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Hyperentanglement concentration 
of nonlocal two‑photon six‑qubit 
systems via the cross‑Kerr 
nonlinearity
Qian Liu1*, Guo‑Zhu Song2, Tian‑Hui Qiu1, Xiao‑Min Zhang1, Hong‑Yang Ma1 & Mei Zhang3

We present an efficient hyperentanglement concentration protocol (hyper-ECP) for two-photon 
six-qubit systems in nonlocal partially hyperentangled Bell states with unknown parameters. In our 
scheme, we use two identical partially hyperentangled states which are simultaneously entangled 
in polarization and two different longitudinal momentum degrees of freedom (DOFs) to distill the 
maximally hyperentangled Bell state. The quantum nondemolition detectors based on the cross-Kerr 
nonlinearity are used to realize the parity checks of two-photon systems in three DOFs. The hyper-ECP 
can extract all the useful entanglement source, and the success probability can reach the theory limit 
with the help of iteration. All these advantages make our hyper-ECP useful in long-distance quantum 
communication in the future.

As one of the striking features of quantum information, entanglement, has been widely used in quantum 
information processing, such as quantum teleportation1, controlled teleportation2,3, quantum dense coding4,5, 
quantum key distribution6–9, quantum secret sharing10–12, quantum state sharing13,14, quantum secure direct 
communication15–20, and so on. Single photons are interesting candidates for quantum communication, and they 
can carry quantum information in several degrees of freedom (DOFs). The entanglement in which photons are 
simultaneously entangled in more than one DOF could be called hyperentanglement. Many kinds of hyperen-
tanglement have been discussed, such as polarization-momentum21, polarization-time-bin22, polarization-fre-
quency23, and polarization-orbital-angular-momentum24. The hyperentangled Bell states in both the polarization 
and two different longitudinal momentum modes DOFs have been introduced in experiments25,26. Hyperentan-
glement of photon system can increase both the channel capacity of long-distance quantum communication24and 
its security. It can also be used on complete Bell states analysis21,22,27,28, high-speed quantum computation29,30, 
superdense coding31, quantum key distribution32, etc.

However, the entanglement and the fidelity of the entangled systems inevitably degrade because of the interac-
tion with the environment during the storage and transmission. One of the methods to depress the noise effect on 
entangled systems is entanglement concentration. It can be used to extract the maximally entangled state from a 
large number of less entangled pure states. In 1996, Bennett et al.33 proposed the first entanglement concentration 
protocol (ECP) for two-photon system, which is called as Schmidt projection method. They utilized collective 
measurement to obtain the coefficient information. As it requires the collective measurement on multiple parti-
cles simultaneously, it is difficult to manipulate in experiment. Later, Bose et al.34 designed an efficient ECP with 
entanglement swapping. In 2000, Shi et al.35 proposed an ECP based on entanglement swapping and collective 
two-qubit unitary evolution. In 2001, Yamamoto et al.36 and Zhao et al.37 independently presented two ECPs 
assisted by linear-optical elements and postselection. In 2008, Sheng et al.38 presented an interesting ECP that 
exploited cross-Kerr nonlinearity, which had a higher efficiency and yield than those with linear optical elements 
with the help of iteration. Motivated by those innovation works, many interesting ECPs have been presented and 
discussed for different physical systems and different entangled states39–48.

The concentration of hyperentangled states also has been extensively studied in recent years. In 2013, Ren, 
Du, and Deng49 gave the first hyperentanglement concentration protocol (hyper-ECP) for two-photon four-
qubit systems with linear optics. In 2014, Ren and Long50 proposed another hyper-ECP for nonlocal partially 
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hyperentangled Bell states in polarization-spatial mode DOFs assisted by nonlinear interactions. In 2015, Li 
and Ghose51 presented two hyper-ECPs for time-bin and polarization hyperentangled states with unknown 
parameters and known parameters, respectively. In 2016, Cao et al.52 presented a hyper-ECP utilizing photonic 
module system. In 2017, Wang and Ren et al. gave two efficient hyper-ECPs for polarization-spatial-time-bin 
hyperentangled two-photon six-qubit systems53,54. The hyper-ECP for three-photon partially hyperentangled 
GHZ states in polarization, spatial-mode and time-bin DOFs with linear optics was also proposed in the next 
year55. The hyper-ECP for polarization-spatial-time-bin hyperentangled Bell states using cross-Kerr nonlinearity 
has also been discussed56. Although many hyper-ECPs have been presented, the concentration of two-photon 
six-qubit hyperentangled Bell states in both the polarization and the double longitudinal momentum modes 
DOFs has not been researched.

