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Salivary proteome of aphthous 
stomatitis reveals the participation 
of vitamin metabolism, nutrients, 
and bacteria
Romina Hernández‑Olivos1, Mariagrazia Muñoz1, Esteban Núñez1, 
Paola Andrea Camargo‑Ayala1, Jenaro Garcia‑Huidobro2, Alfredo Pereira3, 
Fabiane M. Nachtigall4, Leonardo S. Santos3 & César Rivera 1*

There are currently no preventative options for recurrent aphthous stomatitis, and the only available 
treatments are palliative. This is partly due to a poor understanding of its etiopathogenesis. In this 
case–control study, we characterized the salivary proteome of patients with recurrent aphthous 
stomatitis in the presence and absence of lesions. Through mass spectrometry‑based proteomics and 
bioinformatics tools, we identified that the presence of oral ulcers is associated with several specific 
biological processes, including the metabolic pathways of vitamin B9, B12, nitrogen, selenium, and 
the bacterium Neisseria meningitidis. These changes occurred only in the presence of clinically visible 
lesions, and there were no relevant differences between patients in anatomical regions unaffected by 
ulcers. Additionally, using western blot and ELISA assays, we verified that carbonic anhydrase 1 (CA1) 
and hemoglobin subunit beta (HBB) proteins are highly expressed during the ulcerative and remission 
phases of recurrent aphthous stomatitis. Our results cumulatively support saliva as an indicator of 
the pathophysiological changes, which occur during the clinical course of lesions. From a clinical 
perspective, we suggest that recurrent aphthous stomatitis is a condition triggered by temporary 
biological changes in people with lesions.

In oral medicine, there are several conditions which are constituted by recurring episodes of unidentified 
 causation1. Subsequently, available therapies lack specificity, and are of questionable efficacy. The largest repre-
sentative of this group is recurrent aphthous stomatitis (also known as canker sores or recurrent aphthae), the 
most common ulcerative condition of the oral mucosa  worldwide2. It is characterized by recurrent episodes of 
painful ulcerations lacking any association with systemic  disease3. Owing to its painful nature, this disease can 
compromise important functions such as nutrition, speech and oral  hygiene4, as well as affecting quality of  life5. 
This is a critical health issue, as the ulcers can persist for over 2 weeks, with recurring episodes between 1 and 
4 months.6. Although other oral diseases such as periodontal disease and caries are more prevalent, patients 
with recurrent aphthous stomatitis cannot prevent the development of lesions, and only palliative therapeutic 
alternatives (corticosteroid preparations) are available. Despite the increasing use of topical corticosteroids for 
recurrent aphthous stomatitis over the past several years, high-quality evidence of their efficacy is  lacking7, and 
relief is often only symptomatic with no effect on disease-free  periods8,9. We believe that the limited availability 
of preventative or therapeutic options for recurrent aphthous stomatitis results from poor understanding of its 
etiopathogenic  process10, and the stagnation in our understanding of the condition over the last few decades. 
One of the biggest problems is that the scientific focus has been on studying individual molecules, such as TNF-
α11, IL-212, and  cortisol13. In addition, much of the published research has not evaluated sample sets represent-
ing the clinical course of the disease. The sequence covers the stages of premonition (with symptoms but no 
visible signs of disease), pre-ulcerative (usually erythema and mild edema), ulcerative (acute or active phase, 
formation of the ulcer), healing (decrease in symptoms and progressive healing), and remission (no evidence 
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of ulcers)14. The ulcerative and remission phases are the stages able to be evaluated with greater objectivity in 
dental  examinations15.

Our research team wanted to try a different approach by applying state-of-the-art technology for the study of 
molecular processes: mass spectrometry-based proteomics. This technique analyzes a mixture of proteins, both 
qualitatively and quantitatively, using mass spectrometry. Additionally, the high feasibility and general sensitiv-
ity of this approach is particularly desirable for the identification and characterization of  proteins16. Proteomic 
technologies have a great capacity to generate a holistic view of complex processes that control health and disease 
states. To our knowledge, there are no studies applying global characterization of the proteome in patients with 
recurrent aphthous stomatitis.

Unfortunately, for research purposes, incisional or excisional biopsy of recurrent aphthous stomatitis ulcers is 
recommended only in cases of  uncertainty17. Saliva is an ideal source of biological information because it contains 
a set of biomolecules that cover oral structures, such as mucosa and  teeth18, and is therefore in close contact with 
ulcers. Mass spectrometry-based proteomics has been used to discover biomarkers in various oral conditions 
using saliva as a liquid biopsy, such as caries and periodontal  disease19, cleft  palate20, Sjögren’s  syndrome21, burn-
ing mouth  syndrome22 and oral  cancer23, but not in recurrent aphthous stomatitis. Mass spectrometry allows us to 
examine the salivary proteome in  detail24. Since saliva collection is less invasive and has no clinical complications 
associated with blood collection, substituting saliva samples for blood in biomarker analysis is of great  interest25.

Considering these antecedents, the objective of this study was to characterize the salivary proteome of patients 
with recurrent aphthous stomatitis using Mass spectrometry-based proteomics and assess its clinical usefulness 
in identifying the most representative biological and molecular processes during the course of lesions. To do 
this, we conducted a case–control study, analyzing the saliva of healthy controls and patients with recurrent 
aphthous stomatitis during a complete ulcerative cycle (active ulcers and absence of lesions). Using bottom-up 
proteomics, salivary proteins were sequenced with a timsTOF Pro mass spectrometer connected to nanoflow 
liquid chromatography (nLC-MS/MS). From these data, we were able to recognize biological processes related to 
vitamins, nutrients, interference of tissue destruction, and immune response against bacteria. We then identified 
bacterial proteins and the genera, species, and strains to which they belong. Finally, considering that recurrent 
aphthous stomatitis is tissue-specific, we evaluated the proteomic profiles of surfaces with and without ulcers. 
Applying a top-down proteomics approach, an Autoflex Speed MALDI-TOF mass spectrometer combined with 
machine learning analysis (MALDI-MS/ML) were used to obtain a specific and sensitive pattern of the salivary 
pellicle covering recurrent aphthous stomatitis ulcers and ulcer-free regions.

