
RESEARCH ARTICLE

Netgram: Visualizing Communities in
Evolving Networks
Raghvendra Mall*, Rocco Langone, Johan A. K. Suykens

KU Leuven, ESAT-STADIUS, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

* raghvendra.mall@esat.kuleuven.be

Abstract
Real-world complex networks are dynamic in nature and change over time. The change is

usually observed in the interactions within the network over time. Complex networks exhibit

community like structures. A key feature of the dynamics of complex networks is the evolu-

tion of communities over time. Several methods have been proposed to detect and track the

evolution of these groups over time. However, there is no generic tool which visualizes all

the aspects of group evolution in dynamic networks including birth, death, splitting, merging,

expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool

for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolu-

tion of communities over 2 consecutive time-stamps in tables which are used to create a

query database using the sql outer-join operation. It uses a line-based visualization tech-

nique which adheres to certain design principles and aesthetic guidelines. Netgram uses a

greedy solution to order the initial community information provided by the evolutionary clus-

tering technique such that we have fewer line cross-overs in the visualization. This makes it

easier to track the progress of individual communities in time evolving graphs. Netgram is a

generic toolkit which can be used with any evolutionary community detection algorithm as

illustrated in our experiments. We use Netgram for visualization of topic evolution in the

NIPS conference over a period of 11 years and observe the emergence and merging of sev-

eral disciplines in the field of information processing systems.

Introduction
Large scale complex networks are ubiquitous in the modern era. Their presence spans a wide
range of domains including social networks [1], biological networks [2], collaboration net-
works [3], trust networks [4] and communication networks [5]. These complex networks have
a natural temporal aspect. Social networks evolve over time with addition and deletion of mem-
bers, formation of friendships between people in different social circles or disappearance of
friendship between people over time. In collaboration networks, a group of researchers work-
ing on a particular topic might collaborate intensively if they are working on an emerging topic
whereas a group of researchers working together on an outdated topic might completely disap-
pear over time.

PLOSONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 1 / 24

a11111

OPEN ACCESS

Citation: Mall R, Langone R, Suykens JAK (2015)
Netgram: Visualizing Communities in Evolving
Networks. PLoS ONE 10(9): e0137502. doi:10.1371/
journal.pone.0137502

Editor: Renaud Lambiotte, University of Namur,
BELGIUM

Received: October 31, 2014

Accepted: August 18, 2015

Published: September 10, 2015

Copyright: © 2015 Mall et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
The Netgram tool is accessible in the MATLAB
environment available here: “http://www.esat.
kuleuven.be/stadius/ADB/mall/downloads/Netgram_
Tool.zip”.

Funding: This work was supported by EU: ERC AdG
A-DATADRIVE-B (290923), Research Council KUL:
GOA/10/-/09 MaNet, CoE PFV/10/002 (OPTEC),
BIL12/11T; PhD/Postdoc grants-Flemish
Government; FWO: projects: G.0377.12 (Structured
systems), G.088114N (Tensor based data similarity);
PhD/Postdoc grants; IWT: projects: SBO POM
(100031); PhD/Postdoc grants; iMinds Medical

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137502&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.esat.kuleuven.be/stadius/ADB/mall/downloads/Netgram_Tool.zip
http://www.esat.kuleuven.be/stadius/ADB/mall/downloads/Netgram_Tool.zip
http://www.esat.kuleuven.be/stadius/ADB/mall/downloads/Netgram_Tool.zip

Complex networks can be represented as graphs G = (N, E) where N represent the vertices
or nodes and E represents the edges or interaction between these nodes in the network. Most
real-life networks exhibit community like structure i.e. nodes within a community are more
densely connected to each other and sparsely connected to nodes outside that cluster. Tradi-
tionally, community detection methods [5–17] have focused on identifying communities in
static representations of graphs.

However, by representing a time-evolving graph as a static network [10] it becomes difficult
to detect and track the intrinsic changes in the community structures over time. By performing
community detection on static snapshots [10] of the dynamic network, we loose the property
of temporal smoothness which is essential to capture the evolution of communities over time.
Temporal smoothness [18–20] allows to preserve the long-term trend in the dynamic graph
while smoothing out short-term variations due to noise. This property is similar to the property
of moving averages in time-series analysis [20]. In recent years, the problem of evolutionary
community detection and its tracking in large scale dynamic social networks has received a lot
of attention [19–29]. The goal of evolutionary community detection is to identify and track
communities at different snapshots of time in non-stationary graphs. Throughout this paper
we use the notation T to denote total number of time-stamps and t to denote an arbitrary time-
stamp t� T. We use Ct

j which comprises a set of nodes to represent the jth cluster at time-

stamp t and Ct (which is union of all Ct
j) to represent the set consisting of all the clusters C

t
j at

time-stamp t.
In this paper, we propose a new tool Netgram which allows to visualize the evolution of

communities in dynamic graphs. In order to visualize the progress of communities over time,
Netgram follows a series of steps. Netgram takes as input the information about the individual
identifier for all the nodes i.e. the number/label with which that node is represented in the net-
work and its corresponding cluster membership at different time-stamps. It can be used as a
post-processing step to any evolutionary community detection algorithm. After obtaining the
input, in order to capture the significant events namely birth, death, merge, split, growth,
shrinkage and continuation of communities, Netgram uses a modified version of the tracking
algorithm proposed in [29]. We provide a visualization of the weighted network (Wt) at time-
stamp t generated as a result of the tracking procedure. Once the evolution of communities is
captured between two successive time-stamps, it is stored in a table. We then perform sql [30]
join operations on these sets of tables to construct a query database. This query database con-
tains information about evolution of all the communities over the different time-stamps. We
then visualize this query database using separate colors for cluster identifiers and lines which
track the evolution of individual communities. Netgram tries to adhere to certain design princi-
ples and a set aesthetic guidelines including minimizing the line cross-overs between the evolv-
ing communities during events like merge and split making it easier to track the evolution of
individual communities in the dynamic network. The problem of minimizing the cross-talk
between communities during different time-stamps is combinatorial by nature and Netgram
uses a greedy solution for the same. Fig 1 illustrates the steps undertaken by the Netgram
toolkit for visualizing evolution of communities. Fig 2 showcases the result that we get from
the Netgram toolkit on a synthetic Birthdeath dataset of 1,000 nodes over 5 time-stamps gener-
ated from the software https://github.com/derekgreene/dynamic-community.

