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Abstract: The barcode probe is a convenient and efficient tool for molecular cytogenetics.
Tripidium arundinaceum, as a polyploid wild allied genus of Saccharum, is a useful genetic resource
that confers biotic and abiotic stress resistance for sugarcane breeding. Unfortunately, the basic
cytogenetic information is still unclear due to the complex genome. We constructed the Cot-20 library
for screening moderately and highly repetitive sequences from T. arundinaceum, and the chromosomal
distribution of these repetitive sequences was explored. We used the barcode of repetitive sequence
probes to distinguish the ten chromosome types of T. arundinaceum by fluorescence in situ hybridiza-
tion (FISH) with Ea-0907, Ea-0098, and 45S rDNA. Furthermore, the distinction among homology
chromosomes based on repetitive sequences was constructed in T. arundinaceum by the repeated
FISH using the barcode probes including Ea-0663, Ea-0267, EaCent, 5S rDNA, Ea-0265, Ea-0070,
and 45S rDNA. We combined these probes to distinguish 37 different chromosome types, suggest-
ing that the repetitive sequences may have different distributions on homologous chromosomes of
T. arundinaceum. In summary, this method provide a basis for the development of similar applications
for cytogenetic analysis in other species.

Keywords: FISH; karyotype; sugarcane; Tripidium arundinaceum; repetitive sequence

1. Introduction

Sugarcane (Saccharum spp.) is an annual or perennial C4 plant that is indigenous
to tropical and subtropical regions and mainly used for sugar production and as a clean
energy substrate [1]. The genus Saccharum and its related wild genus, including Miscanthus,
Sclerostachya (Hack) A. Camus, Erianthus Michaux, and Narenga porphyrocoma (Hance) Bor,
constitute the “Saccharum complex” [2]. These species are important wild germplasm
resources to broaden the genetic base of sugarcane breeding [3]. Tripidium arundinaceum
belongs to the genus Tripidium [4], which is one of the research hotspots for enhancing
stress resistance in sugarcane breeding [5,6].

T. arundinaceum has the traits of drought tolerance, strong disease resistance, and
wide adaptability. It is used as a parent material for basic hybridization by sugarcane
breeders [7]. In the 1970s, the F1 generation of the cross between Badila and T. arundinaceum
was produced in the Hainan sugarcane breeding station in China, but the second generation
of the hybrid could not be bred due to the sterile F1 pollen. Until 2001, the bottleneck was
broken by changing the methods of breeding [8]. Nowadays, a batch of excellent BC3, BC4,
and BC5 materials has been bred [9]. Therefore, through the hybridization of sugarcane with
the related genera, new varieties with high-yield and high-quality characteristics can be
created, which are of great significance to sugarcane breeding [10]. Many researchers have
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successively used them as research materials to identify resistance, molecular identification,
and chromosome genetics [11]. Meanwhile, the complex chromosomes, morphologically
similar chromosomes, and poor chromosome markers make cytogenetic research difficult
in T. arundinaceum [3,12].

Fluorescence in situ hybridization (FISH) is a cytogenetic technology in which the
specific fluorescent-labeled probe is denatured and paired with the target sequence of
chromosome through base complementarity pairing [13]. At present, FISH has been widely
used in karyotype analysis, physical map construction, and genetic relationship analysis in
plants [14]. With the development of cytogenetics technology, the application of large single-
copy and low-copy probes has become more and more widespread [15]. Through GISH
with the genomic DNA, D’Hont [5] and Georgy [6] found that the F1 is inherited in the way
of n + n. However, the current research on chromosome inheritance focuses on quantitative
changes, and there is no more precise chromosome identification technology for further
precise research. Previous karyotyping studies based on the conventional technology and
FISH with rDNA genes showed a high dependence on chromosome morphology and had a
low degree of precision because of inadequate chromosome markers in T. arundinaceum [16].
These problems may impede our understanding of T. arundinaceum genome organization
and evolution. Therefore, we look for repetitive sequences located on specific regions
of chromosomes.

Contrary to the traditional in situ hybridization, Reverse Dot Blot (RDB) technology
puts the probes dotting on a nylon membrane, makes these hybridized with the PCR
products of the sample, and then observes the blot results of the hybridization through
elution, antibody binding and color display [17]. This method can solve the disadvantage
of conventional hybridization detection of a single sample and can detect the homology of
multiple samples at the same time, which greatly improves the experimental efficiency [18].
Fritz [19] analyzed the variation in feeding host types of Ant. gambiae by quantifying
responses by RDB. Huang Rongxian [20] used RDB to analyze the expression of MF6,
which is a related gene that controls rapeseed fertility.