Methods
General design. Using Mass spectrometry-based proteomics, we evaluated the salivary proteome of sub-
jects with recurrent aphthous stomatitis in the presence and absence of ulcers. We also compared these profiles 
with healthy subjects without a history of aphthous ulceration. All procedures were performed in accordance 
with the Declaration of Helsinki. The Ethics Committee of the University of Antofagasta (protocol #156/2018) 
approved this research.

Participants. We prospectively collected 118 salivary samples from 68 volunteers after obtaining informed 
consent. The subjects were divided into healthy controls (n = 31; people with no history of oral ulcers) and recur-
rent aphthous stomatitis (n = 36). The latter group was evaluated at study entry, during the ulcerative stage, and 
when lesions disappeared (remission stage, n = 36). Additionally, we collected samples from recurrences that 
occurred after the remission phase (n = 15). Subject demographics are provided in Supplementary Table S1. At 
the time of the examination, patients should have presented ulcers for no longer than 3 days. The exclusion cri-
teria were the use of medications to treat ulcers during the previous 2 days and use of topical or systemic corti-
costeroids during the month before entering the study. Other exclusion criteria were the presence of other types 
of lesions of the oral mucosa, diseases with acute or chronic pain, smoking, excessive consumption of alcohol 
(more than three times weekly), and hematologic deficiency-related diseases. Patients with autoinflammatory 
syndromes, immunodeficiency states, gastrointestinal disorders, and hematinics deficits were also excluded (the 
complete list of diseases can be found in Supplementary Table S2). For their inclusion as controls, volunteers 
should never have presented oral ulcers, and except for the absence of lesions, this group shared the same inclu-
sion and exclusion criteria.

Salivary liquid biopsy. Subjects were requested not to eat or drink for at least 30 min before collection. 
All patients rinsed their mouths with 10 mL of water for 30 s. After 10 min, whole unstimulated saliva collec-
tion began. Between 8:00 a.m. and 11:00 a.m., each participant expectorated continuously in a 50 mL sterile 
propylene tube for a period of 5 min. Additionally, we collected the salivary pellicle deposited on lesions and the 
contralateral anatomical equivalent of the unaffected oral mucosa using cotton swabs. Immediately after collec-
tion, samples were deposited on ice and a protease inhibitor cocktail (cOmplete Tablets EASYpack, Roche)26. We 
then centrifuged the samples at 14,000×g at 4 °C for 20 min to eliminate undissolved components and cellular 
 detritus27. The total protein concentration in the supernatants was determined using the BCA Protein Assay 
(Thermo Scientific). The samples were stored at − 80 °C for further processing.

Protein identification and prioritization. When multiple subjects are being studied, pooling samples 
in proteomics experiments can help address resource  constraints28. Saliva samples were randomized and pooled 
into 9 sets: healthy controls (n = 3, 11 samples per set), ulcerative (n = 3, 12 samples per set), and remission phase 
(n = 3, 12 samples per set). Total protein concentration for all samples was determined using the BCA Protein 
Assay kit (Thermo Scientific), following the manufacturer’s instructions for microplate procedures. Each sample 
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contained 70 µg of protein. Mass spectrometry data were acquired by analyzing 500 ng of peptides after tryptic 
digestion and peptide fractionation using a nanoElute LC system coupled to a timsTOF Pro mass spectrometer 
(Bruker Daltonics). A detailed description of the instrument is provided in Refs.29. Mass spectrometry raw files 
were processed using MsFragger through  Fragpipe30. For all searches, a protein sequence database of reviewed 
human proteins (accessed 06/15/2020 from UniProt; 74,823 entries) and bacterial proteins of species assigned to 
the oral cavity (accessed 12/11/2020 from The Human Microbiome Database; 728 files of annotated sequences 
from genomes) were used. Label-free protein quantification was performed using the IonQuant algorithm, as 
described  previously30. We used  MSstats31 to calculate protein abundance based on the ion abundances reported 
by MSFragger. We followed the general workflow analysis for data-dependent acquisition (DDA or shotgun) 
 experiments32. The dataProcess function with log2 intensity transformation was used to calculate the protein 
abundance. We considered clinically significant salivary proteins with a log2 fold change value less than − 0.5, or 
greater than 0.5, with a p value ≤ 0.05, when comparing between groups (Student’s t-test). See Supplementary file 
(Methods section) for further details and explanation.

Biological and molecular processes. To understand the set of clinically significant proteins, we per-
formed an enrichment analysis. Pathway enrichment analysis helps to obtain a mechanistic view, identifying 
biological pathways that are enriched in a list of proteins more than would be expected by  chance33. To that end, 
we imported the proteins into the g:GOSt profiling online tool of G:Profiler34 and queried for functional enrich-
ment of terms derived from Kyoto Encyclopedia and WikiPathways. We used the g:SCS algorithm to address 
multiple testing, and a p value ≤ 0.05 as a user-defined threshold for statistical significance. We also consulted 
the REACTOME database using the WebGestalt online  tool35. We considered those pathways with an FDR 
of ≤ 0.05. To understand the individual functions of each protein, we consulted QuickGO. With QuickGO, it 
is possible to determine a biological process or molecular event, with a known beginning and end, in which a 
protein  participates36.

Western blotting, ELISA, and vitamin determination. We selected several proteins for the verifica-
tion stage using western blotting and ELISA. Briefly, 8 μg of total salivary protein was subjected to SDS-PAGE 
on a 4%–20% precast gel (Bio-Rad #456-1093). Western blotting was subsequently performed using anti-CA1 
(1:450, Abcam #ab182609) and anti-SLURP1 (1 µg/mL, Abcam #ab3840) as primary antibodies. After incuba-
tion with a secondary anti-rabbit antibody (1:5,000, Abcam #ab97048), proteins were visualized using alka-
line phosphatase chromogen (NBT/BCIP, Abcam #7468). Ponceau red was used as the loading control. The 
uncropped scans of the gels and blots are shown in Supplementary Fig. S1. ELISAs were performed using 13 μg 
of total salivary protein as the sample with HBB (Abcam #ab235654), CST1 (Sigma-Aldrich #RAB1036), and 
A2M (Sigma-Aldrich #RAB0600) kits, according to the manufacturer’s instructions. Folate (range 0.35–24 ng/
mL) and vitamin B12 (range 45–2,000 pg/mL) concentrations were determined on an ADVIA Centaur XPT 
immunoassay system (Siemens) according to the manufacturer’s instructions.

