits, nucleic acid detection systems, and gene
control elements.
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1. Introduction

The progression in the field of RNA nanotechnology makes RNA molecules the most promising
candidate to fabricate bio-computers due to their variable folding properties as well as their catalytic
functions [1,2]. Numerous non-canonical nucleotide interactions, found only in RNA [3,4], enable this
biopolymer to self-assemble into various shapes and dimensions as exemplified by naturally occurring
ribosomal RNA [5] and ribozymes [6,7] as well as by artificially constructed RNA polygons [8–12],
prisms, and cubes [13–15]. This diverse structural capability of RNA led to the development of
aptamer technology almost 30 years ago [16,17]. Aptamers are single-stranded RNA or DNA
oligonucleotides, with typical length of no more than 100 nts that were artificially selected from
combinatorial libraries for high binding affinities to specific molecular targets. Since their development,
aptamers have revolutionized the field of biosensing by enabling scientists to rationally generate
different aptamers targeting a diverse range of ligands [18–20]. RNA-based fluorogenic modules
are of particular interest [21–23] since they have applications in monitoring gene expression [24,25]
and new drug screening pipelines using microarrays developed to sense target molecules of variable
size [26]. This florescence module includes a light-up RNA aptamer and fluorogen. The light-up
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RNA aptamers are selected to specifically bind to small organic molecules exhibiting minimal
to no fluorescent emission when free in solution (fluorogen or fluorogenic dyes) and trigger its
florescence. The well-studied examples include malachite green (MG)-binding RNA aptamer [27],
and 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding RNA aptamers [28,29] among
others [30,31].

In RNA nanotechnology, the development and implementation of RNA-based nanodevices that
respond to biomolecular inputs by generating output signals in accordance with logic gate behavior has
attracted considerable attention [32–36]. Computing using both RNA and DNA molecules integrates
biochemistry and molecular biology disciplines to achieve a certain goal through designing algorithmic
processes embedded within polynucleotide structures. The concept of using nucleic acids (NAs) for
computation was proven in 1994 when Leonard Adleman demonstrated the ability of synthetic DNA
oligonucleotides to solve a seven-point Hamiltonian path problem [37] and, since then, many studies
have reviewed the possibility of developing a new generation of molecular logic gates and molecular
computers based on nucleic acids [38,39]. In contrast to silicon-based computers, NA computers
implement concentrations of specific molecules, such as metal ions, small organic dyes, single stranded
DNA or RNA oligonucleotides, peptides or proteins, as inputs to derive certain signals, e.g., switching
between RNA conformations, activation or deactivation of ribozyme activity, down- or up-regulation of
certain genes, etc. [40–45]. This relies on the algorithmic processes carefully designed and encompassed
within a nucleic acid complex (referred to as logic gates (LGs)) that are capable of performing simple
AND, OR, NAND, and NOR logic operations, as well as more sophisticated logic circuits.

DNA has been routinely used for the development of biochemical circuits and all basic logic
operations, including INHIBIT, IMPLICATION, and XOR have been mimicked with DNA as a
template [46–50]. There are also various classes of functional RNA molecules, such as ribozymes,
riboswitches, miRNA, siRNA, and orthogonal ribosomes, that enable the fabrication of computational
systems [51–54] and simple RNA fluorogenic biosensors [55,56]. However, it is often essential to
develop higher-level logic circuits for the production of multi-task nanodevices for data processing,
which usually require combinatorial logic gates [57,58]. For example, a half adder can perform an
addition operation on two binary digits by integration of an XOR gate and an AND gate in parallel
to generate a SUM (S) output and a CARRY (C) output, respectively. To the best of our knowledge,
the development of combinatorial RNA logic gates based on light-up RNA aptamer fluorogenic
systems has yet to be realized, and would represent a label-free oligonucleotide bio-sensing platform
with potential applications in biocomputing and biosensing.

Herein, we report the design and assembly of a conceptually new generation of molecular logic
gates that possess simple AND, OR, NAND, and NOR logic operations implementing the light-up
MG-binding RNA aptamer. Single stranded DNA (ssDNA) oligonucleotides were used as inputs to
trigger conformational changes in the RNA aptamer. The corresponding output values of OFF (0) and
ON (1) are obtained by low and high fluorescence emissions, respectively (Figure 1A).