The content of medium and high-copy repetitive sequences is more than that of single
copy sequences in plant genomes [21]. High-copy repeats renature is faster than low-copy
sequences under the same condition. By interrupting the genome sequence, single-stranded
DNA can be renatured into double-stranded DNA in plants. Therefore, the required repeats
containing different copy numbers can be enriched, which are Cot-enriched repeats [22].
Cot enrichment of repetitive sequences is the fastest and most efficient for non-model
plants without reference genomes [23]. Cot-enriched repetitive sequences are also used
as probes in FISH, and most of the probes used in plant karyotyping research are mid to
high-copy repetitive sequences [24]. In 2005, Wei used the Cot-1 DNA of Brassica napus as
a probe to perform FISH and published chromosome karyotype with a marker for each
chromosome for the first time [25]. Since then, Cot technology has been used to enrich
repetitive sequences and mapped plant chromosomal karyotypes in different plants.

In this study, we construct a Cot-20 repetitive sequence library of T. arundinaceum.
Screening the library by FISH, we can analyze the distribution of medium and high-
repetitive sequences in T. arundinaceum. The study of repetitive sequences is of great
significance for exploring the origin and evolution and revealing the infiltration of genetic
material in the process of polyploidization.

2. Results
2.1. Cloning of Repetitive DNA Library from T. Arundinaceum

gDNA of T. arundinaceum was extracted using a CTAB technology, and a clear single
band was detected for the digestion (Lane 1 and 2 in Figure 1). gDNA digested by DNaseI
appeared 50~1500 bp dispersed painting, and it focused on 100~300 bp (Lanes 3 to 4
in Figure 1).
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Figure 1. The electrophoresis result of T. arundinaceum genome DNA and interrupted genome DNA. 
M1: D15,000 + 2000 bp Marker; 1: Hainan 92–77 genome DNA; 2: Hainan 92–105 genome DNA; 3: 
The digested product of genome DNA from Hainan 92–77; 4: The digested product of genome DNA 
from Hainan 92–105; M2: 100 bp Marker. 

To obtain a suitable renaturation time, Cot-1, Cot-20, Cot-60, and Cot-100 were used 
for screening repetitive sequences. Reverse Dot Blot (RDB) was performed using T. arun-
dinaceum gDNA as a probe and the 45S rDNA plasmid was a positive control. We can find 
different renaturation times for enriching different copy numbers of repeat sequences. The 
shorter the renaturation time, the more medium and high copy numbers are obtained. The 
results showed that Cot-1 enriched with the highest number of high copies, and Cot-20 
enriched with the highest number of medium copies. The results of FISH showed that the 
high-copy sequence was located at both ends of all chromosomes and that intermediate-
copy sequences showed a high degree of diversity, whereas the low-copy sequence 
showed no signal (Figure 2). Therefore, we selected the Cot-20 library for subsequent 
study based on the suitable renaturation and sequence of copies. 

 
Figure 2. The signal expression to the different copied probes. (A): Two ends of chromosomes; (B): 
The end of a part of chromosomes; (C): No obvious signal. Scale bars = 5 μm. 

2.2. FISH and Blast for Barcode Selection 
The Cot-20 library was enriched for a large number of the T. arundinaceum genome, 

and 1350 pre-probes were cloned for further FISH localization analysis. These probes were 
classified into nine types according to their location on the T. arundinaceum chromosome. 
Among them, 727 fragments showed signals at both ends of all chromosomes (Figure 3A); 
163 fragments showed signals at one end of partly chromosomes (Figure 3B); 286 frag-
ments showed no or low signals (Figure 3I). The other types were varied and located at 
telomeres, centromeres, or diffusely distributed (Figure 4). The results indicated that the 
Cot-20 library provided sufficient chromosomal markers for further chromosomal identi-
fication. Finally, the barcode probe consisted of six probes from FISH and blasted to sor-
ghum, 45S rDNA, and 5S rDNA (Table S1). 

Figure 1. The electrophoresis result of T. arundinaceum genome DNA and interrupted genome DNA.
M1: D15,000 + 2000 bp Marker; 1: Hainan 92–77 genome DNA; 2: Hainan 92–105 genome DNA;
3: The digested product of genome DNA from Hainan 92–77; 4: The digested product of genome
DNA from Hainan 92–105; M2: 100 bp Marker.