Proteomic profiles comparison. We analyzed the affected and unaffected oral mucosa using cotton swab 
samples. Given its speed, simplicity, and low cost, as well as the availability of equipment and expertise in many 
hospital laboratories in developing countries, MALDI-MS/ML is a promising  alternative37. In this experiment, 
we did not pool samples (each was analyzed individually) and we added new samples from ulcer recurrences 
(new lesions after the remission stage) experienced by some of the patients (n = 15). Samples were analyzed on 
an Autoflex Speed   MALDI-TOF mass spectrometer (Bruker Daltonics) following the protocol recently pub-
lished by our  group37 and detailed in Supplementary File (methods section). Proteomic profiles were obtained 
and then preprocessed to generate a matrix of peak intensities. The most relevant peaks were selected using the 
correlation-based feature subset selection method (CFS)38 implemented in the Weka  software39. To explore and 
compare spectra in multidimensional space, principal component analysis (PCA) was performed using the R 
packages  FactoMineR40 and  factoextra41 (data were scaled to unit variance).

Sample size calculation. The number of patients was estimated following guidelines for the use of Mass 
spectrometry-based proteomics in clinical  studies42,43. We consider a two-sided hypothesis test with a confi-
dence level of 99.9% (α = 0.001) and a power of 95% (1 − β = 0.95). Changes in protein abundance or effect size 
(relative intensity data) were considered as differences based on log2 (0.5). Biological variation (containing tech-
nical variation) was established with a magnitude of 0.5. We performed each analysis once. The number of par-
ticipants was adjusted to a probable loss of 20%, establishing a minimum of 31 volunteers per group.

Results
Clinicopathological characteristics. The subjects were from the same population base. The mean age 
of the participants was 26 years for both groups, with the majority being women. The profile of our population 
agrees with that reported in the international literature, both in age and in the predisposition for the appear-
ance of these lesions in  women44,45. Figure 1 shows representative ulcers observed in this research. Most lesions 
occurred in the non-keratinized oral mucosa, where the lips were the most affected territory (Supplementary 
Table S1). Ulcers mainly corresponded to single lesions classified as minor, with moderate pain according to the 
visual analog scale. The participants reported presenting more than seven episodes per year. Considering that 
recurrent aphthous stomatitis lasts for approximately two weeks, the large number of ulcer events highlights the 
clinical relevance of the condition.
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Proteomic analysis revealed the differentially expressed proteins. To identify salivary proteins 
in the health, ulcerative, and remission stages, we prepared three sets of pooled samples (pools), each contain-
ing one-third of the subjects. With a flow that included nLC-MS/MS associated with the Fragpipe tool, we 
were able to identify more than 1,200 proteins in each set (Fig. 2B). In healthy controls, we found 10 unique 
proteins (HABP2, HEBP1, HTRA1, ILF2, LDLR, MMP7, PADI3, PTBP1, PTN6, and RALB), 5 in the ulcerative 
stage (APOL1, C1QBP, FHR2, HV124, and NQO2), and 8 in the remission stage (BAX, BIN2, CTNA1, DP13A, 
FA20C, PP14B, RS20, and TBB4A). Pooling may explain the low number of unique proteins. Therefore, although 
there were exclusive proteins in each group, we were interested in those that were in common. We assume that 
comparative analysis allows for a better understanding of the biological context. For this, we concentrated on 
more than a thousand proteins shared by all the groups and that, according to the MSStats flow, presented a 
relevant fold change (blue and red points in volcano graphs, Fig. 2C).

The presence and absence of lesions are associated with pathways related to vitamins and 
nutrients. To understand the context in which the protein collective might participate, we performed an 
enrichment analysis using g-Profiler. For this, we included all differentially expressed proteins. Figure 3 shows 
the comparison between the healthy control group and the ulcerative stage patients (Fig. 3A) and the ulcera-
tive stage versus the remission-stage patients (Fig. 3B). These comparisons revealed the metabolic pathways of 
macronutrients and micronutrients (nitrogen and selenium) along with the digestion and absorption of vitamins 
(B9 and B12). Notably, there was no enrichment when analyzing the list of differentially expressed proteins 
between healthy control samples and the remission stage. In other words, in terms of signaling, there were no 
differences between the groups. This result indicates that alterations in signaling pathways are only present dur-
ing the clinical manifestation of the ulcer. It is necessary to note that the enrichment analysis placed a part of the 
identified proteins into context; therefore, to complete the picture, it is also necessary to describe the individual 
biological roles of each of them.

Proteins involved in the inhibition of proteolysis and responses against bacteria stand out in 
the presence of lesions. Because the enrichment analysis did not provide information on all proteins, 
we list each differentially expressed protein in Table 1. To understand their individual roles, we examined the 
functional annotations in QuickGO. In contrast, information from patients with recurrent aphthous stomati-
tis during the ulcerative stage and remission stands out. Several upregulated proteins participate in the nega-
tive regulation of peptidase activity (SERPINA6, SERPING1, SERPINA3, and A2M) and the immune response 
against bacteria (IGHV1-8, IGHV1-69D, IGHV3-74, IGHV4-30-2, IGHV3-43, IGHV3-66, IGHV3-16). This 
result suggests that the ulcerative activity may be a response to the presence of a microorganism that is harmful 
to the oral mucosa or that the presence of lesions alters the microbiota and that a decrease in proteolysis is neces-
sary for the regeneration of lesions.