In this article, we present an efficient hyper-ECP for partially hyperentangled Bell states of two-photon six-
qubit systems. Two photons considered in our hyper-ECP are simultaneously entangled in polarization and 
two longitudinal momentum DOFs, which is not taken into account in other hyper-ECPs. We use the quantum 
nondemolition detectors (QNDs) to check the parity of the two-photon in three DOFs to implement our proto-
col, and therefore the unsuccessful instances in each round can be reused in the next concentration round. The 
success probability in our scheme can be greatly improved and the maximum of the success probability is nearly 
100% with the help of iteration. Moreover, it does not require that the parties know the exact information about 
the partially hyperentangled Bell states. These good features make our scheme efficient and useful for quantum 
information processing involving hyperentanglement.

Results
The hyper-ECP process for two-photon six-qubit systems The hyperentangled Bell state of two-photon six-qubit 
systems in three DOFs can be described as follows26:

Here the subscripts A and B denote the two photons. The three independent DOFs are polarization (H/V) and 
a double longitudinal momentum (r/l and E/I). H and V represent the horizontal and vertical polarization of 
photons, respectively. l (r) represents the left (right) mode and E (I) represents the external (internal) mode. The 
four Bell states in the polarization DOF of two-photon systems can be written as

and four Bell states in the first longitudinal momentum DOF are

while the four Bell states in the second longitudinal momentum DOF can be denoted as

Here |φ±�iAB ( i = P, F, S ) is the even-parity state of photons in i DOF, while |ψ±�jAB ( j = P, F, S ) is the odd-parity 
state of photons in j DOF, the superscripts P, F, and S denote the polarization, the first longitudinal momentum, 
and the second longitudinal momentum DOFs of a two-photon six-qubit system, respectively. In long-distance 
quantum communication, the maximally hyperentangled Bell state |HE6� may decay to a partially hyperentangled 
Bell state |ψ�AB after passing through the noisy channels. Here,

The parameters α ,  β ,  γ  ,  δ ,  ǫ ,  ε are unkown and satisfy the normalization condition 
|α|2 + |β|2 = |γ |2 + |δ|2 = |ǫ|2 + |ε|2 = 1.

(1)
|HE6� =

1
√
2
(|H�A|H�B + |V�A|V�B)⊗

1
√
2
(|l�A|r�B + |r�A|l�B)

⊗
1
√
2
(|I�A|I�B + |E�A|E�B).

(2)|φ±�PAB =
1
√
2
(|H�A|H�B ± |V�A|V�B),

(3)|ψ±�PAB =
1
√
2
(|H�A|V�B ± |V�A|H�B),

(4)|φ±�FAB =
1
√
2
(|l�A|l�B ± |r�A|r�B),

(5)|ψ±�FAB =
1
√
2
(|l�A|r�B ± |r�A|l�B),

(6)|φ±�SAB =
1
√
2
(|I�A|I�B ± |E�A|E�B),

(7)|ψ±�SAB =
1
√
2
(|I�A|E�B ± |E�A|I�B).