Furthermore, we developed a basic half adder computing platform based on the RNA light-up
aptamer strategy (Figure 1B). The design utilizes fluorescence emissions from two distinct fluorogenic
RNA modules, MG-binding RNA aptamer [27,59] and DFHBI-binding Broccoli RNA aptamer [29],
fused with the previously reported tetragon RNA nanoparticle [8,9].

The function of the half adder is triggered by the same two ssDNA inputs. The ssDNA inputs
alter the conformation of the RNA aptamers in such a manner as to either permit or deny fluorogen
dye binding to the aptamer, resulting in fluorescent (ON) or non-fluorescent (OFF) states within
one nanostructure. This RNA logic gate system demonstrates the great potential of light-up RNA
aptamers as an arithmetic tool for molecular programming and will open a way to further development
concerning well-regulated molecular electronic devices and biosensors.
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fluorescence (0), the emission of these chromophores increases upon binding to their corresponding 
RNA aptamers (1). 
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Figure 1. Logic gate design strategy based on light-up RNA aptamers. (A) malachite green
(MG)-binding RNA aptamer used to design four simple AND, OR, NAND, and NOR logic gates.
(B) Illustration of RNA half adder system based on MG RNA and Broccoli RNA aptamers conjugated
with RNA tetragonal nanoparticle. Fluorophores MG and DFHBI in their unbound state exhibit low
fluorescence (0), the emission of these chromophores increases upon binding to their corresponding
RNA aptamers (1).

2. Results and Discussion

2.1. Design and Fabrication of a Logic Gate Possessing AND, OR, NAND and NOR Boolean Functions

RNA molecules featuring aptamers that bind a fluorogenic dye and activate its fluorescence have
the potential to be highly sensitive and convenient probes in the field of synthetic biology. The initial
system is comprised of an RNA hairpin molecule containing the MG RNA binding aptamer sequence
and the MG fluorogen dye [60]. The fluorescence of the MG dye is negligible when free in solution
(OFF state) and is increased significantly upon binding to its RNA aptamer (ON state) (Figure 1).
The principle of the LG design is based on the structural manipulation of the RNA aptamer, due to the
fact that binding affinity of the fluorogenic dye to its light-up RNA aptamer depends on the correctly
folded RNA structure. Thus, the fluorescence emission can be precisely turned ON (correctly folded
RNA structure) and OFF (disrupted conformation). The four logic gates AND, OR, NAND, and NOR
were designed using this highly effective and modular approach (Figure 2).
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Figure 2. Logic gate design principles for an AND gate (A), OR gate (B), NAND gate (C), NOR gate
(D). The predicted 2D conformations of the RNA aptamers in the presence and absence of individual
or both inputs are shown to the right. The rules specified by each gate are shown in truth tables to the
left. Normalized fluorescence enhancement of the gates is displayed in the middle. The fluorescence
enhancement data are reported with ± standard error of the mean (SEM) bars; measurements have
been reproduced from least three repetitive trials.
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Individual gates employed light-up RNA aptamers consisting of two extended sequences localized
at both the 5′- and 3′-ends highlighted in Figure 2 in black. This will further be referred to as the
interfering end for the AND and OR gates or the non-interfering ends for the NAND and NOR
gates. The MG RNA aptamer core sequence is highlighted in red. The end sequences are tailored to
bind the ssDNA oligonucleotides which serve as inputs. All the RNA gates were designed in silico
relying on secondary structure prediction algorithms encompassed within NUPAC [61] or mfold
programs [62] to confirm the secondary structures of each RNA sequence prior to synthesis. If the
calculated lowest free-energy secondary structure corresponded to the desired RNA conformation,
and no other secondary structure was closer than 20% in energy to the lowest energy structure,
the sequence was used without alternations. Otherwise, minor changes were made to Watson–Crick
base-paired positions to destabilize competing conformations. The fluorescence was measured at 22 ◦C
in 1× TMS buffer as described in the materials and methods. Each RNA logic gate was designed to
have complementary regions at the 5′- and 3′- ends to ssDNA oligonucleotide inputs with lengths
ranging from 15 to 27 nucleotides (Supplementary Table S1). Each gate processes a different pair
of oligonucleotide inputs—for instance, input A of the AND gate is not the same as input A of the
OR gate—and the terms A and B were merely applied across the table for simplicity. However,
the sequences and therefore 2D structures for AND and OR gates were designed to be identical as both
initial structures, at the no inputs setting, should have 0 output or exist in the OFF state according to
the truth table (Figure 2A,B).