Figure 1.  Clinical manifestations of recurrent aphthous stomatitis. (A) Representative images of ulcers. Lesions 
were ovoid with an erythematous halo. (B) Anatomical sites where lesions occurred. The most affected regions 
were labial mucosa, vestibule, and cheeks. (C) Clinical history associated with ulcers. Lesions were smaller than 
5 mm accompanied by moderate pain.
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Proteomic data verification. To validate the data points, we used some of the most extreme fold-change 
values. Results of western blotting and ELISA confirmed the presence of CA1, SLURP1, HBB, CST1, and A2M 
in the analyzed saliva pools (Fig. 4). In this orthogonal validation, CA1 and HBB levels were elevated in recur-
rent aphthous stomatitis (ulcerative and remission stages, Fig. 4A,B upper panels, respectively). Additionally, we 
checked for the presence of vitamins B9 and B12 in saliva. In general, patients with recurrent aphthous stomatitis 
had lower vitamin levels compared to controls but without significant differences (Fig. 4C).

Neisseria meningitidis proteins were present at the ulcerative stage. Because defense against bac-
teria was one of the prominent pathways identified, we investigated whether we could detect bacterial proteins 
and species in salivary proteomes. For this purpose, we downloaded all the protein sequences of the bacterial 
species assigned to the oral cavity in the Human Oral Microbiome  Database46,47. The resulting database was 
approximately 46 times larger than that of humans (1,174,712 KB vs. 26,318 KB). We identified 134 bacterial 
proteins. Figure  5 shows that two proteins, isocitrate dehydrogenase [NADP] (icd, UniProtKB Q9JZS1) and 
elongation factor Ts (tsf, UniProtKB P64051), belonging to Neisseria meningitidis strains were elevated only in 
the presence of lesions. The response indicated by the salivary proteome against bacteria could result from the 
activity of Neisseria meningitidis.

The oral surface epithelium without lesions did not show any differences between the 
groups. As recurrent aphthous stomatitis is a tissue-specific condition, we analyzed the salivary pellicle that 
covered the area affected by recurrent aphthous ulcers and the healthy contralateral anatomical region, to pro-
vide a local picture. In this analysis, we also included recurrent lesions (new ulcerative stages after remission). 
MALDI-MS/ML analysis showed that the proteomic profiles (mass spectra) were different when presence and 
absence of lesions were compared in a multidimensional space (PCA graphs, Fig. 6). However, the data from the 
healthy tissue regions could not be separated completely, both at the remission stage (Fig. 6B) and at all unaf-

Figure 2.  Salivary proteome. (A) We assessed samples integrity by SDS-PAGE gel electrophoresis (20 μg/lane 
protein concentration). (B) Venn diagram shows that most of the salivary proteins identified were proteins in 
common. (C) Volcano graphs show the windows considered in the analysis, constructed considering statistical 
significance and fold change. Proteins up- and down- regulated are enclosed by a green square. The fold change 
limits were − 0.5 and 0.5. The established p value was 0.05.
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fected oral mucosa sites (Fig. 6D). This evidence shows that the salivary pellicle that covers the epithelium differs 
only during active lesions, but not during epithelial integrity.

Discussion
In this investigation, we determined the salivary proteome of patients with recurrent aphthous stomatitis dur-
ing the presence and absence of lesions using mass spectrometry-based proteomics. Our analyses revealed 
that the ulcerative stage is related to several biological pathways, including vitamin and nutrient metabolism, 
inhibition of tissue destruction, and defense against bacteria, probably Neisseria meningitidis. Additionally, we 
established that the proteomic profiles of ulcer-free states do not differ from those of healthy individuals. Our 
evidence suggests that recurrent aphthous stomatitis corresponds to an oral manifestation of a temporary local 
or systemic condition.

Because tissue biopsy is not indicated in recurrent aphthous  stomatitis15, we used saliva as a “liquid biopsy” to 
obtain information on the health status of the participants. The lesions corresponded to small, solitary or multiple 
ulcers, with moderate pain, present almost exclusively in the non-keratinized oral mucosa. These characteristics 
are consistent with the classic profile of recurrent aphthous  stomatitis48,49. In the analysis flow with nLC-MS/MS 
and bioinformatics, we used the fold change as a measure of contrast between the groups. From these values, we 
concentrated on the salivary proteins that presented a differential expression on which we explored the biological 
information. Fold change is a value that reports the extent to which a quantity changes from one state to another. 
It is used in proteomics to evaluate the differential expression of  proteins50 and to identify disease  biomarkers51.

Through enrichment analysis with g:Profiler and WebGestalt, we found that ulcerative activity is related to 
the metabolism of vitamins (B9 and B12) and nutrients (selenium and nitrogen). Our evidence complements 
one of the main lines of inquiry for explaining the etiopathogenesis and severity of recurrent aphthous stoma-
titis with respect to nutritional deficiencies; low blood levels of  iron52, vitamin  D53–55, vitamin  B956 and  B1257,58 
have previously been reported to be associated with the presence of lesions. In our study, the levels of salivary 
vitamins B9 and B12 did not show significant differences. This may be due to the fact that there is a low cor-
relation between serum and salivary levels, as has already been demonstrated in the geographic  tongue59. Some 
of hematinic deficiencies already named can lead to anemia in patients with recurrent aphthous  stomatitis60. 
Previous studies have shown that anemia causes atrophy of the oral epithelium, leading to a decrease in the 
mucosal  barrier61. Selenium deficiency can also make the host susceptible to  infection62. The presence of these 
molecules was not examined in our patients, as it was outside the objectives of our research; this may constitute 
a limitation in our analyses, and it would be advisable to measure these molecules in the future. However, it is 
interesting that saliva represents, at least indirectly, the nutritional states previously described in the literature in 
these patients. The high expression of salivary proteins associated with metabolic pathways may be attributed to 