(8)
|ψ�AB =(α|H�A|H�B + β|V�A|V�B)⊗ (γ |l�A|r�B + δ|r�A|l�B)

⊗ (ǫ|I�A|I�B + ε|E�A|E�B).
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In order to realize the hyperentanglement concentration of the unknown partially hyperentangled Bell state 
|ψ�AB , we use the QNDs shown in Figs. 1, 2, and 3. The P-QND shown in Fig. 1 has been described in Ref.57, and 
the other two QNDs are improved based on the schemes shown in Ref.57. Based on the principle of the cross-Kerr 
effect (see the Methods section), if one let the two photons A and B pass through the circuit as P-QND shown in 
Fig. 1, they can only get two measurement outcomes |α� and |αe±iθ � for the coherent probe beam, with the cor-
responding polarization states |H�A|H�B ( |V�A|V�B ) and |H�A|V�B ( |V�A|H�B ). It is essentially the polarization 
parity-check measurement of photons, which can be used to distinguish the even-parity states |φ±�P from the 
odd-parity states |ψ±�P . F-QND is the first longitudinal momentum parity-check QND, which can be used to 
distinguish the first longitudinal momentum states |r�A|r�B ( |l�A|l�B ) from |r�A|l�B ( |l�A|r�B ) by different phase 
shifts 0 and ±θ of the coherent state. The phase shift of the coherent state for the second longitudinal momentum 
states |I�A|I�B and |E�A|E�B is 0, different from phase shift ±θ of the states |I�A|E�B and |E�A|I�B , which can be 
realized in S-QND, the second longitudinal momentum parity-check QND.   

The basic principle of our hyper-ECP for two-photon six-qubit systems in an unknown partially hyperen-
tangled state is shown in Fig. 4. Two photon pairs AB and CD shared by Alice and Bob can be in an identical 
partially hyperentangled state when they were produced from the same source and passed through the same 
channel. Thus the state of the photons CD can be denoted as

Figure 1.   Schematic diagram of the principle of P-QND constructed by the cross-Kerr nonlinearity, one can 
distinguish the states |H�A|H�B and |V�A|V�B from the states |H�A|V�B and |V�A|H�B with different phase shifts 
±θ and 0 of the coherent state, respectively. |X��X| is the homodyne measurement to distinguish different phase 
shifts of the coherent probe beam. PBS denotes the polarizing beam splitter which is used to reflect the vertical 
(V) polarization photon and transmit the horizontal (H) polarization photon, respectively.

Figure 2.   Schematic diagram of the principle of the F-QND. One can distinguish the states |rr� and |ll� from |lr� 
and |rl� by the different phase shifts 0 and ±θ of the coherent state.
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Before the photons CD are sent to Alice and Bob, the bit-flip operations are performed on the polarization mode 
of the photons by the half-wave plates R90 . The bit-flip operation of the double longitudinal momentum modes 
of photon C can be achieved by the exchange of the modes |r,E�C and |l, I�C , |r, I�C and |l,E�C , respectively. The 
bit-flip operation of the double longitudinal momentum modes of photon D can be achieved by the same way. 
Then Bob lets the photons B and D pass through the P-QND, F-QND and S-QND, successively. After the opera-
tions above, the whole state of the four photons and three coherent states can evolve into

(9)
|ψ�CD =(α|H�C |H�D + β|V�C |V�D)⊗ (γ |l�C |r�D + δ|r�C |l�D)

⊗ (ǫ|I�C |I�D + ε|E�C |E�D).

Figure 3.   Schematic diagram of S-QND, which is used to distinguish the states |II� and |EE� from |IE� and |EI� 
by different phase shifts 0 and ±θ of the coherent state.

Figure 4.   Schematic diagram of our hyper-ECP for a two-photon six-qubit partially hyperentangled Bell 
state with unknown parameters resorting to cross-Kerr nonlinearity. S1 and S2 are two identical partial 
hyperentanglement sources. R90 and R45 are half-wave plates, which are used to rotate the polarization of the 
state by 90o and 45o , respectively. The 50:50 BS is used to accomplish the Hadamard operation for the two 
longitudinal momentum modes. PBS denotes a polarizing beam splitter which is used to transmit the horizontal 
polarization component and reflect the vertical polarization component. D represents the single-photon 
detector.
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The corresponding relation between the states of ABCD, the parity check measurement results of three QNDs 
and the probability P(1)i  ( i = 1, 2, 3, 4, 5, 6, 7, 8 ) is shown in Table 1. The superscript “(1)” denotes the first round 
of concentration. According to the Homodyne measurement results of three QNDs, the eight collapsed states of 
four-photon system can be divided into four cases.

