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Abstract

Prebiotics are defined as fermentable food ingredients that selectively stimulate beneficial

bacteria in the lower gastrointestinal tract of the host. The purpose of this study was to

assess growth performance of broilers and the cecal microbial populations of an antibiotic,

BMD50, supplemented birds compared to broiler chickens fed the prebiotic, Biolex® MB40.

Weight response data including feed conversion ratios (FCR), carcasses without giblets

(WOG), wing, skin, white meat were collected during processing. Extracted DNA from cecal

contents was utilized for microbiome analysis via an Illumina Miseq. In conclusion, white

meat yield of Biolex® MB40 supplemented group exhibited significant improvement com-

pared to both negative control (NC) and BMD50 supplemented groups. In addition, antibiotic

significantly decreased level of Lactobacillus in 2 wk compared to other groups. A signifi-

cantly higher percentage of Campylobacter was observed from the 4 wk old birds treated

with antibiotic BMD50 compared to the NC and prebiotic group. Retention of broiler perfor-

mance and improvement of white meat yield suggest that the prebiotic MB40 appears to be

a potential alternative to replace the antibiotic growth promoter.

Introduction

In 1995, Gibson and Roberfroid first defined prebiotics as non-digestible food ingredients that

selectively promote beneficial bacteria such as Bifidobacteria and Lactobacillus [1] and ulti-

mately enhance health of the host by altering the microbial populations in the gut. Prebiotics

are becoming more attractive as alternative feed supplements in animal production because it

has been suggested that common usage of antibiotics in agricultural production could result in

increases of antibiotic resistant bacteria [2–8]. Prebiotics utilize various mechanisms to improve

health of the host including short chain fatty acids (SCFAs) production, pH adjustment and

competing for binding sites against pathogens [9–12]. For example, fructooligosaccharides

(FOS) and galactooligosaccharides (GOS) are substrates for fermentation by Bifidobacteria and
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Lactobacillus thus, leading to increased SCFA production which in turn inhibits colonization

and growth of pathogens [13–16].

The commercial prebiotic evaluated in this study, Biolex1 MB40 (Leiber GmbH,

Hafenstraße, Germany), consists of 1,3–1,6- β-D-glucan and mannanoligosaccharides (MOS)

which are derived from the cell walls of Saccharomyces cerevisiae, and several studies have

shown their positive effects on growth performance of broilers [17, 18]. According to Hooge

[17], supplementation of MOS exhibited statistically equivalent broiler body weights with anti-

biotic amendment groups while significant improvements in final body weight of broilers

were observed compared to the negative control group. In addition, feed conversion ratio

(FCR) significantly improved and mortalities were decreased in birds fed MOS diets by an

average of 1.99 and 21.4% respectively compared to negative control groups but did not when

compared to the antibiotic supplemented group. Hooge [17] reported that the greatest attri-

bute of the MOS diet was the ability to decrease mortalities because it was the only attribute

that was significantly different compared to the antibiotic diet fed group.

One of the distinct features to the MOS is the ability to bind to mannose-specific type-1

fimbriae of pathogen therefore, prevent colonization of pathogens [19]. Receptor competition

against pathogens is mediated by high affinity ligands derived from the yeast cell wall [20].

One of the major foodborne pathogens, Salmonella utilizes this type-1 fimbriae thus, reduction

of Salmonella concentration is expected upon introduction of MOS. Spring et al. [21] and

Oyofo et al. [22, 23] observed Salmonella reduction in broilers by adding mannose to their

diets. In a previous report Lee et al. [24] detected low levels of Salmonella from the same cecal

samples used for the current study. In addition to improvement of growth performance and

suppression of Salmonella colonization, supplementation of MOS also exhibited elevation of

immunoglobulin A (IgA) and immunoglobulin G (IgG) level [25, 26].

The current study evaluated microbial populations of individual birds in each group using

Next Generation Sequencing (NGS) approaches on samples collected from the study by Lee

et al. [24] where polymerase chain reaction based denaturing gradient gel electrophoresis

(PCR-DGGE) had been utilized for comparing cecal microbial populations. According to the

previous report using a PCR-DGGE approach, prebiotic supplemented group exhibited very

similar patterns with antibiotic supplemented groups prior to wk 2 but were similar to the neg-

ative control group as the birds became more mature. However, DGGE is limited for compre-

hensive identification of individual organisms in these complex microbial populations making

it difficult to detect shifts in microbial groups comprising the range of taxonomic groupings.