Figure 3.  The presence or absence of recurrent aphthous ulcers reveals metabolic pathways for vitamins and 
nutrients. Each pathway on the right corresponds to a database on the left. The existence of proteins in these 
pathways is indicated by dark gray squares. APOB and SERPINA3, for example, are proteins involved in the 
vitamin B9 and B12 metabolism pathways. (A) Pathways enriched from the list of differentially expressed 
proteins between healthy controls and patients at the ulcerative stage. (B) Enrichment analysis corresponding 
to the contrast between the ulcerative and remission-stage patients. The absence of oral ulcers, i.e., the contrast 
between healthy controls and remission-stage patients, did not show enriched pathways. For enrichment 
analysis, g:Profiler (https:// biit. cs. ut. ee/ gprofi ler/ gost) and WebGestalt (http:// www. webge stalt. org/) were used.

https://biit.cs.ut.ee/gprofiler/gost
http://www.webgestalt.org/
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Protein (gene name) Accession Fold change Biological process

Healthy controls versus ulcerative stage

Hemoglobin subunit beta (HBB) P68871 − 2.6 Oxygen transport

Hemoglobin subunit alpha (HBA1) P69905 − 2.6 Oxygen transport

Hemoglobin subunit delta (HBD) P02042 − 2.5 Oxygen transport

Carbonic anhydrase 1 (CA1) P00915 − 2.3 Interleukin-12-mediated signaling pathway

Apolipoprotein B-100 (APOB) P04114 − 1.2 Apolipoprotein. Lipid transport

Olfactomedin-4 (OLFM4) Q6UX06 − 1.2 Neutrophil degranulation, cell adhesion

Coagulation factor XIII B chain (F13B) P05160 − 1.2 Hemostasis, blood coagulation

Nucleolin (NCL) P19338 − 0.9 Positive regulation of mRNA splicing, via spliceosome

Alpha-1-antichymotrypsin (SERPINA3) P01011 − 0.9 Protease inhibitor. Negative regulation of peptidase activity, maintenance 
of gastrointestinal epithelium, neutrophil degranulation

Glutathione S-transferase Mu 1 (GSTM1) P09488 − 0.9 Transferase. Cellular detoxification of nitrogen compound, xenobiotic 
catabolic process

Coagulation factor XII (F12) P00748 − 0.8 Serine protease. Hemostasis, blood coagulation

Carbonic anhydrase 2 (CA2) P00918 − 0.7 Morphogenesis of an epithelium

Apolipoprotein A-IV (APOA4) P06727 − 0.7 Apolipoprotein. Hydrogen peroxide catabolic process, removal of super-
oxide radicals,

Protocadherin Fat 2 (FAT2) Q9NYQ8 − 0.7 Cell–cell adhesion, homophilic cell adhesion via plasma membrane 
adhesion molecules

Probable non-functional immunoglobulin heavy variable 3-35 (IGHV3-
35) A0A0C4DH35 − 0.6 Immunoglobulin. Immunoglobulin receptor binding

Chitinase-3-like protein 1 (CHI3L1) P36222 − 0.6 Glycosidase. Positive regulation of angiogenesis, inflammatory response

Heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) P07910 − 0.5 RNA splicing

Secreted Ly-6/uPAR-related protein 1 (SLURP1) P55000 0.6 Negative regulation of keratinocyte proliferation

1,2-Dihydroxy-3-keto-5-methylthiopentene dioxygenase (ADI1) Q9BV57 0.8 Oxygenase. Oxidation–reduction process

Ulcerative stage versus remission

Mitogen-activated protein kinase 1 (MAPK1) P28482 − 1.2 Non-receptor serine/threonine protein kinase. Neutrophil degranulation

Cystatin-SN (CST1) P01037 − 0.6 Negative regulation of peptidase activity

Guanine nucleotide-binding protein subunit alpha-14 (GNA14) O95837 − 0.6 Heterotrimeric G-protein. Platelet activation

Immunoglobulin heavy variable 1-8 (IGHV1-8) P0DP01 0.5 Immunoglobulin. Defense response to bacterium, antigen binding

Protocadherin Fat 2 (FAT2) Q9NYQ8 0.5 Cell–cell adhesion, homophilic cell adhesion via plasma membrane 
adhesion molecules

Cystatin-M (CST6) Q15828 0.5 Negative regulation of peptidase activity

Glutathione peroxidase 3 (GPX3) P22352 0.6 Peroxidase. Hydrogen peroxide catabolic process, response to oxidative 
stress

Immunoglobulin kappa variable 1-5 (IGKV1-5) P01602 0.6 Immunoglobulin. Adaptive immune response

Immunoglobulin heavy variable 1-69D (IGHV1-69D) A0A0B4J2H0 0.6 Immunoglobulin. Defense response to bacterium

Immunoglobulin heavy variable 3-74 (IGHV3-74) A0A0B4J1X5 0.6 Immunoglobulin. Defense response to bacterium

Beta-Ala-His dipeptidase (CNDP1) Q96KN2 0.6 Metalloprotease. Proteolysis

Immunoglobulin kappa variable 1-39 (IGKV1-39) P01597 0.6 Immunoglobulin. Adaptive immune response, complement activation, 
leukocyte migration

Immunoglobulin lambda variable 2-23 (IGLV2-23) P01705 0.7 Immunoglobulin. Adaptive immune response, complement activation, 
leukocyte migration

Immunoglobulin heavy variable 4-30-2 (IGHV4-30-2) A0A087WSY4 0.7
Immunoglobulin. Defense response to bacterium, innate immune 
response, adaptive immune response, positive regulation of B cell activa-
tion

Suprabasin (SBSN) Q6UWP8 0.7 Protein binding

Plasminogen (PLG) P00747 0.7 Serine protease. Endopeptidase activity

Apolipoprotein A-IV (APOA4) P06727 0.7 Apolipoprotein. Removal of superoxide radicals, hydrogen peroxide 
catabolic process

Non-specific lipid-transfer protein (SCP2) P22307 0.8 Lipid transport

Protein FAM25A (FAM25A) B3EWG3 0.8 Without information

Aconitate hydratase, mitochondrial (ACO2) Q99798 0.8 Hydratase. Tricarboxylic acid cycle, generation of precursor metabolites 
and energy