In a similar manner, initial structures for the NAND and NOR gates were chosen to share identical
nucleotides as the ON state is a requirement for both structures at the no inputs condition. For each
logic gate, the fluorescence intensities were normalized throughout the experiments. The threshold
value was determined to be 60% where an intensity greater than this value yields an output = 1,
while an intensity below this value yields an output = 0.

The AND and OR gates with default setting (0-0; no inputs present) was designed using
interfering ends. The purpose of this was to form a complementary base pairing with the RNA
aptamer MG-binding region as illustrated in Figure 2A,B. The interfering sequences at both ends were
chosen to form weak hairpin-like 2D structures (2D structures available in Supplementary Figure S1).
These hairpins are formed by involving core nucleotides that are responsible for forming a binding
pocket for the MG fluorogen (Supplementary Figure S1). Thus, the presence of the hairpins prevents
the light-up aptamer from binding to its MG chromogen and ultimately diminishing the fluorescent
signal. The AND operation is achieved by carefully designing two short ssDNA inputs (A and B)
to bind to the 5′ and the 3′ interfering ends, respectively. The structural rearrangement to the ON
conformation occurs only when there are two inputs present at the same time. The presence of
the inputs releases the core MG nucleotides (nts) thus allowing them to fold into the proper ON
conformation. The selection of these particular ssDNA inputs was achieved by varying their length
using RNA structure prediction programs (Supplementary Figure S2). The goal was to select the
appropriate length of the inputs that would hybridize (or not hybridize at all) with its target hairpin
without perturbing the conformation of the other hairpin when only one input is added. The selection
of the DNA inputs was based on the computed melting temperature (Tm), the temperature at which
50% of double stranded nucleic acid is converted to single-standard form. The desired Tm values
for inputs hybridization were chosen to be slightly greater than 22 ◦C, the temperature at which the
experiment was performed. Such input selection relies on the equilibrium between duplex (formed by
ssDNA and hairpin nts) and hairpin structures where equilibrium shifts slightly in favor of the hairpin
structure (Figure S2, AND GATE). However, inclusion of both inputs favors the formation of two
duplexes triggering structural rearrangement of the overall complex, which leads to the liberation of
the core nts accountable for MG-binding site formation. As shown in Figure 2A, resulting fluorescence
intensity measured for four annealed samples (0-0; 0-1; 1-0, and 1-1) clearly indicates the effectiveness
of the AND gate function.
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The OR construct, which yields output = 0 for scenario 0-0 and output = 1 for scenarios 1-0,
0-1, and 1-1, shares the identical RNA sequence as the AND gate. However, the ssDNA inputs were
designed to have several extra nucleotides to achieve an equilibrium state where inclusion of at least
one input will trigger conformational change in favor of the correctly folded MG-binding RNA aptamer.
The design criterion is based on a strand displacement reaction. Upon binding to its corresponding
hairpin, input A or B will create a stable hybrid RNA/DNA duplex. The DNA inputs were selected
to contain longer sequences with much higher Tm values as compared to the AND gate, so that
disrupted hairpin nts initiate a conformational change of the whole construct favoring formation of
the ON aptamer state (Figure S2, OR GATE). The measured fluorescence emission values in solution
demonstrates OR behavior of the RNA construct (Figure 2B).