RelatedWork
We briefly mention here some of the methods that have been used in the past for detecting and
tracking changes in complex networks. In [27] GraphScope was introduced. Graphscope is an
efficient adaptive mining tool in time evolving graph for detecting communities. It requires no

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 2 / 24

Information Technologies SBO 2014-Belgian Federal
Science Policy Office: IUAP P7/19 (DYSCO,
Dynamical systems, control and optimization, 2012-
2017). Johan Suykens received the funding. ERC
(European Research Council): http://erc.europa.eu/.
FWO (Fonds Wetenschappelijk Onderzoek): http://
www.fwo.be/en/. KU Leuven: http://www.kuleuven.be/
English. BELSPO (Belgian Federal Science Policy):
https://www.belspo.be/belspo/index_en.stm. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

https://github.com/derekgreene/dynamic-community
http://erc.europa.eu/
http://www.fwo.be/en/
http://www.fwo.be/en/
http://www.kuleuven.be/English
http://www.kuleuven.be/English
https://www.belspo.be/belspo/index_en.stm

user-defined parameter and operates completely in a standalone mode using the principle of
Minimum Description Length (MDL) from information theory. Moreover, it can automatically
detect communities and determine good change-points over time. The intuition is that commu-
nities do not change much over 2 consecutive time-stamps and thus have similar description
lengths. This allows to group them together into a time segment in order to achieve better com-
pression. Whenever a new snapshot cannot fit well into the old segment (in terms of compres-
sion), it introduces a change-point and starts a new segment at that time-stamp. These change-
points detect drastic discontinuities in time.

In [25], the authors provided a framework called FaceNet. In this technique, the authors
deviated from the traditional two-step approach to analyze community evolutions. In the tradi-
tional approach, communities are first detected for each time-stamp and then compared to
determine correspondences. In this approach, the authors used a framework called FaceNet for
analyzing communities and their evolutions through a robust unified process. This framework
allowed the discovery of communities and captured their evolution with temporal smoothness
[19] given by the historic community structures. The authors formulated their problem in
terms of maximum a posteriori (MAP) estimation, where the community structure was esti-
mated both by the observed networked data and by the prior distribution given by historic
community structures. Then an iterative algorithm was developed which guaranteed conver-
gence to an optimal solution.

In both the aforementioned techniques namely Graphscope [27] and FaceNet [25], the pri-
mary focus was on detection of communities in time evolving graphs rather than tracking the
evolution of communities. These techniques can identify significant events like birth, death
and continuation of communities. However, it is difficult to detect significant events like merge
and split using these techniques.

In [24], a framework was provided which used the clique percolation method (CPM) for
tracking evolution of communities in successive time-stamps. However, this technique is prone
to be affected by noisy events. For example, if very few nodes from a community at one time-
stamp split then this method detects it as a split event whereas these nodes might have been
removed due to random fluctuations in community detection technique. In [22], a model was
introduced which tracked the progress of communities over time in a dynamic network such
that each community is characterized by a series of significant evolutionary events. By only
keeping track of significant evolutionary events they overcome noisy events. However, none of
these methods [22, 24] provide a visualization tool to observe and get insight into the evolution
of communities in dynamic networks.

Recently, a method which maps changes in networks using alluvial diagrams was proposed
in [21]. The method uses bootstrap sampling accompanied by significance clustering in order
to distinguish meaningful structural changes from random fluctuations. This technique is

Fig 1. Steps undertaken by Netgram for visualizing evolution of communities in dynamic networks.

doi:10.1371/journal.pone.0137502.g001

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 3 / 24

Fig 2. a) Visualization of the weighted networks (Wt) mapping evolution of communities over 5 time-stamps.Wt tracks evolution of a cluster
between two consecutive time-stamps. The colors represent the weight of the edges inWt. The weights can take value in the range [0, 1] i.e. 0�w
(Vt(j, k))� 1. b) Visualization and tracking of community evolution by Netgram for the clusters obtained from the Kernel Spectral Clustering with
Memory Effect (MKSC) algorithm [28] for Birthdeath dataset.Netgram showcases the birth, death, merge, split, expansion, shrinkage and continuation of
communities for the Birthdeath dataset over 5 time-stamps (T1, T2, T3, T4 and T5). We represent each community with a different colour circle and the size is
/ the number of nodes in that community. From Fig 2b, we can observe the death of clustersC6 & C7 at time-stamps T3 and T4 respectively. Similarly, we

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 4 / 24

based on the principle introduced in [22]. However, this method [21] doesn’t take into consid-
eration the property of temporal smoothness [19]. The alluvial diagrams help to visualize
events like merge, split, continuation, expansion and shrinkage of communities. However, they
cannot showcase the birth and death of individual communities separately. This is because in
this method [21] a new community can only emerge at a given time-stamp t as a split of some
previous community at time-stamp t − 1 and it is difficult to detect the death/dissolution of a
particular community at one given time-stamp t. Moreover, this visualization using surfaces
uses a large portion of the screen and makes it difficult to track the evolution of individual
communities when there is a series of merge and split events. Netgram allows to separately
identify birth of a new community, highlight the death of a community and makes it easy to
identify and track individual community evolution in presence of multiple merge and split
events using a simple line-based visualization system. The tracking algorithm of Netgram is
based on similar principles as that proposed in [21, 22, 29] i.e. trying to identify significant
events and differentiate it from random noisy events. However, the main goal of Netgram is to
come up with a simple line-based visualization tool which allows to track evolution of individ-
ual communities, capture and visualize significant events like birth, death, merge, split, contin-
uation, shrinkage and growth of communities in dynamic time-evolving graphs.

Evolution of Communities
Significant events that happen during evolution of communities in a dynamic network can be
defined as:

• Birth: The emergence of a new community Ct
new at time t comprising nodes which were pre-

viously unseen at time t − 1 i.e. Ct
new \ Ct�1

i ¼ ; with all the clusters Ct�1
i in the set Ct−1 at

time t − 1.

• Death: The disappearance of one or more communities at time t. It suggests that the commu-

nity which was appearing as Ct�1
i at a previous time has disappeared now i.e.

jCt�1
i \Ct

j j
jCt�1

i [Ct
j j
< yt�1

for all the communities Ct
j in the set Ct at time t.

• Continuation: A community Ct�1
i remains intact for the next time t i.e

jCt�1
i \Ct

j j
jCt�1

i [Ct
j j
� yt�1 holds

true for a single community Ct
j at time t and it holds true in both time-directions. This distin-

guishes a continuation event from a merge event. Since, the community structure of Ct�1
i

doesn’t change much and continues to remain a single community Ct
j at time t, it is referred

as a continuation.

• Merging: When the majority of the nodes from 2 or more communities at time t − 1 for

example Ct�1
h and Ct�1

i combine together to form one cluster Ct
j at time t. i.e.

jCt�1
h \Ct

j j
jCt�1

h [Ct
j j
� yt�1

and
jCt�1

i \Ct
j j

jCt�1
i [Ct

j j
� yt�1, all such conditions hold true. These clusters subsequently start to share a

common time-line starting from time t.

can see birth of clustersNewC14 & NewC15 at time-stamp T4 and T5 respectively. We also observe that clusterC11merges with C5 at time-stamp T2 and
clusterC8 splits into 2 clusters at time-stamp T4. We can observe that clusterC8 has expanded at time-stamp T3. The cluster C8 also contracts at time-stamp
T4 as it splits into 2 clusters. ClusterC1 demonstrates continuation over time.

doi:10.1371/journal.pone.0137502.g002

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 5 / 24

• Splitting: When the majority of the nodes from a community Ct�1
i splits into 2 or more com-

munities at time t say Ct
j and C

t
k i.e.

jCt�1
i \Ct

j j
jCt�1

i [Ct
j j
� yt�1 and

jCt�1
i \Ct

k j
jCt�1

i [Ct
k j
� yt�1, all such conditions

hold true.