Transmembrane protein 132A (TMEM132A) Q24JP5 0.8 Post-translational protein modification

2,4-dienoyl-CoA reductase, mitochondrial (DECR1) Q16698 0.9 Oxidation–reduction process, lipid metabolic process

Dynein heavy chain 7, axonemal (DNAH7) Q8WXX0 0.9 Microtubule binding motor protein. Microtubule-based movement

Immunoglobulin heavy variable 3-43 (IGHV3-43) A0A0B4J1X8 0.9 Defense response to bacterium, innate immune response, adaptive 
immune response

Carboxypeptidase N subunit 2 (CPN2) P22792 0.9 Regulation of catalytic activity

Immunoglobulin heavy variable 3-66 (IGHV3-66) A0A0C4DH42 0.9 Immunoglobulin. Defense response to bacterium, innate immune 
response, adaptive immune response,

Continued
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the lack of vitamins and nutrients and suggests that these proteins may not be involved in these pathways (i.e., 
they are freely available). In this sense, it has been shown that supplementation with vitamin B12 decreases the 
duration of ulcer episodes, number of injuries, and  pain63. The finding of no differences between healthy subjects 
and those with recurrent aphthous stomatitis in the remission stage was particularly notable, as it indicates that 
these two clinical states are not significantly different; alterations that determine an ulcerative state are silenced 
in the absence of lesions. This evidence indicates that diet plays an important role in triggering lesions and that 
the aforementioned alterations may be temporary and susceptible to intervention.

The enrichment analysis showed a high level of various proteins during the ulcerative stage. Interestingly, 
HBB and SERPINA3 have anti-inflammatory effects. Using ELISA, we verified that patients with recurrent aph-
thous stomatitis present a high expression of HBB. HBB can be cleaved into two chains, one of which is called 

Table 1.  Biological processes of differentially expressed proteins in recurrent aphthous stomatitis. Fold change 
 (log2) is a measure that describes how much an amount changes when going from an initial value to a final 
value. Therefore, if the initial value is A and the final value is B, the fold change is (B − A)/A or equivalently 
B/A − 1. *We obtained biological processes from QuickGo (https:// www. ebi. ac. uk/ Quick GO/).

Protein (gene name) Accession Fold change Biological process

Nucleolin (NCL) P19338 1.0 Positive regulation of mRNA splicing, via spliceosome

Corticosteroid-binding globulin (SERPINA6) P08185 1.0 Protease inhibitor. Negative regulation of endopeptidase activity

Immunoglobulin lambda variable 5-37 (IGLV5-37) A0A075B6J1 1.0 Immunoglobulin. Adaptive immune response

Ribonuclease pancreatic (RNASE1) P07998 1.1 RNA phosphodiester bond hydrolysis

Plasma protease C1 inhibitor (SERPING1) P05155 1.1 Protease inhibitor. Negative regulation of endopeptidase activity

Alpha-1-antichymotrypsin (SERPINA3) P01011 1.1 Protease inhibitor. Negative regulation of peptidase activity, maintenance 
of gastrointestinal epithelium, neutrophil degranulation

Alpha-2-macroglobulin (A2M) P01023 1.1 Negative regulation of peptidase activity

Probable non-functional immunoglobulin heavy variable 3-16 (IGHV3-
16) A0A0C4DH30 1.2

Immunoglobulin. Defense response to bacterium, innate immune 
response, adaptive immune response, positive regulation of B cell activa-
tion

Immunoglobulin lambda variable 3-1 (IGLV3-1) P01715 1.2 Immunoglobulin. Adaptive immune response, regulation of immune 
response, leukocyte migration

Immunoglobulin lambda variable 3-25 (IGLV3-25) P01717 1.3 Immunoglobulin. Adaptive immune response, leukocyte migration, 
complement activation

Immunoglobulin lambda variable 4-60 (IGLV4-60) A0A075B6I1 1.5 Immunoglobulin. Adaptive immune response

Remission stage versus healthy controls

Carbonic anhydrase 1 (CA1) P00915 − 1.3 Interleukin-12-mediated signaling pathway

Keratin, type I cytoskeletal 19 (KRT19) P08727 − 0.7 Keratinization, cornification

Guanine nucleotide-binding protein subunit alpha-14 (GNA14) O95837 − 0.6 Heterotrimeric G-protein. Platelet activation

Immunoglobulin heavy variable 3-53 (IGHV3-53) P01767 − 0.5 Immunoglobulin. Defense response to bacterium, adaptive immune 
response, innate immune response, positive regulation of B cell activation

Carcinoembryonic antigen-related cell adhesion molecule 5 
(CEACAM5) P06731 0.5 Negative regulation of anoikis, heterophilic cell–cell adhesion via plasma 

membrane cell adhesion molecules

Plexin-B2 (PLXNB2) O15031 0.5 Semaphorin-plexin signaling pathway, positive regulation of axonogen-
esis

Secreted Ly-6/uPAR domain-containing protein 2 (SLURP2) P0DP57 0.6 Negative regulation of signaling receptor activity

Serpin B8 (SERPINB8) P50452 0.6 Protease inhibitor. Negativeregulation of endopeptidase activity, epithe-
lial cell–cell adhesion

Beta-Ala-His dipeptidase (CNDP1) Q96KN2 0.6 Metalloprotease. Proteolysis

Interleukin-36 gamma (IL36G) Q9NZH8 0.6 Interleukin superfamily. Innate immune response, cytokine-mediated 
signaling pathway, inflammatory response to antigenic stimulus

Creatine kinase U-type, mitochondrial (CKMT1A) P12532 0.7 Amino acid kinase. Creatine metabolic process

1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase (ADI1) Q9BV57 0.7 Oxygenase. Oxidation–reduction process

Cystatin-M (CST6) Q15828 0.7 Negative regulation of peptidase activity

Kallikrein-8 (KLK8) O60259 0.7 Keratinocyte proliferation, peptidase activity

Immunoglobulin heavy variable 3-66 (IGHV3-66) A0A0C4DH42 0.7 Immunoglobulin. Defense response to bacterium, adaptive immune 
response, innate immune response, positive regulation of B cell activation