In-depthtaxonomic identification is now possible with next generation 16S rDNA microbiome

sequencing and this approach has been shown to provide more information on cecal microbial

populations when compared directly with DGGE analyses in previous studies in our labora-

tory [27]. Therefore as a followup analyses to our previous work [24], the objectives of the cur-

rent study include not only bird performance assessment but Illumina Miseq 16S rDNA

sequencing analysis of the cecal microbiome of conventionally raised broilers fed with com-

mercial prebiotic MB40 compared to negative control group and antibiotic BMD50 fed birds.

Materials and methods

Broiler housing

Three houses were assigned for each treatment and each house contained 15,300 Hubbard x

Cobb straight run broilers (OK Foods, Fort Smith, AR) (Fig 1). The birds were identified with

the nametag of the corresponding treatment and house number when sampled to avoid confu-

sion. In addition, three pens in two locations were set up within each house and twenty birds

from each treatment group were randomly placed in one pen at each location to avoid a house
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effect (Fig 1). Diets for birds consisted of commercial starter, grower, finisher 1 and 2. The

only difference between diets was that T1 group received 0.05% of BMD50 and T2 group con-

sisted 0.2% of Biolex1 MB40. Since the birds were raised in an off-campus commercial farm,

the current study was exempted from review by the University of Arkansas Institutional ani-

mal care and use committee (IACUC). No researchers at the University of Arkansas were

involved directly in any aspects of the chicken growth part of the study. Therefore, authors did

not need permission to access the farm since samples were collected by farm employees and

subsequently transported to the laboratory at the University of Arkansas. In addition, the

National chicken council (NCC) guidelines were (http://www.nationalchickencouncil.org) fol-

lowed by the commercial cooperators to ensure internal animal welfare. Ten birds from each

treatment were chosen for sampling of cecal contents as described previously [24].

Broiler performance

The twenty birds that resided in the respective pens were weighed at 14, 28, 40 and 53 days of

age and recorded. In addition, carcasses without giblets (WOG), wing, skin breast and tender

weights were measured from randomly selected 100 birds (50 males and 50 females) that were

located in the house but outside the pens at 53 days of age. Birds that lost tags or were con-

demned by the USDA inspector were exempted from statistical analysis. Finally feed conver-

sion ratios (FCR) were determined by feed intake and body weight at 28, 40 and 53 days of

age. White meat yields were calculated by dividing sum of breast and tenders by live weight of

randomly selected 100 birds within each house. Recorded data were imported by Microsoft

Excel and JMP1 Genomics for analysis of variance (ANOVA). P-values less than 0.05 were

interpreted as significant differences among treatments.

Cecal microbial population assessment

Cecal contents (200 mg) from each birds were collected for DNA isolation utilizing QIAamp

DNA Stool Mini Kit (Qiagen, Valencia, CA, US). The concentration of extracted DNA was

Fig 1. Experimental design of chicken housing. NC: Feed only; T1: 0.05% BMD 50; T2: 0.2% Biolex®

MB40.

https://doi.org/10.1371/journal.pone.0182805.g001
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diluted to 10 ng μL-1 for the preparation of a sequencing library targeting the V4 region of 16S

rRNA [28]. Based on the recommendation of the manufacturer’s protocol, isolated DNA sam-

ples were amplified and normalized using dual-index primers and SequalPrepTM Normaliza-

tion kit (Life Technology, Carlsbad, CA, US). The library was constructed by combining 5 μL

of each normalized aliquot samples for further assessment. Library concentration and product

size were confirmed using a KAPA Library Quantification Kit (Kapa Biosystems, Woburn,

MA, US) via a quantitative PCR (qPCR, Eppendorf, Westbury, NY, US) and an Agilent 2100

Bioanalyzer system (Agilent, Santa Clara, CA, US). The 20 nM of pooled library aliquot and

the 20 nM of PhiX control v3 were combined with 0.2 N fresh NaOH and HT1 buffer and

mixed a second time with 5% of the PhiX control v3. The 600 μL of the mixture containing

pooled library aliquote, PhiX control v3, NaOH and HT1 buffer was subsequently loaded onto

a MiSeq v2 Reagent cartridge to conduct sequencing.