To obtain a suitable renaturation time, Cot-1, Cot-20, Cot-60, and Cot-100 were used
for screening repetitive sequences. Reverse Dot Blot (RDB) was performed using T. arundi-
naceum gDNA as a probe and the 45S rDNA plasmid was a positive control. We can find
different renaturation times for enriching different copy numbers of repeat sequences. The
shorter the renaturation time, the more medium and high copy numbers are obtained. The
results showed that Cot-1 enriched with the highest number of high copies, and Cot-20
enriched with the highest number of medium copies. The results of FISH showed that the
high-copy sequence was located at both ends of all chromosomes and that intermediate-
copy sequences showed a high degree of diversity, whereas the low-copy sequence showed
no signal (Figure 2). Therefore, we selected the Cot-20 library for subsequent study based
on the suitable renaturation and sequence of copies.
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Figure 2. The signal expression to the different copied probes. (A): Two ends of chromosomes;
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2.2. FISH and Blast for Barcode Selection

The Cot-20 library was enriched for a large number of the T. arundinaceum genome,
and 1350 pre-probes were cloned for further FISH localization analysis. These probes were
classified into nine types according to their location on the T. arundinaceum chromosome.
Among them, 727 fragments showed signals at both ends of all chromosomes (Figure 3A);
163 fragments showed signals at one end of partly chromosomes (Figure 3B); 286 fragments
showed no or low signals (Figure 3I). The other types were varied and located at telomeres,
centromeres, or diffusely distributed (Figure 4). The results indicated that the Cot-20 library
provided sufficient chromosomal markers for further chromosomal identification. Finally,
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the barcode probe consisted of six probes from FISH and blasted to sorghum, 45S rDNA,
and 5S rDNA (Table S1).
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phase cell at each repeated round of hybridization. According to the combination regions 
and intensity of signals (Figure 5), we can find that they have weak signals, obvious 

Figure 3. FISH result of the different probes. (A): Two ends of chromosomes; (B): The end of a
part of chromosomes; (C): The end of most chromosomes and two ends of a part of chromosomes;
(D): Two ends of chromosomes and the centromeric region of a part of chromosomes; (E): Two ends of
chromosomes and the centromeric region of most chromosomes; (F): Diffuse distribute on all middle
part of chromosomes; (G): The centromeric region of most chromosomes; (H): Diffuse distribute on
all chromosomes; (I): No obvious signal. Scale bars = 5 µm.
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2.3. Karyotyping Analysis Based on the Barcode

Each barcode of the repetitive sequence will be labeled with either biotin (green)
or digoxigenin (red), respectively. A group of two probes was hybridized in the same
metaphase cell at each repeated round of hybridization. According to the combination
regions and intensity of signals (Figure 5), we can find that they have weak signals, obvious
signals, and diverse signal sites. Each type of chromosome was labeled by the specific
barcode; then, we sorted the difference.
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Figure 5. The result of repeat FISH. (A): The first round of FISH results; (B): The second round of
FISH results. Scale bars = 5 µm.

The probe Ea-0907 (green) was signaled on various types of regions, in which some
signals were located at one end or both ends, and centromere or ends. Simultaneously,
Ea-0098 and 45S rDNA (red) were located at the centromere-proximal regions (Figure 6).
Through the statistics of the results (Table 1), we found that chromosomes can be divided
into 10 types based on the characteristic barcode (Ea-0907, Ea-0098, 45S rDNA). However,
we probably only marked eight sets of homologous chromosome karyotype (2, 3, 4, 5, 6, 7,
8, and 9 types). Type 5 has only five chromosomes with a strong green signal at one end
and a weak green signal at the other end. Similarly, type 8 has only five chromosomes with
both ends and a weak green signal in the middle. Furthermore, there are 12 chromosomes
with a strong green signal at one end in type 1 and two chromosomes with a green signal
at the middle in type 10.
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2.4. Chromosomal Fingerprint of T. Arundinaceum Revealed by Multiple FISH

Further on, through three rounds of fluorescence in situ hybridization, seven probes
of different repetitive sequences were positioned on the same metaphase cell, and the
chromosomes were numbered (Figure 7). Among them, the positions of the upper and
lower ends of the same chromosome were all uniform (e.g., the upper part on the left, the
lower part on the right in the slanted chromosomes). The probes used for the first hy-
bridization were Ea-0663 (red), 5S rDNA (green), and 45S rDNA (green). The probes for the
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second hybridization were Ea-0267 (green) and Eacent (Probes located at the centromere of
T. arundinaceum chromosome are called Eacent) (red). The probes for the third hybridization
were Ea-0070 (green) and Ea-0265 (red).