Ly6/PLAUR domain-containing protein 5 (LYPD5) Q6UWN5 0.7 Transmembrane signal receptor. Cell–matrix adhesion

Acylpyruvase FAHD1, mitochondrial (FAHD1) Q6P587 0.7 Hydrolase. Tricarboxylic acid cycle

Matrix Gla protein (MGP) P08493 0.8 Cell differentiation, multicellular organism development

Non-specific lipid-transfer protein (SCP2) P22307 0.8 Lipid transport

Podocalyxin (PODXL) O00592 0.8 Regulation of cell–cell adhesion

2,4-Dienoyl-CoA reductase, mitochondrial (DECR1) Q16698 0.8 Oxidation–reduction process, lipid metabolic process

Immunoglobulin lambda variable 5-37 (IGLV5-37) A0A075B6J1 0.9 Immunoglobulin. Adaptive immune response

Lymphocyte antigen 6D (LY6D) Q14210 1.0 Lymphocyte differentiation, cell adhesion

Immunoglobulin lambda variable 4-60 (IGLV4-60) A0A075B6I1 1.4 Immunoglobulin. Adaptive immune response

https://www.ebi.ac.uk/QuickGO/
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Figure 4.  Salivary proteins and vitamins during the clinical course of recurrent aphthous stomatitis. 
Verification of proteomic data points. (A) Western blotting showed higher CA1 protein levels during the 
ulcerative and remission stages. Ponceau red were used as loading control. (B) ELISA showed a higher amount 
of HBB protein in ulcerative and remission stages. (C) Samples from patients with recurrent aphthous stomatitis 
show lower levels of folate (vitamin B9) and vitamin B12, but without statistically significant differences. Data 
are represented by mean ± SD (Student’s t-test, different letters indicate statistically difference at p value ≤ 0.05). 
CA1, carbonic anhydrase 1; SLURP1, secreted Ly-6/uPAR-related protein 1; HBB, hemoglobin subunit beta; 
CST1, cystatin-SN; A2M, alpha-2-macroglobulin.
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spinorphin. Spinorphin inhibits various neutrophil  functions64, and additionally promotes pain reduction by 
inhibiting the degradation of endogenous  opioids65. SERPINA3 inhibits neutrophil cathepsin G protease, a 
pro-inflammatory enzyme released at sites of inflammation that contributes to the activation of inflammatory 
cytokines, pathogen degradation, and tissue  remodeling66. Inhibition of cathepsin G likely contributes to reduc-
tion of tissue damage from proteases that are released at the site of epithelial  injury67. Repeated topical application 
of SERPINA3 (2 mg/mL) on induced wounds in mice has been found to significantly accelerated their  closure67. 
Considering that the enrichment analysis did not provide information on all proteins, we consulted each of 
them individually in QuickGo. In this analysis, a protective response stood out again, and peptidase activity was 
negatively regulated (SERPINA6, SERPING1, SERPINA3, and A2M). In a recent study, Bao et al. used LC–MS/
MS and miRNA microarrays to evaluate the serum from patients suffering from recurrent aphthous  ulcers68. The 
results showed SERPINA1 upregulation in patients with lesions compared to that in healthy controls. Serpins are 
protease inhibitor proteins that inhibit target enzymes by causing conformational changes. Many key proteolytic 
cascades, including mammalian coagulation processes, are regulated by these proteins. Together, these data indi-
cate that after epithelial destruction, proteins are released to inhibit tissue destruction promoted by neutrophils.69.

In our experiments we verified a high expression of CA1 during the ulcerative and remission stages. CA1 is 
a member of the CA family of carbonic anhydrases, which reversibly catalyzes the hydration of  CO2 to gener-
ate  HCO3

−, which then rapidly binds to calcium ions to produce calcium  carbonate70. Carbonic anhydrases are 
known to modulate immune cell activation. Evidence from experiments in mice shows that inhibition of CA1 
possesses therapeutic potential that can be used to treat mast cell-mediated  inflammation71. Pre-ulcerative lesion 
of recurrent aphthous stomatitis demonstrates subepithelial inflammatory mononuclear cells with abundant mast 
 cells72. In addition, it has been reported that the presence of mast cells and their degranulation activity at the 
connective tissue of recurrent aphthous stomatitis lesions does not necessarily mean that they play a destructive 
role; mast cells also have the ability to mediate a protective role and might be involved in the repair  process73. 
Whether in a destructive or protective sense, salivary CA1 could be related in some way to those activities. 
Subjects with ulcers therefore have active processes to destroy, or conversely, recover and preserve the integrity 
of the oral mucosa toward the remission stage. These processes have been induced by, or induce changes to, the 
salivary proteome.

Another relevant biological process identified was the immune response against bacteria, associated with 
several differentially expressed proteins (IGHV1-8, IGHV1-69D, IGHV3-74, IGHV4-30-2, IGHV3-43, IGHV3-
66, IGHV3-16). To further investigate these findings, we analyzed over 700 species sequence files from the 
oral microbiome. Although the samples were centrifuged, we were able to identify that two strains of Neisseria 
meningitidis (53442 and MC58) were consistently present only in the ulcerative stage when compared to states 
without lesions. This is due to the identification of proteins belonging to this bacterium (isocitrate dehydro-
genase [NADP] and elongation factor Ts). Isocitrate dehydrogenase [NADP] participates in the synthesis of 

Figure 5.  Presence of recurrent aphthous ulcers reveals Neisseria meningitidis proteins. (A) Volcano graphs 
show the windows considered in the analysis, constructed considering statistical significance and fold change. 
Proteins up- and down-regulated are enclosed by a green square. Fold change limits were − 0.5 and 0.5. The 
established p value was 0.05. (B) Table details the proteins expressed differentially in the comparison between 
groups. The presence of proteins and strains of Neisseria meningitidis (serogroup B, strain MC58 and serogroup 
C, strain 053442) during ulcerative activity stands out. Information of oral bacteria was obtained from The 
Human Oral Microbiome Database (http:// www. homd. org/).