Microbiome sequencing analysis by QIIME pipeline

Sequencing read files were processed using Quantitative Insights into Microbial Ecology

(QIIME) pipeline (version 1.9.0) [29]. Each of the operational taxonomic units (OTUs) was

assigned to specific microorganisms to determine taxonomic levels and subjected to alpha and

beta diversity analyses and tables were constructed by clustering sequences with 97% or higher

identity based on Greengenes 16S rRNA gene database. In addition, OTUs that were not

observed at least twice were excluded manually to eliminate possible erroneous reads from

sequencing. Chimeras considered as sequences generated by multiple templates or parent

sequences were identified and filtered by ChimeraSlayer script that utilizes BLAST. Also, the

OTU table was subsampled or rarefied using a minimal observed OTU value to discard any

samples that contained unusually fewer sequences. Subsequently, OTUs tables were converted

to taxonomic tables for further analysis. Weighted and unweighted version of UniFRac graphs

and rarefaction plots were generated for beta and alpha diversity tests, respectively. Taxonomic

level data acquired by QIIME was imported by Microsoft Excel and JMP1 Genomics for

ANOVA and a P-value of 0.05 to determine significant differences.

Results and discussion

The current study is the continued analysis of previously published research of Biolex1 MB40

by Lee et al. [24] where fingerprinting of cecal microbiota were analyzed by a PCR-DGGE.

The current study focused on identification of the microbial population at the molecular taxo-

nomic levels along with the growth and processing performance of the birds.

Broiler performance

Growth performance including weight of the birds, FCR, weight of the parts and white meat

yields of broilers are considered important since they directly relate to the market value of the

bird [30, 31]. Average body weight and FCR are shown in Table 1. There were no significant

differences among groups in terms of parts yield and FCR. These results agree with earlier

studies by Waldroup et al. [32] and Midilli et al. [33] where no improvement of body weight

and body weight gains were observed upon introduction of a MOS and yeast derived prebiotic.

No significant improvement of FCR by prebiotic was also observed by Ignacio [34] however,

FCR of broilers were significantly increased in the study by Midilli et al. [33] which agrees

with observations by Sahane [35] and Pelı́cia et al. [36] when broilers were supplemented with

MOS or a mixture of probiotic and prebiotic. In addition, the study by Biggs et al. [37] re-

ported that MOS did not exhibit any effect on metabolizable energy (ME) but reduced amino

acid digestibility of broilers until day 7 of age when MOS, inulin, oligofructose, short-chain

Cecal microbiome of broilers fed with antibiotic or prebiotic
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fructooligosaccharide (SCFOS), and transgalactooligosaccharide were compared. In addition,

Pelicano et al. [38] observed better weight gain and increased FCR when MOS was supple-

mented however, positive effects in growth performance were only observed when amend-

ments were introduced at 21 days of age. Pelicano et al. [38] speculated that absence of better

weight gains at 35 and 42 days of age may be due to the level of stress and dilution effect by

other compounds in the grains such as non-starch polysaccharides and non-digestible oligo-

saccharides. Midilli et al. [33] and Roshanfekr and Mamooee [39] have hypothesized that the

reason for inconsistent results among studies could be the differences in management, envi-

ronmental conditions, stress and presence of unfavorable microorganism.

Another study by Park et al. [40], on the same prebiotic used in the current study, Biolex1

MB40, observed similar results of pasture flock broiler performance with no significant differ-

ences occurring in FCR and average bird body weights among treatment groups. However, the

prebiotic MB40 results did match the responses seen with antibiotic fed birds therefore, prebi-

otic MB40 potentially could replace the benefit seen with the antibiotic supplement. Significant

weight gains of the birds were observed in the study by Roshanfekr and Mamooee [39], when

supplementation of MOS, Primalac (commercial probiotic) and a mixture of both increased

FCR and average weight of the birds by 81.3, 73.5 and 148.8 g compared to the control group.

When comparing poultry processing responses including chicken part weights and white

meat yield, only the white meat yield was significantly increased by supplementation of prebi-

otic MB40 compared to negative control group and antibiotic treated group (Table 2). Accord-

ing to Stevens [30], white meats are the most economically valuable part of broilers raised and

processed in Europe. The white meat or the breast meat is particularly important to producers

because studies have shown a high genetic correlation between white meat and the body

weight of the birds [41]. Roshanfekr and Mamooee [39] observed significantly higher breast

meat yield when the probiotic was supplemented however, the prebiotic supplemented group

did not exhibit any improvement of breast meat yield.

Taxonomy summary

Table 3 represents the total number of reads acquired by Illumina MiSeq and observation

OTU count summary by the QIIME pipeline. The QIIME pipeline was able to identify and dif-

ferentiate the 16S rRNA fragment of bacteria from phylum level to species level and taxonomy

bar graphs could be generated for each bacterial grouping from each sample. According to

QIIME analysis, the most abundant bacteria at the phylum level was Firmicutes with an

Table 1. Broiler body weight and FCR responses over ages and treatments.