• Growth: When the number of nodes in the community Ct�1
i at time t − 1 increase signifi-

cantly for the corresponding community Ct
j at time t. For example, if the size of the commu-

nity Ct�1
i increases by 20% at time t.

• Shrinkage: When the number of nodes in the community Ct�1
i at the time t − 1 decreases sig-

nificantly for the corresponding community Ct
j at time t. For example, if the size of the com-

munity Ct�1
i decreases by 20% at time t.

The parameter θt − 1 is defined for each time-stamp t� T. It helps to define the concept of
majority or helps to keep track of events which are significant and prevents random fluctua-
tions from being detected as merge or split events. It takes value between the interval [0, 1]
and is explained in more detail in the next subsection.

Tracking Algorithm &Weighted Networks
In order to recognize these events we need a tracking algorithm that matches the communities
found by the evolutionary clustering algorithms at each time step. Several such tracking algo-
rithms have been developed including [22, 24, 29]. In this paper, we use a modified version of
the tracking algorithm introduced in [29].

We first generate a weighted directed bipartite networkWt from the clusters at two consecu-
tive time-stamps t and t + 1. In case of a total of T time-stamps, we generate a setW = {W1, . . .,
WT−1} of weighted directed bipartite networks. Each bipartite networkWt creates a map between
the set of clusters at time-stamp t i.e. Ct and time-stamp t + 1 i.e. Ct+1. Here Ct ¼ fCt

1; . . . ;C
t
ng,

where n represents total number of clusters at time-stamp t. This map corresponds to the edges
of the network. The weightw(Vt(j, k)) of an edge Vt(j, k) between two clusters Ct

j and C
tþ1
k corre-

sponds to the fraction of nodes in cluster Cj at time-stamp t and cluster Ck at time-stamp t + 1
which are assigned to cluster Ck at time-stamp t + 1 and is represented as:

wðVtð j; kÞÞ ¼ jCt
j \ Ctþ1

k j
jCt

j [Ctþ1
k j ð1Þ

where the numerator is equal to the number of nodes of cluster Ct
j which are also part of C

tþ1
k

and j Ct
j [Ctþ1

k j represents the total number of distinct nodes in clusters Ct
j and C

tþ1
k . This frac-

tion is equivalent to the widely-adopted Jaccard co-efficient [31]. This edge-weighting scheme is
similar to the one proposed in [22] and was shown to successfully capture significant events. This
edge weight calculation scheme is another method to track evolution of communities between 2
time-stamps and is different from the one proposed in [29]. It gives importance to both the
nodes in Ct

j at time-stamp t and the nodes in Ctþ1
k at time-stamp t + 1.

An edge exists between two clusters Ct
j and C

tþ1
k only if w(Vt(j, k))> 0. We then create an

empty list Lt. Here we keep the information about the maximum weighted outgoing edge from
each cluster Ct

i at time-stamp t i.e. argmaxj w(V
t(i, j)) and the maximum weighted incoming

edge for each cluster Ctþ1
j at time-stamp t + 1 i.e. argmaxi w(V

t(i, j)). The list L becomes:

Lt ¼ ½wðVtði; argmaxjwðVtði; jÞÞÞÞ; . . . ;wðVtðargmaxiwðVtði; jÞÞ; jÞÞ; . . .�;

where i = 1, . . ., jCtj and j = 1, . . ., jCt+1j. Here i and j vary from 1 to the total number of clusters

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 6 / 24

in the set Ct and Ct+1 respectively. List Lt has all the maximumweighted edges from all Ct
i � Ct

and all the maximum weighted edges to Cj� Ct+1. We then define a threshold yt ¼ Lt
k where

k ¼ argminlL
t
l , l = 1, . . ., jLj i.e. it is the minimum weight in the list Lt of maximum weighted

edges in the bipartite graphWt. We use this minimum weight θt to define the concept of majority
or only those edges are kept inWt whose edge weights are greater than or equal to θt. By selecting
the minimum of all the maximally weighted edges (i.e. in-coming as well as out-going edges)
between all the communities for 2 consecutive time-stamps, we even allow communities of
smaller densities to have in-coming or out-going edges. If instead we take the average of all the
maximally weighted edges for all the communities in these 2 time-stamps, we run into the risk of
missing edges to and from communities of smaller density to communities of larger density. The
average edge-weight criterion is influenced more by outliers or extreme edge-weights values.
Thus, this criterion based on selecting the minimum of all the maximally weighted edges, acts an
efficient tool a) prevent random noisy fluctuations from being detected as split or merge events
and b) to detect various significant events for communities of different densities.

If the number of edges going out of a node ofWt is greater than 1, it indicates the possibility
of a split at time t + 1, whereas if the number of edges entering a node ofWt at time t + 1 is
greater than 1 then it indicates the possibility of a merge. A split will only happen if the corre-
sponding clusters say Ctþ1

k and Ctþ1
l have an edge weight w(Vt(j, k))� θt and w(Vt(j, l))� θt

respectively coming from cluster Ct
j . Similarly, a merge will only happen if weight of the edges

from clusters say Ct
i and C

t
j to cluster C

tþ1
k are greater than θt.

We observe continuation of a community when majority of the nodes from a cluster Ct
j are

part of the some cluster at time t + 1 say cluster Ctþ1
k i.e. w(Vt(j, k))� θt. In order to tackle the

death of one or more communities, we add aDump cluster to the set of clusters Ct for each time-
stamp t (except time 1 when we are first identifying the communities). TheDump cluster repre-
sents death of a community. Similarly, in order to handle birth of a new cluster from nodes
which were previously unseen at time t, we add a cluster Ct

0 to the set of clusters C
t for each time-

stamp t except the first time-stamp. If more than one cluster is born at a given time-stamp t then
we use identifiers Ct

0, C
t
�1, C

t
�2 etc. for the newborn clusters. This allows to overcome the problem

of detection of events like birth and death faced by the tracking algorithm in [29]. In [29], the
authors used the same identifier for birth and death of communities which can lead to confusion
when there is birth and death of a community at a given time-stamp. Moreover, this technique
[29] cannot identify birth of multiple communities at a given time-stamp.

For the networkWt, if Ct
0 is isolated then no new clusters were generated at time t and if Ct

0

has an outgoing edge with weight� θt then a new community has emerged at time t + 1. Simi-
larly, if we have incoming edges to Dump at time t + 1 inWt then some clusters have disap-
peared. An advantage of having separate identifiers for tracking the birth and the death of
communities is that it becomes easier to distinguish the two events when we are performing sql
join operations [30] to generate the query database. Fig 3 gives an example of the mapping
mechanism for 2 snapshots of Birthdeath dataset. This tracking procedure is summarized in
Algorithm 1 as shown in Fig 4.