In contrast to the AND and OR gates, the NAND and NOR gates were designed so the default
structures possess correctly folded light-up MG RNA aptamers and the extensions at the 5′- and
3′-ends do not interfere with the core structure. To produce the corresponding NAND operation, the
non-interfering ends must be able to bind input A or input B without sacrificing the conformation of
the aptamer. However, when both A and B are presented, the conformation of the aptamer needs to be
sufficiently distorted to register an output = 0. Figure 2C summarizes the fluorescence enhancement
measurement for the NAND gate. Interestingly, while input A alone (1-0) decreases fluorescence as
compared to the 0-0 state, input B alone (0-1) increases it slightly. Inputs A and B in tandem (1-1)
triggered a noticeable decrease in fluorescent intensity (Figure 2C).

The NOR logic gate was constructed utilizing the NAND RNA molecule. Figure 2D shows an
obvious increase in fluorescence intensity between output = 0 and output = 1, owing to the nature of
the RNA NAND logic gate. The designed ssDNA inputs that complimentarily pair with the RNA gate
can significantly disrupt the conformation of the RNA molecule, rendering MG binding impossible.
Hence, the output was “1” when only neither DNA input was added (Figure 2D).

Collectively, the modular approach to the fabrication of RNA Boolean logic gates based on the
light-up RNA aptamer was demonstrated. All designed gates produced the expected OFF or ON
values corresponding to low or high fluorescence intensity at λmax = 650 nm, respectively, in response
to DNA oligonucleotide inputs. A threshold value of fluorescence enhancement of 60% was chosen
to distinguish the OFF (any value bellow 60%) and ON (any value above 60%) states. Various
concentrations of RNA molecular gates, inputs, and MG dye in solution were explored, with those
yielding the greatest difference in fluorescence between output = 0 and output = 1 reported here.
The extent to which these modular RNA logic gates can be used to probe three or more inputs
simultaneously will depend on their reliability in tandem.

2.2. Implementing Logic Gates to Construct a Half-Adder Logic Circuit

The production of multi-functional nanodevices for data analysis or processing is extremely
important and yet challenging due to requirements of multiple coordinated logic gates operations
within a single unit. Based on the aforementioned results, we next integrated two different
fluorogen-binding RNA aptamers: (i) MG RNA aptamer and (ii) the recently developed Broccoli
RNA aptamer that binds DFHBI dye within one RNA complex. As a key building block, the half
adder is used to construct more advanced computational circuits and is in high demand in information
technology [63]. The representative secondary structure of this complex is demonstrated in Figure 3A.
The differences in the emission properties of these two fluorogens (MG emits in the “red” region while
DFHBI emits in the “green” region of the visible spectra range) were implemented to construct a
half-adder logic circuit, which is a primary step in constructing a full adder, a basic arithmetic unit
in computing.
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Figure 3. Implementation principle of the developed half adder. (A) Secondary structure of the RNA
complex based on MG and Broccoli RNA aptamer conformations fused to tetragonal nano-scaffold.
(B) Representative atomic force microscopy image (AFM) of the RNA half adder (bar scale = 100 nm)
and Dynamic Light Scattering (DLS) data showing average size of the complex ± SEM. (C) AFM and
DLS data for control RNA tetragonal nanoparticle, with the diameter of the nanoparticles is reported.

The half adder is composed of an AND gate with a MG-binding light-up RNA aptamer, and a XOR
(eXclusive OR) gate based on the DFHBI-binding Broccoli light-up RNA aptamer [29]. The fluorescent
intensity was measured in solution using fluorescent spectroscopy with excitation wavelengths of
λex/em = 465/510 nm (corresponding to the XOR gate) and λex/em = 615/650 nm (corresponding
to the AND gate). These gates were rationally designed to use two ssDNA inputs to output two
fluorescence signals: SUM (λem = 510 nm) and CARRY (λem = 650 nm) generated by the AND
and XOR gates, respectively (Figure 4). Both the MG RNA aptamer and Broccoli RNA aptamers
were incorporated on alternating vertices to a previously developed RNA tetragon nanoparticle.
The RNA half adder self-assembles from five RNA strands with a yield exceeding 80% (Supplementary
Figures S3 and S4). The conformation of the assembled RNA tetragonal geometry was confirmed by
atomic force microscopy and size was determined by dynamic light scattering (Figure 3B). Atomic Force
Microscopy image (AFM) imagining revealed the extensions at each vertex in the designed RNA half
adder as compared to the control RNA square nanoparticle. The size of the nanoparticle increases
from 15 nm to approximately 35 nm with the addition of the RNA aptamers as shown by Dynamic
Light Scattering (DLS) experiment. Also, the significant size variation between RNA tetragon and
RNA half-adder nanoparticles was confirmed by native polyacrylamide gel electrophoresis (PAGE)
(Figures S5 and S6).