Age (Day) NC (Feed only) T1 (BMD50) T2 (MB40)

Bird weight (kg) 14 0.68 ± 0.01 0.68 ± 0.00 0.68 ± 0.00

28 1.60 ± 0.01 1.56 ± 0.02 1.57 ± 0.01

40 2.65 ± 0.01 2.61 ± 0.02 2.64 ± 0.02

53 3.71 ± 0.03 3.70 ± 0.07 3.85 ± 0.07

FCR

28 1.51 ± 0.01 1.53 ± 0.02 1.56 ± 0.03

40 1.80 ± 0.01 1.81 ± 0.01 1.90 ± 0.07

53 1.74 ± 0.03 1.66 ± 0.02 1.74 ± 0.04

53(Mort Adj1) 1.69 ± 0.01 1.66 ± 0.02 1.68 ± 0.02

1Mort Adj includes total mortality weight in the FCR calculation

https://doi.org/10.1371/journal.pone.0182805.t001
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average of 62.6%, followed by Bacteroidetes with an average of 33.7% (Fig 2A). Proteobacteria

and Tenericutes were also detected with averages of 1 and 2.2% from the samples respectively

(Fig 2A). Clostridiales were the most abundant microorganisms in the Firmicutes group, and

Bacteroidia were commonly identified within the Bacteroidetes group. (Fig 2B). In addition,

3.4% of the Firmicutes were identified as Lactobacillales (Fig 2B). Proteobacteria and Teneri-

cutes were divided into more specific sets of organisms at the order level consisting primarily

of Enterobacteriales and Mollicutes (Fig 2B). While the sum of Bacteroidales and Clostridiales

comprised more than 90% of the total microbial population, Bacteroidales were found pre-

dominantly in birds that were more or equal to 2 wk of age despite the treatment. The level of

Bifidobacteriaceae was low and was detected in very few samples, thus a statistical comparison

was not possible. Genus level graphs are shown in Fig 2C.

When prebiotics were first introduced, the only microorganisms that were noted as benefi-

cial bacteria were Lactobacilli and Bifidobacteria [42]. However, more detailed investigations

using various molecular techniques such as qPCR or NGS have revealed more complex out-

comes when specific prebiotics are introduced to the host. Numerous studies have reported

that specific prebiotic supplementation not only promotes Lactobacilli and Bifidobacteria but

also improves glucose homeostasis, leptin sensitivity and intestinal homeostasis [43, 44]. In

addition studies have suggested that prebiotic increases other beneficial microorganisms

besides Lactobacilli and Bifidobacteria such as Faecalibacterium prausnitzii and Akkermansia
muciniphila which in turn benefits the host [45–48].

Microbial population shifts

According to Lee et al. [24], antibiotic, BMD 50 and prebiotic, MB40 treated groups exhibited

greater similarities in early stages of bird growth based on the phylogenetic trees generated

from analysis of band patterns produced by DGGE. Based on QIIME analysis, most of the

Table 2. Comparison of chicken carcass parts yield as a percentage.

Treatments

Parts

(kg)

NC (Feed only)

n = 91

T1 (BMD50)

n = 96

T2 (MB40)

n = 97

WOG 3.24 ± 0.39 3.34 ± 0.34 3.34 ± 0.41

Wing 0.32 ± 0.05 0.32 ± 0.05 0.32 ± 0.05

Skin 0.15 ± 0.03 0.15 ± 0.02 0.15 ± 0.03

Breast 0.73 ± 0.10 0.75 ± 0.09 0.78 ± 0.10

Tender 0.15 ± 0.02 0.15 ± 0.01 0.16 ± 0.02

NC (Feed only) T1 (BMD50) T2 (MB40)

White meat

yield (%)

24.36 ± 0.18b 24.35 ± 0.17b 25.15 ± 0.17a

WOG: Without giblets

Mean values in the same row followed by different superscript letters represent statistically significant differences (P < 0.05)

https://doi.org/10.1371/journal.pone.0182805.t002

Table 3. Sequence reads number and BIOM table summary.