Visualizing Weighted Bipartite Networks
After obtaining the setW, we visualize the weighted bipartite networksWt for each time-stamp
t. The steps involved in the visualization include using each bipartite networkWt as an adja-
cency matrix At and plotting the adjacency matrix as an image.

An edge in the adjacency matrix At(i, j) indicates the connection between cluster Ct
i at time t

and cluster Ctþ1
j at time t + 1 and the weight of the edge is At(i, j) = w(Vt(i, j)) obtained from

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 7 / 24

Wt. For the purpose of visualization we remove all the edges directed to the Dump cluster. Let
us say that cluster Ct

i disappeared at time t + 1. Then, sum of the weight of all the edges from
community Ct

i to all the clusters at time-stamp t + 1 is 0. Hence, it becomes easier to identify
communities which have disappeared. In the plot of At, we replace cluster Ct

i with Dump. In
case of birth of one or more new communities we look up the entries corresponding to At(0, i),
At(−1, j) etc. in the adjacency matrix at time-stamp t + 1. In the plot of At, we indicate these
newborn clusters with the prefix ‘NewC’.

An example of this visualization procedure is shown in Fig 5 in the case of a synthetic Hide
dataset. This Hide dataset comprises 5 snapshots where one community disappears at each
time-stamp t and one or more communities appear at each time-stamp t> 1. We use the evo-
lutionary community detection algorithm introduced in [23] (namely Evolutionary Spectral
Clustering) to illustrate that the proposed visualization also works for another evolutionary
clustering algorithm.

Netgram Tool
Once we have obtained the setW, we store the connections between nodes of the bipartite net-
workWt at time t in tabular format. For the sake of simplicity, we just keep the information
about the source and the sink of the edge i.e. for an edge Vt(j, k), we keep (j, k) in table Pt for
time t. This results in a set of tables P = {P1, . . ., PT−1} for T time-stamps.

Fig 3. Weighted directed bipartite networkWt corresponding to 2 consecutive time-stamps for the
synthetic Birthdeath dataset.

doi:10.1371/journal.pone.0137502.g003

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 8 / 24

Fig 4. Algorithm 1: Community Tracking Algorithm.

doi:10.1371/journal.pone.0137502.g004

Fig 5. Visualization of the weighted networksWt mapping the evolution of communities over 5 time-
stamps.Wt tracks the evolution of a cluster between two successive time-stamps. We can observe that at
each time-stamp Ti there is death of one community. We can also detect the birth of one or more communities
at each time-stamp Ti, i > 2. The x-axis and y-axis represent the set of clusters at two consecutive time-
stamps. The colors represent the weight of the edges forWt.

doi:10.1371/journal.pone.0137502.g005

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 9 / 24

We then construct a query databaseD by performing an outer-join sql operation [30, 32]
between table P1 and P2 using the unique identifiers in 2nd column of P1 and 1st column of P2

as keys. We then repeat the process with query databaseD and succeeding tables in set P i.e.
P3, . . ., PT−1 using the unique identifiers of last column of databaseD and 1st column of table Pi

(i> 2) as keys on which the outer-join operation [30] is performed. By keeping separate unique
identifiers for a dead cluster and a newborn community, it becomes easier to track birth and
death of communities over time.

An example of the query databaseD obtained as a result of this process is shown in Table 1
for a synthetic Mergesplit dataset using the OSLOM [11] method. Since the OSLOMmethod is
a hierarchical community detection algorithm, we only track large size communities at coarser
levels of hierarchy for the 5 snapshots of the Mergesplit dataset.

We use a simple line-based tracking mechanism to visualize the query databaseD. This
line-based tracking is inspired by dendograms [33] which are used for visualization of layers of
hierarchy in hierarchical clustering algorithms [15, 34, 35]. Similarly, the concept can be
applied in case of dynamic networks where the layers represent the individual time-stamps for
the evolving network.

While building the Netgram tool, we considered the following design principles:

• Each community is represented by a circle whose size is proportional to the number of nodes
in that community at a given time-stamp t.

• The evolution of communities between 2 time-stamps is represented by a dashed line.

• Lines follow a straight path if there is no merge or split event during the entire course of evo-
lution for a given community.

• If a part of a community say Ct
i merges into another community say Ctþ1

j i.e. a merge event

has occurred at time t + 1 then a dashed line is drawn from Ct
i at time t to the community it

merges at time t + 1.

Table 1. Tracking the 7 communities detected by the OSLOMmethod [11] at time-stamp T1 for Merges-
plit dataset. This tracking information is stored in databaseDwhich is depicted here.

T1 T2 T3 T4 T5

C1 C7 C3 C1 C3

C2 C1 C5 C7 C5

C2 C2 C5 C7 C5

C3 C4 C2 C2 C1

C3 C4 C2 C3 C1

C3 C3 C8 C6 C2

C3 C3 C1 C9 C7

C3 C3 C1 C9 C8

C4 C6 C9 C4 C6

C4 C6 C9 C10 C4

C4 C6 C9 C10 C11

C5 C8 C6 C1 C3

C6 C8 C6 C1 C3

C7 C5 C4 C5 C9

C7 C5 C7 C8 C10

doi:10.1371/journal.pone.0137502.t001

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 10 / 24

• If a part of a community say Ct
i splits into another community say Ctþ1

j i.e. a split event has

occurred at time t then a dashed line is drawn from Ct
i at time t to the community it merges

at time t + 1.

We also take into account the following aesthetic conditions as suggested in [36] when design-
ing a visualization tool:

• Minimize line cross-overs.

• Minimize screen space.

These layout guidelines lead to a combinatorial problem with respect to the aesthetic condi-
tions under the constraints of the design principles [36]. A similar problem for storyline visual-
ization for streaming data was proposed in a constrained optimization framework in [36, 37].
In [36, 37] the authors try to visualize individuals (or groups) in a storyline. However, there is
no event like merging or splitting of groups rather the groups come close together or move far
from each other. Moreover, we can display additional information like size/density of commu-
nities at different time-stamps from the size of the circle representing those communities at
these time-stamps. Fig 6 visualizes the evolution of communities over 5 time-stamps for the
synthetic Mergesplit dataset using the community information obtained from OSLOM [11]
method along with the original order of clusters in C1 by providing this information to Algo-
rithm 2 (Fig 7).

The evolutionary clustering algorithm initially provides the community labels for all the
nodes at a given time-stamp t. Using the query databaseD and the initial order of the partitions
in C1 i.e.O = {1, 2, . . ., n} where n represents the total number of communities in the 1st time-
stamp, we propose a simple algorithm explained in Fig 7 that satisfies all the design principles
and the aesthetic criteria except the minimization of line cross-overs. By using line based visu-
alization instead of surface based visualization we minimize the screen space.