To perform the XOR and AND logic operations using the same two ssDNA inputs, additional
DNA inhibitor strands were introduced to bind complementary to the light-up RNA aptamers and
interfere with their ON states or correctly folded structures. This tetragonal shaped half-adder RNA
complex is designed according to the competitive hybridization and displacement principle of the
DNA strands. The assembly experiments shown in Figure S5 confirm complexation of both inhibitors
with the tetragonal nanoparticle. Importantly, the RNA tetragon containing 2 MG and 2 Broccoli
RNA aptamers assembles with their corresponding DNA inhibitors at 1:2 ratio, i.e., one tetragon and
2 AND_DNA inhibitors and 2 XOR_DNA inhibitors.

The Broccoli RNA aptamer was designed to act as an XOR gate. To maintain the proper XOR
gate function, an inhibitor DNA strand was designed (XOR_DNA inhibitor). The inhibitor bound
to the aptamer, disrupting the binding of DFHBI and thus diminishing fluorescence in the presence
of neither input. This XOR_DNA inhibitor contains two loop regions on either side of the aptamer.
These internal loops contain eight unpaired nts and are designed to complement the ssDNA inputs.
The addition of either ssDNA input destabilizes the RNA aptamer-inhibitor complex, separating the
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strands enough to reform the functional RNA aptamer shape allowing (1-0) or (0-1) truth values in
fluorescence with an output of “1” (Figure 4A).
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Figure 4. Design principles of the RNA AND and XOR gates using inhibitor DNA strand. (A) Predicted
secondary structures of the nucleic acid displacement reactions within XOR and AND gates. (B) Truth
table of a half adder. (C) The normalized fluorescence enhancement of the system at 510 nm and
650 nm as a function of the various inputs (Inputs A and B); the error bars indicate ± SEM from three
independent measurements.

However, in the presence of both inputs, fluorescence is once again inhibited as the hybridization
of inputs A and B is favored over hybridization with XOR_DNA inhibitor. To achieve this, inputs A and
B were designed to bind more competitively to one another than to the XOR_DNA inhibitor through
17 “sticky” nts at the 5′ end of input A and 3′ end of input B (Table S1). Therefore, the XOR_DNA
inhibitor paired with the RNA aptamer yielded a low fluorescent output signal. Figure 4C shows the
normalized fluorescence intensity of the designed XOR system at 510 nm output readout in response to
the ssDNA inputs. The presence of each input is defined as “1” (the absence is considered “0”) and the
output signal is defined as ON or OFF when the normalized fluorescence emission is higher or lower
than 40%, respectively. The system exhibits ON in the presence of the individual inputs; otherwise,
it remains OFF. The XOR logic operation performs the SUM digit function in the half adder as shown
in the Truth Table (Figure 4B).