BIOM table (observation counts)

Total observation Min* Max* Median* Mean*

10,030,751 42,204 134,689 82,611 83,589

*Counts per Samples

https://doi.org/10.1371/journal.pone.0182805.t003
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Fig 2. Taxonomy bar graphs of respective microorganisms in each taxonomy level generated by

QIIME. A: Phylum level; B: Class level; C: Genus level.

https://doi.org/10.1371/journal.pone.0182805.g002
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bacteria did not exhibit significant differences in yield among different treatment groups

except Barnesiellaceae which is a microorganism that commonly occurred in all groups at wk 4

according to previous DGGE-band sequencing analysis [24]. However, in the current study

using NGS bacterial composition varied significantly by age of the birds. Firmicutes at the phy-

lum level and Clostridiales at the order level decreased as birds became older with no signifi-

cant differences between treatments (Table 4). Previously, DGGE-band sequencing also

detected Clostridiales in all treatment groups [24]. Out of a total population of microorgan-

isms, Firmicutes and Bacteroidetes constituted more than 90 percent of the population and

this is consistent with the fact that Firmicutes and Bacteroidetes are the most abundantly

found microorganisms and are associated with energy resorption rate in the gut [49–50]. Bac-

teroidales however, increased significantly each week until 4 wk and remained at a consistent

level until 6 wk with no significant improvements among treatments unlike the previous

DGGE-band sequencing analysis [24] which detected Bacteroides dorei and Bacteriodes roden-
tium only in the negative control group for wk 2 and 4 and were less frequent by 6 wk. Molli-

cutes levels were low in 2 and 4 wk but significantly higher levels were detected in 1 and 6 wk.

However, the level of Bacteroidaceae increased significantly in 2 wk and decreased afterwards.

While both methods, DGGE-band sequencing and NGS results were somewhat similar

there were differences as well. Such differences in outcomes between DGGE profiles and NGS

microbiome sequencing of broiler cecal samples has been observed by our group in previous

work [27]. Therefore, direct comparisons between the two methods must be exercised with

caution as they differ considerably in both method and approach as discussed previously by

Park et al., 2017 [27]. Obviously, DGGE-band sequencing relies on visualization of bands and

physically excising these bands for sequencing which immediately introduces some operator

error. In addition, DGGE-band sequencing [24] was based on hypervariable region 3 (V3)

while the microbiome sequencing in the current study was based on V4. Both V regions have

designated as optimal for these respective methods but the taxonomic outcome may be differ-

ent as each has some inherent bias towards and against certain organisms [51]. Yu and Morri-

son (2004) [52] compared V regions of rss genes and concluded that V3 yielded the best

DGGE profiles. For microbiome sequencing, generally V3-V4 or V4 are preferred due the cov-

erage of both bacteria and archaea found in gut and fecal samples [51, 53–55]. However, after

comparing the sequences of the V1-V8 regions from 110 different bacterial species Chakra-

vorty et al. (2007) [56] observed that each V region yielded different levels of discrimination

for different groups of organisms with certain organisms being more or less differentiated

depending on the V region.

According to QIIME, 67 of 120 samples contained Campylobacter however, 90% of Campylo-
bacter were found in birds with 4 and 6 wk of age which indicates Campylobacter colonizes within

birds in their later phases of growth. Recovery of Campylobacter among all microorganisms were

Table 4. Relative abundance of bacteria in phylum level (%).

Relative abundance

Organisms 1 wk 2 wk 4 wk 6 wk

Firmicutes 83.15 ± 1.69a 64.82 ± 1.66b 50.29 ± 1.66c 51.68 ± 1.66c

Clostridiales 77.06 ± 1.94a 58.29 ± 1.94b 48.88 ± 1.94c 49.37 ± 1.94c

Bacteroidales 11.47 ± 1.72c 31.91 ± 1.72b 43.98 ± 1.72a 43.47 ± 1.72a

Molicutes 3.16 ± 0.23a 1.35 ± 0.23b 01.41± 0.23b 2.51 ± 0.23a

Bacteroidacceae 11.44 ± 1.46c 26.77 ± 1.46a 17.84 ± 1.46b 9.60 ± 1.46c

Mean values in the same row followed by different superscript letters represent statistically significant differences (P < 0.05)

https://doi.org/10.1371/journal.pone.0182805.t004
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averaged 0.3%. Several studies have shown that colonization of Campylobacter can be suppressed

by introduction of Lactobacillus and Bifidobacteria [57–60] and a previous study by Kaakoush

et al. [61] demonstrated a negative correlation between Campylobacter and Lactobacillus however,

no statistical relationship was found in the current study where a significantly higher level of

Campylobacter was observed at 4 wk in the antibiotic treated group compared to the negative

control and prebiotic treated group (Fig 3A).