In the first case, all the three parity check measurements give even-parity results. The remaining state of the 
four-photon system can be described as

The probability that Alice and Bob get the above state is P(1)1 = 8|αβγ δǫε|2.
Alice and Bob use R45 to rotate the polarization of the state by 45◦ . BSs are used to perform the Hadamard 

operation on the double longitudinal momentum DOFs of the state. Then the selected term shown in Eq. (11) 
is transformed into

The last step is to distinguish the photons C and D in different polarization and different longitudinal momen-
tum DOFs. The PBSs are used to transmit the horizontal polarization component and reflect the vertical polari-
zation component. The corresponding relation between the measurement results and the states of CD is shown 
in Table 2. From Table 2, one can see that if both the single-photon detectors DC1 and DD1 click, the photon pair 
AB is left in the state

That is, the two-photon system AB is projected into the ideal maximally hyperentangled Bell state. Finally, 
according to the results of the measurement, one can perform corresponding phase-flip operations on the qubits 
to achieve the ideal state. The phase-flip operations on the qubits can be accomplished by putting conditional 
half-wave plates in the appropriate paths of photon. The corresponding relation between the final collapsed 
hyperentangled Bell states of photon pair AB, the half-wave plates and the relevant paths of photon is shown 
in Table 3. R0 denotes the half-wave plate set at 0o which performs the operation |H� → |H� , |V� → −|V� on 
the polarization mode of photons. The half-wave plates R90 performs the bit-flip operation on the polarization 
mode of the photons. If the photon pair AB is in the hyperentangled Bell state |φ−�PAB|ψ−�FAB|φ−�SAB , Alice can 

(10)

|��ABCD|α�1|α�2|α�3
→ [(α2|H�A|V�C |H�B|V�D + β2|V�A|H�C |V�B|H�D)|α�1
+ αβ(|H�A|H�C |H�B|H�D|αeiθ �1 + |V�A|V�C |V�B|V�D|αe−iθ �1)]
⊗ [γ 2|l�A|r�C |r�B|l�D|αeiθ �2 + δ2|r�A|l�C |l�B|r�D|αe−iθ �2
+ γ δ(|l�A|l�C |r�B|r�D|α�2 + |r�A|r�C |l�B|l�D)|α�2]
⊗ [ǫ2|I�A|E�C |I�B|E�D|αe−iθ �3 + ε2|E�A|I�C |E�B|I�D|αeiθ �3
+ ǫε(|I�A|I�C |I�B|I�D + |E�A|E�C |E�B|E�D)|α�3].

(11)

|�1�ABCD =
αβ

√

P
(1)
1

(|H�A|H�C |H�B|H�D + |V�A|V�C |V�B|V�D)

⊗ γ δ(|l�A|l�C |r�B|r�D + |r�A|r�C |l�B|l�D)
⊗ ǫε(|I�A|I�C |I�B|I�D + |E�A|E�C |E�B|E�D).

(12)

|� ′
1�ABCD =

1
√
2
(|φ+�PAB|φ

+�PCD + |φ−�PAB|ψ
+�PCD)

⊗
1
√
2
(|ψ+�FAB|φ

−�FCD + |ψ−�FAB|ψ
−�FCD)

⊗
1
√
2
(|φ+�SAB|φ

+�SCD + |φ−�SAB|ψ
+�SCD).

(13)|ψf �AB = |φ+�PAB|ψ
+�FAB|φ

+�SAB.

Table 1.   The relation between the states of four photons, the parity check measurement results and the 
probability.