http://www.homd.org/
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NADPH, which provides reducing power that drives numerous anabolic reactions, including those responsible 
for the biosynthesis of all major cellular  components74. The elongation factor Ts participates in the elongation 
of the polypeptide chain during prokaryotic translation, allowing the synthesis of  proteins75. This leads us to 
infer that Neisseria meningitidis can be found in an active phase of growth and synthesis. This result should be 
interpreted with caution because bacteria in the oral cavity may exhibit considerable sequence  similarity76. Neis-
seria meningitidis is a transient commensal of the human oropharynx that causes life-threatening diseases, such 
as meningitis and  bacteremia77. The asymptomatic oropharyngeal carriage of Neisseria meningitidis reaches its 
peak in adolescents and young  adults78. This is consistent with the peak and frequency of recurrent aphthous 
stomatitis in the general  population48,79,80. A recent metagenomic study showed that Neisseria meningitidis is 
correlated with several oral bacterial species, including Fusobacterium nucleatum, Aggregatibacter aphrophilus, 
Campylobacter rectus, Catonella morbi, Haemophilus haemolyticus, and Parvimonas micra77. The researchers 
suggest the ecological interactions of Neisseria meningitidis with the oral microbiota extend throughout the oral 
cavity. This result ties into another dominant line of inquiry seeking to explain the cause of recurrent aphthous 
stomatitis: changes in the oral microbiome. The alteration of the normal oral microbiota triggers the presence 
of lesions, and the presence of lesions alters the  microbiota81, even after the lesions have  healed82. There are sev-
eral studies that employed pyrosequencing of 16S rRNA genes to demonstrate dysbiosis with different bacteria, 
including Streptococcus salivarius and Acinetobacter johnsonii83, Escherichia coli84 and bacteria of the phylum 
 Bacteroidetes84,85. The use of mass spectrometry-based proteomics to identify proteins in saliva is reliable. A 
previous study showed that the percentage of tryptic peptides that share the same sequence between humans 
and bacteria is only 0.04%86. Our findings are limited to salivary identification and should subsequently be sub-
sequently verified in microbiological cultures from salivary samples of patients with recurrent aphthous stoma-
titis in different phases of the disease to elucidate potential causality. Furthermore, all the biological knowledge 
consolidating our arguments has been sourced from public databases, whose information evolves over time. 
Considering that the saliva was centrifuged, a good biological resource to exploit further is the pellet; from this, 
PCR or MALDI Biotyper could be used to explore the presence of Neisseria meningitidis and other bacteria for 
complete understanding of an eventual oral dysbiosis.

Our results show that, from a systemic point of view, the saliva of subjects who had never presented ulcers 
compared to subjects with recurrent aphthous stomatitis in the remission stage did not present differences in 
terms of biological processes. Considering that this condition is tissue specific, we examined the adhered sali-
vary pellicle on the surfaces with and without lesions using MALDI-MS/ML. In this last experiment, we also 

Figure 6.  Recurrent aphthous stomatitis did not leave a mark on affected sites. Selected peaks with CFS (see 
table S4 in supplementary material) from proteomic profiles were used to perform PCA graphics. (A) During 
the ulcerative stage, healthy and affected tissues are completely separated. (B) As the oral mucosa regenerates, 
healthy and recovered tissues fail to separate. (C) When an injury occurs again, the sites separate again. (D) All 
intact oral mucosa tissues fail to separate, regardless of health and disease status.
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added some samples of ulcer recurrence that patients made after the remission stage. MALDI-MS/ML analysis 
showed that the proteomic profiles of all lesion-free states did not differ, except when the lesion was present. This 
emphasizes that if recurrent aphthous stomatitis is considered a disease, it does not leave a mark on the epithelial 
salivary pellicle. Furthermore, when comparing the lesion-free states, no enriched biological processes are found, 
leading us to reflect on the true nature of recurrent aphthous stomatitis. The activity of recurrent aphthous sto-
matitis represents a pathological condition; according to the Medical Subject Headings, pathological conditions 
are abnormal anatomical or physiological conditions and objective or subjective manifestations of the disease, 
not classified as a disease or syndrome (MeSH Unique ID: D013568). There are various diagnoses and systemic 
states that occur with aphthous ulcerations, such as PFAPA syndrome, Behçet’s syndrome, Crohn’s disease, celiac 
disease, HIV infection, clinical neutropenia, among several others. There are many paths for the same lesion. Our 
data and results lead us to hypothesize that recurrent aphthous stomatitis is an oral manifestation on a local or 
systemic basis in susceptible subjects. This is likely due to nutritional deficiencies and bacteria-triggered lesions 
normally found in the oral cavity of adolescents and young adults.

In this investigation, data obtained by mass spectrometry-based proteomics cumulatively supported the role 
of vitamin metabolism, nutrients, and bacteria in recurrent aphthous stomatitis. We demonstrated the useful-
ness of salivary biopsy for obtaining systemic and local information. From a clinical perspective, we specifically 
suggest the participation of proteins involved in the metabolism of vitamins B9 and B12, the nutrients nitrogen 
and selenium, and the activity of Neisseria meningitidis. Our evidence deepens the existing knowledge on the 
etiopathogenesis of recurrent aphthous stomatitis, using an approach that has never been utilized in this context. 
The conceptual framework that we have established here should be confirmed with subsequent experiments 
that seek, first, to define a state of systemic susceptibility, which would allow the establishment of lesions in the 
presence of an etiological candidate agent. Subsequent research may enable the development of preventative 
approaches for this disease, which are currently unable to be achieved.

Data availability
All supplementary files are included in this article and are publicly available at: https:// doi. org/ 10. 5281/ zenodo. 
44828 98. The mass spectrometry proteomic data have been deposited in the ProteomeXchange Consortium via 
the PRIDE partner  repository87 with the dataset identifier PXD026401 (https:// www. ebi. ac. uk/ pride/ archi ve/ 
proje cts/ PXD02 6401). All other data supporting the findings of this study are available from the corresponding 
author on reasonable request.
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