One of the major bacteria considered to be beneficial in broilers, Lactobacillus [62–63].was

identified among all samples with an average of 3%. Levels of Lactobacillus observed in antibi-

otic treated groups were significantly lower compared to negative control and prebiotic treated

groups at 2 wk (Fig 3B). In addition, prebiotic MB40 fed birds were the only group that exhib-

ited significantly higher levels of Lactobacilli in 2 wk however, statistical differences did not

occur after 2 wk.

Alpha and beta diversity analysis

Alpha diversity analysis were carried out by the QIIME pipeline to assess microbial diversity

within each sample. Fig 4A and 4B represent rare classes detected for each of the sequences

obtained from the samples based on observed OTUs metric system, which is commonly used

for assessment of organism diversity. A rarefaction graph based on age (Fig 4A) demonstrated

that birds develop a more complex population of microorganisms as they become older. A

rarefaction graphs based on treatment (Fig 4B) revealed that prebiotic and antibiotic treated

groups occurred more closely together compared to the NC group and a higher rarefaction was

observed which indicates prebiotic or AGP amendments supported a more complex microbial

diversity compared to the no feed amendment group. High similarity of microbial diversity

between antibiotic, T1 and prebiotic, T2 groups agreed with the previous research result by Lee

et al. [24] where the diversity of microbial populations had been assessed by PCR-DGGE.

Fig 5A and 5B represent PCoA beta diversity plots. PCoA plots based on treatment (Fig 5A)

did not reveal any clustering patterns resulting in an ANOSIM R-value of 0.03 however, PCoA

plot based on age (Fig 5B) exhibited considerable clustering with an ANOSIM R-value of 0.6

by age of the birds which implies maturity of the bird having a greater impact and evolving

into a more uniform diversity of microorganisms regardless of the treatments used in the cur-

rent study. In addition, clustering by samples originating from younger birds were more

widely scattered than older birds, indicating a potential stabilization of the cecal microbiome

as the birds mature. The observation of complex but highly similar diversity pattern in older

birds agrees with previous studies where DGGE exhibited similar patterns as birds reached

their marketing age [24].

Conclusions

No statistical differences were detected in FCR or parts yield which leads to the conclusion

that there were no variation in terms of chicken performance when BMD50 (T1) and MB40

(T2) were compared. Consistency of body weight, FCR and parts yields among prebiotic, anti-

obiotic and control groups was also observed in previous studies [64–65]. The growth perfor-

mance between treatment and negative control groups were not statistically different except

for the white meat yield. Growth performance evaluation of Hubbard x Cobb species fed with

common corn-soybean meal by Dozier and Gehring (2014) [66] reported that body weight

and FCR of the broilers were near 1.68 and 0.67 kg (1.59 and 0.68 kg in the current study)

respectively at 28 days of age which suggest the housing and management system of the cur-

rent study led to a maximum output of bird performance thus, no significant differences were

observed.
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Overall, commercial prebiotic, MB40 significantly improved white meat yield in conven-

tionally raised broilers but was not accompanied by significant enhancement in other aspects

including body weight, FCR and parts weight. According to the NGS approach to microbiome

Fig 3. Relative abundance of Campylobacter and Lactobacillus by treatment and age of the birds (NC: Feed

only; T1: 0.05% BMD 50; T2: 0.2% Biolex® MB40). A: Comparison of Campylobacter yield by bird age and treatment;

B: Comparison of Lactobacillus yield by bird age and treatment. (Different letters indicate significant differences, P

value < 0.05)

https://doi.org/10.1371/journal.pone.0182805.g003
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analysis a significant decrease in Lactobacillus level occurred in birds receiving antibiotic

BMD50 supplementation at 2 wk. No significant reduction of chicken performance was

Fig 4. Rarefaction plots indicating amount of diversity by treatment (NC: Feed only; T1: 0.05% BMD

50; T2: 0.2% Biolex® MB40). A: Rarefaction plot by bird age; B: Rarefaction plot by treatments. (Different

letters indicate significant differences, P value < 0.05, N.S. stands for no significant difference)

https://doi.org/10.1371/journal.pone.0182805.g004
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observed thus, MB40 could be a viable alternative of in-feed antibiotic supplementation when

addressing concerns related to the presence of antibiotic resistant bacteria.

Fig 5. PCoA plots based on treatments and age of broilers (NC: Feed only; T1: 0.05% BMD 50; T2: 0.2% Biolex®

MB40). A: PCoA plot by treatments; B: PCoA plot by bird age.

https://doi.org/10.1371/journal.pone.0182805.g005
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