The AND logic operation of the half adder was designed utilizing the fluorescent properties
of the MG-binding RNA aptamer system as the output signal. Similar to the XOR gate approach,
a DNA inhibitor (AND_DNA) was used to disrupt the RNA aptamer conformation. The AND gate
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has an output of OFF or (0) in the absence of inputs (0-0) or in the presence of only one of the inputs
(1-0 or 0-1). As the inputs are the same as those used for the Broccoli XOR gate, it is critical for
the AND_DNA inhibitor to be complementary to the previously designed inputs. For this purpose,
the AND_DNA inhibitor was designed to contain “sticky” nts at the 5′- and 3′-ends. These “sticky”
nts are complementary to the ssDNA inputs. The addition of either input causes only a partial
displacement of the AND_DNA inhibitor from the light-up RNA aptamer resulting in the low
output value as demonstrated in Figure 4C. However, in the presence of both inputs, fluorescence
increases significantly (ON state). This was accomplished by disassociating the AND_DNA inhibitor.
The ssDNA inputs bind more competitively to the inhibitor to form a three-stranded DNA/DNA/RNA
complex enabling the successful separation from the RNA light-up aptamer. Figure 4A (lower panel)
summarizes the 2D structures computed for the AND logic system in the presence and absence of
the ssDNA inputs. The normalized fluorescence intensities of the system at 650 nm as a function of
the inputs are plotted in Figure 4C indicating that the system exhibits “1” only when both inputs
coexist, indicative of an AND logic gate. The AND logic gate is responsible for the CARRY digit
function in the half adder, as shown in the truth table in Figure 4B. To conclude, the AND and the
XOR gates were implemented in parallel utilizing light-up RNA aptamers as a label-free fluorogenic
platform. Both gates were triggered by the same set of inputs, satisfying the requirements for a half
adder [64]. The further development of the full adder system based on the RNA high-up aptamers is
currently under investigation. By definition, the full adder should perform an addition operation on
three binary digits and similarly to the half adder, it generates a carry out to the next addition column.
This development requires three inputs, which can be the same two ssDNA inputs and an additional
carry-in DNA input to receive the carry signal from a previous stage.

3. Materials and Methods

3.1. Nucleic Acid Sequence Design, Synthesis, and Assembly

Polynucleotide sequence design was carried out using the multi-strand secondary structure
prediction programs NUPACK and mfold [61,62]. To meet the requirements of the developed logic
gates, the DNA and RNA sequences used in the experiments were first designed and then analyzed
by the above 2D structure folding predicting software. According to the predicted 2D structures,
experiments were performed to determine whether the designed ssDNA oligonucleotides were
operational in the corresponding logic gate processing reactions. If the satisfying fluorescence readouts
were not achieved, the DNA sequences were redesigned and the procedures were repeated until the
desired DNA sequences obtained.

All DNA oligonucleotides were purchased from IDT DNA (Coralville, IA, USA) as desalted
products and used without purification. RNA strands corresponding to individual logic gates
and to the tetragonal half-adder complex were prepared by in vitro transcription using T7 RNA
polymerase [8]. For this, synthetic DNA strands coding for the anti-sense sequence of the RNA
strands were amplified by polymerase chain reaction (PCR) using primers containing the T7 RNA
polymerase promoter. PCR products were purified using the QiaQuick PCR purification kit
(Qiagen Sciences, Germantown, MD, USA). The transcribed RNA molecules were purified by
denaturing 20% polyacrylamide gel electrophoresis containing 8M UREA.

The self-assembly of individual MG-based light-up RNA logic gate complexes AND, OR, NAND,
and NOR was achieved by mixing equimolar oligonucleotide strands (1 µM) in TMS (50 mM TRIS
pH = 8.0, 100 mM NaCl and 10 mM MgCl2) buffer and heating the mixture to +80 ◦C and gradually
cooling it down to +4 ◦C over a period of 1 h on a PCR thermocycler. Once the RNA aptamer
self-assembly was achieved, a small amount (2 µM final concentrations) of the malachite green oxalate
salt (Sigma Aldrich Co., St. Louis, MO, USA) was added to each RNA or RNA/DNA assembly.
The mixture was left to incubate for an additional 30 min at 22 ◦C to reach proper binding equilibrium.
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DNA inputs oligonucleotides were added to the assembled AND, OR, and NOR gates at the final
concentrations of 2 µM (each) making the final stoichiometry of the complexes as follows:

1 GATE: 1 INPUT A: 1 INPUT B.
For the NAND system the optimal results achieved at stoichiometry:
1 NAND: 2 INPUT A: 2 INPUT B.
The self-assembly of the half-adder RNA construct was achieved by mixing corresponding