We now explain the concept of a line cross-over. A line cross-over generally occurs in case
of a split or merge event. For example, in case of Fig 6, community C6merges into community

Fig 6. Visualization of evolution of communities obtained fromOSLOM [11] method for Mergesplit
dataset using Netgram. There are 11 cross-overs in this figure which is generated by passing the original
order of partitions i.eO = {1, 2, 3, 4, 5, 6, 7} to Algorithm 2.

doi:10.1371/journal.pone.0137502.g006

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 11 / 24

C1 at time-stamp T4. However, the line showing the merge event crosses over the time-line of
communities C5, C4, C3, C2 and its branches i.e. 8 lines in total. Similarly, community C3 has
one cross-over at time-stamp T3 during a split event and 2 cross-overs at time-stamp T4 due to
a merge event with community C1. Thus, in total there are 11 cross-overs using the initial
order of clusters i.e.O = {1, 2, 3, 4, 5, 6, 7}. However, if we place C6 next to cluster C1 and com-
munity C7 next to C6 and maintain the order of the remaining communities i.e.O = {1, 6, 7, 2,
3, 4, 5}, we can already reduce the number of line cross-overs to 3. We provide a greedy solu-
tion in Algorithm 3 (Fig 8) to sequence the order of clusters/partitions in C1 such that there are
fewer line cross-overs in comparison to the initial order of the clusters i.e.O = {1, . . ., n} pro-
vided by the evolutionary community detection technique.

Fig 9 illustrates the effect of applying Algorithm 3 on the initial order of partitions in C1

obtained from the OSLOMmethod [11] for the Mergesplit dataset and providing this new
orderO to Algorithm 2 to perform visualization using Netgram. Fig 10 summarizes the steps
undertaken by the Netgram tool for visualization of evolution of communities.

Additional Provisions
We provide the user with some additional facilities. The user can provide two parameters ρ
and ν as input. The former specifies the minimum weight for an edge in the bipartite network
Wi for all time-stamps i = 1, . . ., T-1. Netgram will then visualize only those edges whose
weights are greater than or equal to ρ. This allows the user to interact with the Netgram tool

Fig 7. Algorithm 2: Netgram Visualization Layout.

doi:10.1371/journal.pone.0137502.g007

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 12 / 24

Fig 8. Algorithm 3: Greedy Solution to Handle Cross-Overs.

doi:10.1371/journal.pone.0137502.g008

Fig 9. Visualization of evolution of communities for Mergesplit dataset using the refined order of
partitionO obtained from Algorithm 3 and then passed to Algorithm 2. The revised ordering of partitions
results in just 2 cross-overs as depicted in this figure.

doi:10.1371/journal.pone.0137502.g009

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 13 / 24

and focus on certain communities which are less prone to random noisy events and have edges
with weights above ρ during their entire evolution period.

The latter (ν) is a threshold which defines the tolerance level allowed for ρ to differ from

average θi for all the time-stamps i = 1, . . ., T-1. Average θi is defined as my ¼
PT�1

i¼1
yi

T�1
. If jρ − μθj

� ν, we set θi = ρ for all time-stamps else we maintain the original value of θt as obtained from
Algorithm 1. This tolerance level prevents removal of too many edges from eachWi and pre-
vents generating a near empty visualization plot. In our experiments we set the tolerance level
value ν� 0.1 thus not allowing too much variation between user-specified ρ and μθ but at the
same time allowing some non-essential edges to be removed from the visualization tool.

We also provide the user with an additional facility which allows to visualize the network
configuration at a given time-stamp t. For each time-stamp t we plot the network using the
community information and the edge flow between the communities. Each community is plot-
ted as a circular disc and the size of this circular disc is proportional to the number of nodes
within the community. These communities are connected to each other using edges. The
weight of the edges is proportional to the total number of edges flowing from one community
to another. These edge weights are normalized to take a values between [0, 1]. This is done by
taking the ratio of the number of edges flowing between 2 communities to the maximum num-
ber of edges flowing between any 2 communities among the set of communities at this given
time-stamp t. The edges are displayed as lines connecting 2 communities and are plotted in
gray-scale format. Edges with weight close to 0 are represented with whiter shades whereas
those closer to 1 as drawn with darker shades of gray. In each row of the plot we can showcase
the network configuration for a maximum of 5 time intervals. Using this visualization tech-
nique, we can observe significant events like birth, death, growth, shrinkage, continuation and
split. However, the visualization of a merge event is not feasible in this scheme.

We illustrate the usage of these parameters ρ and ν for 3 settings in case of Mergesplit data-
set using the community information obtained from Louvain method. We keep the ν value
fixed at 0.1 and set ρ 2 {0.4, 0.45, 0.5} to obtain results as depicted in Figs 11, 12, 13, 14, 15 and
16 respectively.

Experiments
We first provide a brief description of the datasets used in this paper. In the previous sections,
we have seen the use of several synthetic datasets including:

• Birthdeath—A dataset comprising 5 dynamic networks. There are 13 communities in the
network at time-stamp t1. At every time-stamp ti, i> 2 there is death of one community and

Fig 10. Steps undertaken by the Netgram tool for visualization.

doi:10.1371/journal.pone.0137502.g010

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 14 / 24

at each time-stamp ti > 3 there is birth of one community. The number of nodes in the net-
works decrease from 1,000 to 886 over time. We illustrate the evolution of communities for
this dataset using the MKSC algorithm [28, 29] in Fig 2.

• Hide—A dataset comprised of 5 dynamic networks. There are 7 communities in the network
at time t1. At each time-stamp ti, one community disappears as was shown in the visualiza-
tion of the weighted bipartite networks in Fig 5.

Fig 11. Visualization of communities for Mergesplit dataset obtained by Louvain [5] method keeping ρ
= 0.4 and ν = 0.1. The value of μθ = 0.42 and since jρ − μθj < ν, so we use ρ as the minimumweight of an
edge for all time-stamps t = 1, . . ., T-1 as depicted in the figure. We observe that most of the edges are
retained for this value of ρ as all edge weights arew(Vt(i, j))� ρ.

doi:10.1371/journal.pone.0137502.g011

Fig 12. Visualization of network for Mergesplit dataset corresponding to Fig 11. The circular discs
represent the communities with size proportional to number of nodes in these communities. From the legend
of the subplot at time-stamp T2 we observe that communityC2 had experienced a split event at time-stamp T1

generating communities C2 andC2S1. Here CiSj represents (j + 1)th community appearing from Ci. Darker
shaded edges represent communication between 2 clusters.

doi:10.1371/journal.pone.0137502.g012

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 15 / 24

• Mergesplit—A dataset comprising 5 dynamic networks. There are 7 communities in the net-
work at time t1 and 1,000 nodes in each of the 5 snapshots of this dataset. At each time-
stamp ti, there is 1 merge and 2 split events. A visualization of the evolution of the communi-
ties obtained by OSLOM [11] method for this dataset was provided in Fig 6.