State of ABCD P-QND F-QND S-QND P
(1)

i

|�1�ABCD Even Even Even 8|αβγ δǫε|2

|�2�ABCD Odd Even Even 4|γ δǫε|2(|α|4 + |β|4)

|�3�ABCD Even Odd Even 4|αβǫε|2(|γ |4 + |δ|4)

|�4�ABCD Even Even Odd 4|αβγ δ|2(|ǫ|4 + |ε|4)

|�5�ABCD Odd Odd Even 2|ǫε|2(|α|4 + |β|4)(|γ |4 + |δ|4)

|�6�ABCD odd even odd 2|γ δ|2(|α|4 + |β|4)(|ǫ|4 + |ε|4)

|�7�ABCD even odd odd 2|αβ|2(|γ |4 + |δ|4)(|ǫ|4 + |ε|4)

|�8�ABCD odd odd odd (|α|4 + |β|4)(|γ |4 + |δ|4)(|ǫ|4 + |ε|4)
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accomplish the phase-flip operations for all the three modes by putting R0 in the paths |l, I� and |r,E� , R90 , R0 in 
the paths |r, I� and |l,E� of the photon A, respectively.

In the second case, one of the parity check measurement results is odd-parity result. The four-photon system 
is projected into the state |�2�ABCD , |�3�ABCD or |�4�ABCD , respectively, with the corresponding probability P(1)i  
( i = 2, 3, 4 ). We take the state |�2�ABCD as an example. Here

Alice and Bob perform Hadamard operations on the three DOFs of photons C and D, respectively, and then the 
state |�2�ABCD can be transformed into the state |� ′

2�ABCD . Here

(14)

|�2�ABCD =
1

√

P
(1)
2

(α2|H�A|V�C |H�B|V�D + β2|V�A|H�C |V�B|H�D)

⊗ γ δ(|l�A|l�C |r�B|r�D + |r�A|r�C |l�B|l�D)
⊗ ǫε(|I�A|I�C |I�B|I�D + |E�A|E�C |E�B|E�D).

(15)

|� ′
2�ABCD =

1
√
2
[(α(2)|H�A|H�B + β(2)|V�A|V�B)|φ+�PCD

+ (α(2)|H�A|H�B − β(2)|V�A|V�B)|ψ+�PCD]

⊗
1
√
2
(|ψ+�FAB|φ

−�FCD + |ψ−�FAB|ψ
−�FCD)

⊗
1
√
2
(|φ+�SAB|φ

+�SCD + |φ−�SAB|ψ
+�SCD).

Table 2.   The relation between the states of photon pair CD and the measurement results.

States of CD Detectors

|φ±�P
CD

|φ±�F
CD

|φ±�S
CD

DC1DD1 DC2DD2 DC3DD3 DC4DD4

DC5DD5 DC6DD6 DC7DD7 DC8DD8

|φ±�P
CD

|φ±�F
CD

|ψ±�S
CD

DC1DD3 DC3DD1 DC6DD8 DC8DD6

DC2DD4 DC4DD2 DC5DD7 DC7DD5

|φ±�P
CD

|ψ±�F
CD

|φ±�S
CD

DC2DD7 DC4DD5 DC5DD4 DC7DD2

DC1DD8 DC3DD6 DC6DD3 DC8DD1

|φ±�P
CD

|ψ±�F
CD

|ψ±�S
CD

DC2DD5 DC4DD7 DC5DD2 DC7DD4

DC1DD6 DC3DD8 DC6DD1 DC8DD3

|ψ±�P
CD

|ψ±�F
CD

|φ±�S
CD

DC1DD2 DC3DD4 DC6DD5 DC8DD7

DC2DD1 DC4DD3 DC5DD6 DC7DD8

|ψ±�P
CD

|ψ±�F
CD

|ψ±�S
CD

DC2DD3 DC4DD1 DC5DD8 DC7DD6

DC1DD4 DC3DD2 DC6DD7 DC8DD5

|ψ±�P
CD

|ψ±�F
CD

|φ±�S
CD

DC1DD7 DC4DD6 DC5DD3 DC7DD1

DC2DD8 DC3DD5 DC6DD4 DC8DD2

|ψ±�P
CD

|ψ±�F
CD

|ψ±�S
CD

DC1DD5 DC3DD7 DC6DD2 DC8DD4

DC2DD6 DC4DD8 DC5DD1 DC7DD3

Table 3.   The relation between the states of photon pair AB , the half-wave plates and the relevant paths.