RNA and DNA polynucleotides at 1:1 stoichiometric ratio. For example, the RNA half adder
in the absence of inputs contained 1 µM of each RNA strands, 2 µM of AND_DNA inhibitor,
and 2 µM XOR_DNA inhibitor. Malachite green and 3,5-difluoro-4-hydroxybenzylidene imidazolinone
(DFHBI) (Sigma Aldrich Co., St. Louis, MO, USA) dyes were added to the corresponding complexes
(0-0, 0-1, 1-0, 1-1) to make 5 µM final concentration. The resulting mixture was allowed to incubate for
an additional 30 min at 22 ◦C. After reaching equilibrium, DNA inputs (5 µM each) were added in
accordance to the truth table for the half-added RNA systems and fluorescence were recorded after
additional 30 min incubation, which was necessary to achieve input driven strand displacement effect
(Figure S8)

3.2. Fluorescence Measurements

Fluorescence was measured on a Fluoromax-3 (Hibora Jobin-Yvon, Horiba Scientific, Edison,
NJ, USA) spectrofluorimeter using a Sub-Micro quartz fluorometer cell (Starna cells Inc., Atascadero,
CA, USA). Fluorescence intensities were recorded separately for each dye. For the DFHBI-binding
Broccoli RNA aptamer, the excitation wavelength centered at 465 nm and emission was collected in
the range of 475–700 nm. For the MG-binding RNA aptamer, the excitation was centered at 615 nm
and emission was recorded from the range of 630–750 nm.

The fluorescent enhancement was quantified by the ratio of the maximum emission of the
fluorogenic dyes bound to its aptamers divided by the emission of the free dyes in solution.
The fluorescence enhancement data were normalized after the experiments; a threshold value was
chosen to be 60% for the MG based RNA logic gates, an intensity greater than this value yields an
output = 1, while an intensity below this value yields an output = 0.

3.3. Dynamic Light Scattering

Hydrodynamic diameters of assembled half-adder RNA constructs and the control tetragon RNA
nanoparticles were measured by a Zetasizer nano-ZS (Malvern Instrument Ltd., Malvern Panalytical
Ltd., Malvern, UK) at 22 ◦C following previously described protocols [9].

3.4. Atomic Force Microscopy Imaging

The RNA tetragon and RNA half-adder complexes were imaged with MultiMode AFM
NanoScope IV system (Veeco Instruments Inc., Plainview, NY, USA), following previous methods [65].

4. Conclusions

Molecular logic gates hold great potential for a wide range of biotechnological applications,
including gene expression regulation, biosensors, therapeutic molecule design, metabolic
reprogramming, studies of drug-nucleic acid interactions, and tools for elucidating cellular
functions. The emergence of RNA nanotechnology offers great opportunities for applications of
RNA-based logic gates. In this study, we have used a computational approach to design various
oligonucleotide-responsive RNA logic gates (AND, OR, NAND and NOR) based on the MG-binding
RNA aptamer. The structures of four logic gates were designed based on the general 2D architecture
depicted in Figure 2 and all functioned as robust RNA switches that exhibit fluorescence emission
once activated. The design process used here accounts for the thermodynamic stability of various
base-paired structures in the absence or presence of input oligonucleotides. This functional design
was possible due to the fact that nucleic acid secondary structure folding largely follows the simple



Nanomaterials 2018, 8, 984 11 of 14

rules of Watson-Crick base pairing, and the thermodynamic parameters for base-pair interactions are
available. In addition, a half adder was successfully demonstrated by combining the hybridization and
replacement of ssDNA strands. Specifically, introducing two light-up RNA aptamers MG and Broccoli
into a half-adder system to modulate the output signal makes it flexible and enables the potential
design of various other types of logic gates according to the requirements of the data processing.
Although the developed individual logic gates and half adder are implemented in an experimental
stage and exclusively in vitro, the demonstrated system presents great potential for the development
of other RNA-light up based logic circuits as a universal arithmetic tool. To summarize, this work
provides a novel light-up RNA aptamer-based platform for the design and assembly of higher-order
circuits for arithmetic operations and opens the possibility to develop a new approach for constructing
multicomponent devices on a single biomolecular nano-platform.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/12/984/s1.
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