These networks were generated using the software available at https://github.com/
derekgreene/dynamic-community. We also experimented on real-life datasets and a synthetic
large scale dataset (to show the scalability of the Netgram tool) which are described below:

Fig 13. Visualization of communities for Mergesplit dataset obtained by Louvain [5] method keeping ρ
= 0.45 and ν = 0.1.We observe that several edges have been removed in comparison to Fig 11. The life time
of community C7 has been shortened to just 2 time-stamps and some edges with weights less than ρ have
been removed from community C3.

doi:10.1371/journal.pone.0137502.g013

Fig 14. Visualization of network for Mergesplit dataset corresponding to Fig 13. The circular discs
represent the communities with size proportional to number of nodes in these communities.

doi:10.1371/journal.pone.0137502.g014

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 16 / 24

https://github.com/derekgreene/dynamic-community
https://github.com/derekgreene/dynamic-community

• Reality—This dataset monitors the cellphone activity of people from 2 different labs in MIT
[38]. This dataset consists of networks where the node represents a user whose cellphone
periodically scans for other cellphones via Bluetooth. The weight of the edge between two
nodes is equal to the number of intervals for which the 2 users are in close proximity to each
other. Each snapshot corresponds to a weighted network which records the activities of the
users over a period of 1 week. There is a total 32 meaningful snapshots and total number of
users monitored over this time-span is 94. However, not all users are present in each

Fig 15. Visualization of communities for Mergesplit dataset obtained by Louvain [5] method keeping ρ
= 0.5 and ν = 0.1.We observe that when ρ = 0.5 most of the edges are removed for Mergesplit dataset.
Communities C2 andC3 no longer are part of the palette and life time of communities C4 andC7 are
shortened. We can also observe that communities C1, C5 andC6 remain unchanged in comparison to Figs
11 and 13 indicating these communities have more stable evolution.

doi:10.1371/journal.pone.0137502.g015

Fig 16. Visualization of network for Mergesplit dataset corresponding to Fig 15. The circular discs
represent the communities with size proportional to number of nodes in these communities. There exists only
community C1 for time-stamp T4 and T5 using ρ = 0.5. If only one community is present then it is visualized
using a blue-colored disc.

doi:10.1371/journal.pone.0137502.g016

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 17 / 24

weighted network. The smallest network comprised of 21 people and largest network had 88
people.

• NIPS—This dataset consists of information about 1,500 papers published in the Advances in
Neural Information Processing Systems (NIPS) conference starting from 1987 to 1998. The
dataset is part of the Bag of Words Dataset [39] from the UCI repository http://archive.ics.
uci.edu/ml/. From this dataset, we first separate out the papers published in each year starting
from 1987 till 1998. We then create a TF-IDF model [40] using which we remove out irrele-
vant words from the documents. We then create a word-word graph for each time-stamp
where the weight of the edges in the network is proportional to occurrence of 2 words
together in all the documents for that year.

• Weather—The website http://www.wunderground.com/ was utilized to obtain weather
information for about 9 months for 23 European cities. The time period over which this data
spanned was from January 2012 to October 2012. For each city for each day we collected
information about 20 attributes. The goal was to cluster these cities using weekly information
about these cities i.e. one snapshot consists of 23 cities and 140 variables where 20 variables
from each day are concatenated together. Thus in total we have 40 snapshots corresponding
to 40 weeks.

• Big—This dataset consists of 5 networks where the network at the first time-stamp has 1 mil-
lion nodes. There are 10 communities in the network at time t1. The number of nodes
decrease over time. The dataset exhibits several significant events like merge, split and death
of communities. It was also generated from the software provided in [22].

The Netgram toolkit is most suitable for visualization of a small number of large sized clus-
ters. This is because in case of a large number of clusters the palette for plotting will become
too cluttered and it becomes difficult to keep track of the evolution of individual communities.
Thus, in case of a hierarchical evolutionary clustering algorithm like OSLOM [11] or Louvain
[5] method, Netgram is most suitable for visualization of giant-connected components at
coarser levels of hierarchy.

Figs 17 and 18 depict the evolution of communities for the Reality and the Big dataset
respectively. In case of the Reality dataset, we use the Evolutionary k-Means technique intro-
duced in [23] to obtain the community affiliation for all the nodes at different time-stamps. In
case of the Big dataset, we use the Louvain method [5] to generate the community member-
ships for all the nodes in the network over different periods of time. We use the Louvain
method as it can easily scale to 1 million nodes for community detection which is otherwise a
difficult task for evolutionary clustering algorithms.

NIPS Results
We obtain the communities from the word-word graph for the NIPS dataset using the MKSC
[28] algorithm. The MKSC technique identified 5 communities at each time-stamp for this
dataset. However, as we observe from Fig 19, the birth of several new communities was
detected by the MKSC algorithm. We observe the appearance of disciplines like Speech Recog-
nition and Computer Vision as distinguishable and distinct communities (in comparison to
Supervised Learning Techniques) in 1991 and 1992 respectively. Fig 19 illustrates that the Net-
gram tool also detected the inception of NIPS Workshops in the year 1993. By the year 1998,
we have specialized disciplines like Neural Networks, Robotics, Kernel Methods and Bayesian
Methods which are combinations of Supervised Learning Techniques and Unsupervised
Learning Techniques as observed from Fig 19.

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 18 / 24

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.wunderground.com/

Fig 17. Visualization of evolution of communities generated by Evolutionary k-means [23] method
using the Netgram tool for the Reality dataset.Wemostly observe continuation of communities. However,
communities C1 andC3 both disappear at time-stamp T2 and new communitiesNewC4 andNewC5 appear
at time-stamp T3. By time-stamp T14 all communities merge into branches of community C2. New
communities NewC6 andNewC7 appear at time-stamps T18 & T32 respectively.

doi:10.1371/journal.pone.0137502.g017

Fig 18. Visualization of evolution of communities generated by the Louvain [5] method using the
Netgram tool for the Big dataset.We can observe significant events like merge, split, death and shrinkage
of communities. For example, we can observe the split of communities C7 andC8 at time-stamp T2 and T3

respectively. Similarly, we can observe a merge event for clusterC1 at time T4. We observe a general pattern
of shrinkage for most of the communities in this dataset.

doi:10.1371/journal.pone.0137502.g018

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 19 / 24

Since we use a TF-IDF model [40] to obtain the word-word graph on which we perform the
community detection for the NIPS dataset, we can identify the top words (based on TF-IDF
[40]) in these communities. In Figs 20 and 21, we showcase these top words corresponding to
the communities detected by MKSC algorithm [28, 29].

Weather
For the weather dataset for each day we gathered information about attributes like maximum,
minimum and mean temperature, dew point, humidity, sea level pressure, visibility, wind
speed respectively and precipitation and wind direction for each city. The 23 European cities
for which the data was gathered included Amsterdam, Antwerpen, Athens, Berlin, Brussels,
Dortmund, Dublin, Eindhoven, Frankfurt, Groningen, Hamburg, Liege, Lisbon, London,

Fig 19. Visualization of evolution of communities for the NIPS dataset by Netgram toolkit.

doi:10.1371/journal.pone.0137502.g019

Fig 20. Word clouds for top words in the communities detected by MKSCmethod [28, 29] over the first
few time-stamps for the NIPS dataset.

doi:10.1371/journal.pone.0137502.g020

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 20 / 24

Madrid, Milan, Nantes, Paris, Prague, Rome, Toulouse, Vienna and Zurich. We run the MKSC
[28, 29] algorithm to obtain the communities for different time-stamps. The MKSC technique
takes into account temporal smoothness [19] using the memory. Fig 22 depicts the result
obtained for the weather dataset using MKSC algorithm.