State of AB Half-wave plates Paths

|φ+�P
AB

|ψ+�F
AB

|φ+�S
AB

none none

|φ+�P
AB

|ψ+�F
AB

|φ−�S
AB

R0,R90,R0 |r,E� , |l,E�

|φ+�P
AB

|ψ−�F
AB

|φ+�S
AB

R0,R90,R0 |r, I� , |r,E�

|φ+�P
AB

|ψ−�F
AB

|φ−�S
AB

R0,R90,R0 |r, I� , |l,E�

|φ−�P
AB

|ψ+�F
AB

|φ+�S
AB

R0 all the four paths

|φ−�P
AB

|ψ+�F
AB

|φ−�S
AB

R0 |r, I� , |l, I�
R90,R0 |r,E� , |l,E�

|φ−�P
AB

|ψ−�F
CD

|φ+�S
AB

R0 |l, I� , |l,E�
R90,R0 |r, I� , |r,E�

|φ−�P
AB

|ψ−�F
AB

|φ−�S
AB

R0 |l, I� , |r,E�
R90,R0 |r, I� , |l,E�
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Here, α(2) = α2√
|α|4+|β|4

 and β(2) = β2√
|α|4+|β|4

 . Then according to the measurement results in Table 2, we can 
obtain the state |ψ(2)

2 �AB with or without single-photon operations, here

This is a partially hyperentangled Bell-type state with the longitudinal momentum DOFs in a maximally hyper-
entangled Bell state. For states |�3�ABCD and |�4�ABCD , one can also obtain a partially hyperentangled Bell-type 
state with two DOFs in a maximally hyperentangled Bell state. The final state of photon pair AB can be denoted as

Here, γ (2) = γ 2√
|γ |4+|δ|4

 , δ(2) = δ2√
|γ |4+|δ|4

 , ǫ(2) = ǫ2√
|ǫ|4+|ε|4

 and ε(2) = ε2√
|ǫ|4+|ε|4

 . In this condition, another 
round of the hyper-ECP process is required.

In the third case, two of the parity check measurement results give odd-parity results. The four-photon 
system is projected into the state |�5�ABCD , |�6�ABCD or |�7�ABCD . Then after the whole quantum circuit, Alice 
and Bob can get the two-photon system in the state |ψ(2)

5 �AB , |ψ(2)
6 �AB or |ψ(2)

7 �AB with or without single-photon 
operations. Here,

The corresponding probabilities are shown in Table 1. For those partially hyperentangled states, another round 
of hyper-ECP is needed.

In the last case, all the three parity check measurements give odd-parity results. Then after the whole quantum 
circuit and conditional unitary operations on photon B, the two-photon system can be projected into the partially 
hyperentangled Bell-type state |ψ(2)

8 �AB with the probability P(1)8  . Here

This state can also be used in the next round to obtain the maximally hyperentangled Bell state.
For another identical four-photon system A′B′C′D′ , the same operations are also performed on photon pairs 

A′B′ and C′D′ by Alice and Bob. Therefore, we can also obtain eight different collapsed states of photon pair A′B′ , 
and the photon pair A′B′ in less-entangled state can be used as auxiliary photons in the next round.

Improving the success probability by iteration The success of the hyperconcentration schemes is based on the 
three parity checks. When three even-parity outcomes occur, the hyperconcentration schemes succeed with 
probability P1 = P

(1)
1 = 8|αβγ δǫε|2 . Otherwise, these schemes fail. However, the other states can also be used 

to distill the maximally hyperentangled Bell state. In this subsection, we will use the auxiliary photon pair A′B′ 
to distill a maximally hyperentangled Bell state from the partially hyperentangled-type state obtained in the first 
round. That is, we will iterate the hyperentanglement concentration processes to improve the success probability, 
such method was first proposed in 200838. The principle in the next round is similar to what is shown in Fig. 4.