Initially community C1 consists of all the 23 European cities. However, after beginning of
April (T13) cluster C1 splits into 2 or more prominent communities for all later time-stamps.
This suggests that winter pattern in most of the European cities are nearly same. During the
first week of April (T13) the smaller cluster comprises cities like Milan, Rome, Nantes, Paris,
Prague, Toulouse and Vienna which indicated that outbreak of spring in these cities are similar
to each other and different from other European cities. During mid May (T19), we observe 3
communities where one cluster was just the city of Dublin, the other 2 clusters consisted of
Amsterdam, Antwerpen, Brussels, Berlin, Dortmund, Eindhoven, Frankfurt, Groningen, Ham-
burg, Liege, London, Nantes, Paris and Athens, Lisbon, Madrid, Milan, Prague, Rome, Tou-
louse, Vienna, Zurich respectively. This clustering information clearly distinguishes the
weather pattern of western European cities from cities of southern Europe (except Prague).

The Netgram tool is available for usage at http://www.esat.kuleuven.be/stadius/ADB/mall/
downloads/Netgram_Tool.zip.

Conclusion
In this paper we proposed a visualization toolkit Netgram which can be used to depict the evo-
lution of communities in dynamic networks over time. Netgram was used to illustrate the
occurrence of significant events like birth, death, merge, split, expansion, shrinkage and contin-
uation of communities over time. Netgram can be used as a post-processing step to any evolu-
tionary clustering algorithm. Netgram provides a simple line-based visualization tool for
tracking the evolution of communities for various datasets. The tracking of the evolution of
communities was performed in such a way that there were only a few line cross-overs and effi-
cient screen space usage (since we used dashed lines). We proposed a greedy solution to have

Fig 21. Word clouds for top words in the communities detected by MKSCmethod [28, 29] over the last
few time-stamps for the NIPS dataset.

doi:10.1371/journal.pone.0137502.g021

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 21 / 24

http://www.esat.kuleuven.be/stadius/ADB/mall/downloads/Netgram_Tool.zip
http://www.esat.kuleuven.be/stadius/ADB/mall/downloads/Netgram_Tool.zip

fewer line cross-overs in comparison to the plot obtained by using the original order or parti-
tions (O) as provided by the evolutionary clustering algorithm.

Acknowledgments
This work was supported by EU: ERC AdG A-DATADRIVE-B (290923), Research Council
KUL: GOA/10/-/09 MaNet, CoE PFV/10/002 (OPTEC), BIL12/11T; PhD/Postdoc grants-
Flemish Government; FWO: projects: G.0377.12 (Structured systems), G.088114N (Tensor
based data similarity); PhD/Postdoc grants; IWT: projects: SBO POM (100031); PhD/Postdoc
grants; iMinds Medical Information Technologies SBO 2014-Belgian Federal Science Policy
Office: IUAP P7/19 (DYSCO, Dynamical systems, control and optimization, 2012-2017).

Author Contributions
Conceived and designed the experiments: RM JS. Performed the experiments: RM. Analyzed
the data: RM RL. Contributed reagents/materials/analysis tools: RM. Wrote the paper: RM JS.

References
1. Crandall D., Cosley D., Huttenlocher D., Kleinberg J. and Suri S. (2008) Feedback effects between sim-

ilarity and social influence in online communities. In Proc. of KDD, pp. 160–168.

2. Jeong H., Tombor B., Albert R., Oltvai Z. and Barabási A. (2000) The large scale organization of meta-
bolic networks, Nature 407 (6804):651–654. doi: 10.1038/35036627 PMID: 11034217

3. Barabási A., Jeong H., Neda E., Ravasz A. and Vicsek T. (2002) Evolution of social network of scientific
collaborations. Physica A: Statistical Mechanics and its Applications, 311 (3-4):590–614. doi: 10.1016/
S0378-4371(02)00736-7

4. Selcuk A. A., Uzun E. and Pariente M. R. (2008) A Reputation-based trust management system for p2p
networks. I. J. Network Security, 6(2): 227–237.

Fig 22. Visualization of evolution of clusters obtained using MKSC [28] algorithm for the weather
dataset by Netgram toolkit. The y-axis showcases that all the 23 European cities belong to one cluster C1
at time T1. The clusterC1 splits into 2 or more clusters at later time-stamps. But, since all these splitted
clusters originate from C1 and the set of cities (nodes) remain constant, they are plotted with the same colour
as C1. We provided ρ = 0.5 and ν = 0.1 as parameters to visualize only significant events and for all time-
stamps we observe that jρ − μθj � ν. Thus, θt = ρ = 0.5 for all time-stamps t < 40 and is kept constant. So, we
don’t specify the constant threshold value on the x-axis and prevent the visualization palette from getting
over-crowded.

doi:10.1371/journal.pone.0137502.g022

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 22 / 24

http://dx.doi.org/10.1038/35036627
http://www.ncbi.nlm.nih.gov/pubmed/11034217
http://dx.doi.org/10.1016/S0378-4371(02)00736-7
http://dx.doi.org/10.1016/S0378-4371(02)00736-7

5. Blondel V, Guillaume J, Lambiotte R, Lefebvre L. (2008) Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Experiment, 10:P10008. doi: 10.1088/1742-5468/
2008/10/P10008

6. Girvan M, NewmanME (2002) Community structure in social and biological networks. PNAS, 99
(12):7821–7826. doi: 10.1073/pnas.122653799 PMID: 12060727

7. Fortunato S. (2009) Community detection in graphs. Physics Reports 486:75–174. doi: 10.1016/j.
physrep.2009.11.002

8. Clauset A, NewmanME, Moore C. (2004) Finding community structure in very large scale networks.
Physical Review E, 70(066111).

9. Rosvall M, Bergstrom C. (2008) Maps of randomwalks on complex networks reveal community struc-
ture. PNAS, 105:1118–1123. doi: 10.1073/pnas.0706851105 PMID: 18216267

10. Lancichinetti A, Fortunato S. (2009) Community detection algorithms: a comparitive analysis. Physical
Review E, 80(056117).

11. Lancichinetti A, Radicchi F, Ramasco J, Fortunato S. (2011) Finding statistically significant communi-
ties in networks. PLOS ONE, 6(e18961). doi: 10.1371/journal.pone.0018961 PMID: 21559480

12. Alzate C, Suykens JAK. (2009) Multiway spectral clustering with out-of-sample extensions through
weighted kernel PCA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2):335–
347. doi: 10.1109/TPAMI.2008.292

13. Mall R, Langone R, Suykens JAK. (2013) Kernel Spectral Clustering for Big Data Networks. Entropy
(Special Issue: Big Data), 15(5):1567–1586.

14. Mall R, Langone R, Suykens JAK. (2013) Self-Tuned Kernel Spectral Clustering for Large Scale Net-
works. In Proceedings of the IEEE International Conference on Big Data (IEEE BigData
2013), pp. 385–393.

15. Mall R, Langone R, Suykens JAK. (2014) Multilevel Hierarchical Kernel Spectral Clustering for Real-
Life Large Scale Complex Networks. PLoS ONE, 9(6): e99966. doi: 10.1371/journal.pone.0099966
PMID: 24949877

16. Mall R, Suykens JAK (2013) Sparse Reductions for Fixed-Size Least Squares Support Vector
Machines on Large Scale Data. In Proceedings of 17th Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining (PAKDD 2013), pp. 161–173.

17. Xie J, Kelley S, Szymanski BK. (2013) Overlapping community detection in networks: the state of the
art and comparative study. ACMComputing Surveys 45(4), Article 43. doi: 10.1145/2501654.2501657

18. Aynaud T, Fleury E, Guillaume JL, Wang Q. (2013) Communities in Evolving Networks: Definitions,
Detection and Analysis Techniques. Dynamic on and of Complex Networks, Spring, vol 2, 159–200.

19. Chakrabarti D, Kumar R, Tomkins A. (2006) Evolutionary clustering. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD 2006), pp. 554–560.

20. Chi Y, Song X, Zhou D, Hino K, Tseng BL. (2007) Evolutionary spectral clustering by incorporating tem-
poral smoothness In Proceedings of KDD, pp. 153–162.

21. Rosvall M, Bergstrom C. (2010) Mapping change in large networks. PLoS ONE, 5(1), e8694. doi: 10.
1371/journal.pone.0008694 PMID: 20111700

22. Greene D, Doyle D, Cunningham P. (2010) Tracking the evolution of communities in dynamic social
networks. In Proc. of International Conference on Advances in Social Network Analysis and Mining.

23. Xu KS, Kliger M, Hero AO III. (2014) Adaptive Evolutionary Clustering. Data Mining and Knowledge
Discovery, 28(2), 304–336. doi: 10.1007/s10618-012-0302-x

24. Palla G, Barabási AL, Vicsek T, Hungary B. (2007) Quantifying social group evolution, Nature Letters
446. doi: 10.1038/nature05670

25. Lin YR, Chi Y, Zhu S, SundaramH, Tseng BL. (2009) Analyzing communities and their evolutions in
dynamic social networks. ACM Transactions on Knowledge Discovery in Data 3(2).

26. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. (2010) Community structure in time-depen-
dent, multiscale and multiplex networks. Science 328(5980), pp. 876–878. doi: 10.1126/science.
1184819 PMID: 20466926

27. Sun J, Faloutsos C, Papadimitriou S, Yu PS. (2007) Graphscope: parameter-free mining of large time-
evolving graphs. In Proceedings of the 13th ACM SIGKDD International conference on Knowledge dis-
covery and Data mining (KDD 2007), pp. 687–696.

28. Langone R, Alzate C, Suykens JAK. (2013) Kernel Spectral Clustering with Memory Effect. Physica A
392(10), pp. 2588–2606. doi: 10.1016/j.physa.2013.01.058

29. Langone R, Mall R, Suykens JAK. (2014) Clustering data over time using kernel spectral clustering with
memory. In Proceedings of IEEE SSCI CIDM, pp. 1–8.

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 23 / 24

http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1073/pnas.0706851105
http://www.ncbi.nlm.nih.gov/pubmed/18216267
http://dx.doi.org/10.1371/journal.pone.0018961
http://www.ncbi.nlm.nih.gov/pubmed/21559480
http://dx.doi.org/10.1109/TPAMI.2008.292
http://dx.doi.org/10.1371/journal.pone.0099966
http://www.ncbi.nlm.nih.gov/pubmed/24949877
http://dx.doi.org/10.1145/2501654.2501657
http://dx.doi.org/10.1371/journal.pone.0008694
http://dx.doi.org/10.1371/journal.pone.0008694
http://www.ncbi.nlm.nih.gov/pubmed/20111700
http://dx.doi.org/10.1007/s10618-012-0302-x
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1126/science.1184819
http://www.ncbi.nlm.nih.gov/pubmed/20466926
http://dx.doi.org/10.1016/j.physa.2013.01.058

30. Pratt PJ. (2005) A Guide To SQL, Seventh Edition, Thomson Course Technology, ISBN 978-0-619-
21674-0.

31. Jaccard P. (1912) The distribution of flora in the alpine zone. New Phytologist, 11, pp. 37–50. doi: 10.
1111/j.1469-8137.1912.tb05611.x

32. Yu CT, MengW. (1998) Principles of Database Query Processing for Advanced Applications, Morgan
Kaufmann, ISBN 978-1-55860-434-6.

33. Murtagh F. (1984) Counting dendograms: A survey, Discrete Applied Mathematics, 7(2), pp. 191–199.
doi: 10.1016/0166-218X(84)90066-0

34. Mall R, Langone R, Suykens, JAK. (2014) Agglomerative Hierarchical Kernel Spectral Data Clustering,
IEEE Symposium on Computational Intelligence and Data Mining (IEEE SSCI CIDM), pp. 9–16.

35. Lamirel JC, Cuxac P, Mall R, Safi G. (2011) A New Efficient and Unbiased Approach for Clustering
Quality Evaluation, PAKDDWorkshops, pp. 209–220.

36. Tanahashi Y, Hsueh CH, Ma K. (2015) An Efficient Framework for Generating Storyline Visualizations
from Streaming Data, IEEE Transactions on Visualization & Computer Graphics, doi: 10.1109/TVCG.
2015.2392771

37. Tanahashi Y and Ma K. (2012) Design Considerations for optimal storyline visualizations, IEEE Trans-
actions on Visualization and Computer Graphics, 18(2), pp. 2679–2688.

38. Eagle N, Pentland AS, Lazer D. (2009) Inferring social network structure using mobile phone data,
PNAS, 106(1), pp. 15274–15278. doi: 10.1073/pnas.0900282106 PMID: 19706491

39. Bache K, Lichman M. (2013) UCI Machine Learning Repository, Irvine, CA: University of California,
School of Information and Computer Science.

40. Robertson S. (2004) Understanding inverse document frequency: On theoretical arguments for IDF,
Journal of Documentation 60(5), pp. 503–520. doi: 10.1108/00220410410560582

Netgram Visualization Tool

PLOS ONE | DOI:10.1371/journal.pone.0137502 September 10, 2015 24 / 24

http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1016/0166-218X(84)90066-0
http://dx.doi.org/10.1109/TVCG.2015.2392771
http://dx.doi.org/10.1109/TVCG.2015.2392771
http://dx.doi.org/10.1073/pnas.0900282106
http://www.ncbi.nlm.nih.gov/pubmed/19706491
http://dx.doi.org/10.1108/00220410410560582