For the second case, the partially hyperentangled Bell-type state is only less entangled in one DOF, while the 
other two DOFs are in the desired forms. Here, we only discuss the state |ψ(2)

2 �AB in detail, while the other cases 
can be handled in the similar way. The state of the four-photon system ABA ′B ′  is |�1

2 �ABA′B′ , Here

In this case, we can just perform parity check for the less-entangled mode, hence Bob can let photons B and B ′  
just pass through the P-QND. If the outcome of the P-QND is even, the two-photon system AB can be projected 
into the maximally hyperentangled Bell state |ψf � , the success probability of this round is

For the partially hyperentangled Bell-type states |ψ3�1AB and |ψ4�1AB , the success probabilities in the second round 
are P(2)3  and P(2)4  , respectively. Here
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Given the analysis of the second round for the second case, we can see that in the mth round, the probabilities 
of success (failure) of getting the desired state from the (m− 1) th round are

Here P(m)
i,s  and P(m)

i,f  (i = 2,3,4) denote the success and failure probabilities for obtaining the maximally hyperen-
tangled state in the mth round, respectively. Then we can compute the success probability Pi (i = 2,3,4) after n 
(n > 2) rounds for the second case,

For the third case, the partially hyperentangled Bell-type state is less entangled in two DOFs, while the third 
DOF is in maximally entangled state. Thus, in the second round, we will pay attention to two QNDs. Here, we 
will discuss the state |ψ(2)

5 �AB in detail, the other cases can be handled in the similar way. If the photons B and 
B ′  are in even-parities in polarization and the first longitudinal momentum DOF, we can obtain the maximally 
hyperentangled Bell state |ψf � with the probability

For the state |ψ(m)
5 �AB which corresponds to two odd-parity results in the (m− 1) th round, the probabilities of 

the four parity check results are

The subscripts “ee”, “eo”, “oe” and “oo” indicate the parity check results for two QNDs, with “e” being even and 
“o” being odd. In this case, the success probability of the mth (m > 2) round is

We can easily achieve the total success probability after n (n > 2) rounds

For the partially hyperentangled Bell-type states |ψ(2)
6 �AB and |ψ(2)

7 �AB , the corresponding success probabilities are

For the partially hyperentangled Bell-type states |ψ(m)
6 �AB and |ψ(m)

7 �AB , the probabilities of the four parity check 
results are

The corresponding success probabilities of the mth (m > 2) round are
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By iterating the hyperconcentration process n (n > 2)times, the total success probability for each condition is

For the last case, the principle of this step is the same as the first round, except that the photon pair CD is replaced 
by A′B′ . Thus, using the whole quantum circuit shown in Fig. 4, we can achieve the maximally hyperentangled 
Bell state |ψf � with the probability

The success probability of the 3th round is

Then we can obtain the success probability of the mth (m > 3) round for the last case

Here, a  = b  = c ∈ {2, 3, 4} and satisfy the limitation a < b , while i  = j  = k ∈ {2, 3, 4}.
The total success probability for the last case is

Through n rounds of our hyper-ECP, the success probability can be improved as

The relation between the total success probability, the initial parameter and the iteration number is shown in 
Fig. 5. The four plots show the success probabilities for n = 1, 2, 3, 4 iterations. The parameters of the arbitrary 
partially hyperentangled Bell states are chosen as |γ | = |ǫ| . As shown in Fig. 5, we can find that, the total success 
probability is correlated to the six parameters of the partially hyperentangled Bell state, and with the iteration of 
our hyper-ECP process, the success probability P will be greatly improved. The maximum of the success prob-
ability can reach 95.4% after n = 6 iterations, and it can be improved to nearly 100% by iteration.

Discussion
We have proposed an efficient hyper-ECP for partially hyperentangled Bell states in the polarization and double 
longitudinal momentum DOFs resorting to the cross-Kerr nonlinearity. We focus on the case that the param-
eters of the partially hyperentangled Bell state are unknown to the two legitimate users. In our hyper-ECP, two 
identical partially hyperentangled pairs are used to distill maximally hyperentangled Bell state. Hyperconcen-
tration is realized with the three parity checks, where one for the polarization state and the others two are for 
double longitudinal momentum mode. Both the users are required to perform some quantum operations on 
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their photons. After the first hyperconcentration round, the protocol has a certain success probability P1 , and the 
success probability can be greatly improved by implementing more rounds of hyperconcentration.

In our hyper-ECP, the cross-Kerr nonlinearity is developed to structure the QNDs to check the parity of the 
two-photon in three DOFs. Thus, it will affect the practical efficiency of our hyper-ECP. Although a lot of works 
have been reported on cross-Kerr nonlinearity58,59, we should acknowledge that the cross-Kerr effect in the 
single-photon regime is a big challenge with current technology60–62. However, recent researches show that the 
use of cross-Kerr effect is promising in the not so distant future63–72. For example, in 2011, He et al.63 researched 
the interaction between continuous-mode coherent states and single photons, and they indicated that the effects 
influence the cross-phase modulation process and let the treatment of single-photon-coherent-state interactions 
more practical. In the same year, Feizpour et al.64 showed that a cross-Kerr phase shift is capable of being ampli-
fied to an observable value by using weak-value amplification. In 2016, Beck et al.70 achieved a large conditional 
cross-phase shift of π/6 between a retrieved signal and control photons. In the same year, Tiarks et al.71 dem-
onstrated the generation of a π phase shift with a single-photon pluse. In 2019, Sinclair et al.72 reported strong 
cross-phase modulation at low light levels generated by a resonant cross-Kerr nonlinearity based on Rydberg 
interactions and electromagnetically induced transparency. The nonlinear phase was measured as large as 8 
mrad per nanowatt of signal power, corresponding to a χ(3) of 10−8m2/V2 . On the other hand, in our scheme, a 
small phase shift, as long as it can be discriminated from zero, is required. All those researches indicate that our 
scheme is possible to be realized with the current experimental techniques. Moreover, other kinds of nonlinear 
interaction can also provide practicable ways to realize the needed parity check.

The hyperconcentration of the unknown partially hyperentangled Bell states in our scheme can also be 
achieved using linear optics. However, the restriction on hyperconcentration schemes based on linear optics is 
that they can not iterate and the success probabilitis are lower than those with nonlinear optics. Certainly, we 
can first perform parameter estimation and then use the hyperconcentration schemes for states with known 
parameters to get higher success probability. But in fact, the estimation of parameters consumes extra quantum 
resources. In our scheme, we can extract all the useful entanglement source, and the success probability can 
reach the theory limit with the help of iteration. Although the success probability of our scheme can be greatly 
increased, this scheme can only distill the maximal hyperentangled Bell states from less entangled pure states. 
For other kinds of decoherence, further research is required.

In summary, we have proposed an efficient hyper-ECP for partially hyperentangled states that are entangled 
in polarization and double longitudinal momentum DOFs. In our hyper-ECP, the partially hyperentangled states 
have six arbitrary parameters, which are unknown to the two legitimate users, and the QNDs resorting to the 

Figure 5.   The success probability P of our hyper-ECP for two-photon six-qubit systems in an arbitrary partially 
hyperentangled Bell state. The parameters of the arbitrary partially hyperentangled Bell states are chosen as 
|γ | = |ǫ| . n = i ( i = 1, 2, 3, 4 ) is the iteration number. Different figures correspond to the schemes with different 
number of iterations.
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cross-Kerr nonlinearity are used to accomplish our scheme. The unsuccessful instances in each round can be 
reconcentrated to achieve higher success probability. Since hyperentanglement has many potential applications, 
our hyper-ECP may be useful in long-distance quantum communication in the future.

Methods
Cross‑Kerr nonlinearity.  The Hamiltonian of a cross-Kerr nonlinearity medium is58,73 H = �χa†s asa

†
pap . 

a†s  ( a†p ) and as ( ap ) are the creation and the annihilation operators of the signal (probe) pulse beam, respectively. 
�χ is the coupling strength of the nonlinearity, which depends on the nonlinear material. If the probe beam is in 
the coherent state |α� , for a single photon |ϕ�s = c0|0�s + c1|1�s , the effect of the cross-Kerr nonlinearity on the 
whole system can be denoted as

where |0�s and |1�s are the Fock states for the signal pulse, and t is the interaction time. The phase shift θ = χ t is 
proportional to the number of photons with the single-photon state being unaffected.
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