Table 1. The different types of chromosomes based on repetitive sequence probes.

Chromosome
Number 1 2 3 4 5 6 7 8 9 10

Chromosome type
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According to the statistical results (Figure 8A), the 60 chromosomes of T. arundinaceum
were classified into 37 different marker types by seven probes. Among them, there are
23 marker types that can distinguish as a single chromosome separately; two chromosomes
in eight groups shared one marker type (9 and 38; 13 and 17; 14 and 59; 15 and 60; 18 and
54; 24 and 50; 34 and 36; 55 and 58), three chromosomes in three groups shared the same
marker type (12,23,43; 16, 22, 45; 28, 30, 46), and four chromosomes in three groups shared
the same marker type (7,42,44,57; 21,33,35,53; 25,29,39,49).

5S rDNA and 45S rDNA were used to analyze to assess the ploidy level. We found
that each special FISH signal barcode was detected on the homology chromosomes with a
5S rDNA signal in T. arundinaceum (Figure 8B). This random distribution indicated that the
homology chromosomes also have distinctions. Meanwhile, the six types were detected on
homology chromosomes with 45S rDNA signals in T. arundinaceum (Figure 8C).
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3. Discussion and Conclusions

FISH is an indispensable technique in molecular cytogenetics and genetics [26]. Com-
pared to other methods, FISH will need less cost and provide direct evidence involving
cytogenetic and genome research. Compared to diploid species, polyploidy has a differ-
ent way of genome evolution and a higher level of extensive gene expression. Polyploid
plants have a stronger ability to adapt to the environment. The additional effects of poly-
ploidy and expression mechanism provide value for crop improvement, evolution and
inheritance. The polyploid genome abounds mass high-copy repetitive sequences, such as
transposons, retrotransposons, telomere repeats, satellite DNA, etc. [21]. Polyploid events,
caused by whole genome duplications (WGDs), are often accompanied by the tandem
duplication of repetitive sequences, the repeated segmental duplication, or retrotranspo-
sition in plants. [27]. This explosive transformation could be caused by the variation of
regulation or modification of epigenetics [27,28]. The rapid advance of the genome and
molecular cytogenetic developed mass methods in designing and screening probes. Un-
fortunately, the contribution of repetitive sequences is uncertain. Based on the polyploid
or allopolyploid genomes, the expensive price of probe synthesis and genome sequencing
impedes the development of FISH, and more important is the disordered distribution of
repetitive sequence [28,29]. For studying the function of repetitive sequences, researchers
have developed a variety of methods, such as cDNA libraries, methylation filter libraries,
and cot enrichment. The barcode probe of the repetitive sequence is a strong and effective
method, which can reveal the regions of repetitive sequences, the copies of species, and the
chromosomal karyotypes [30]. Meanwhile, the repetitive sequences enriched by Cot DNA
can be used as blocking DNA during hybridization and as the repetitive sequence libraries
of barcode probes yet.

It is of great significance for tracking chromosome inheritance and identifying the
chromosomes in T. arundinaceum [31]. The non-homologous chromosomes inherited in
the generations can be effectively distinguished, and the origin and composition of the
chromosomes can be displayed [32]. In this study, by a screening of the Cot-20 library,
the repetitive sequence barcode probes were used to distinguish eight chromosomes of
T. arundinaceum. Due to the lack of the other barcode probes that can be labeled on the
chromosome arm or that can mark a small number of signals individually, the karyotype of
the whole T. arundinaceum genome has not been established. This method still provides a
reference for the genome on molecular cytogenetic of the polyploid or allopolyploid plants.
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Sugarcane is not only an important sugar-yielding crop, but it is also the representative
of the polyploid of high copies model. Crossing with the wild species, resistance can be
availably introgressed to sugarcane. T. arundinaceum, a poaceae of neo-polyploid species,
as a breeding wild species with good resistance to sugarcane, undergoes the polyploidiza-
tion event that evolved from diploid ancestors [27,33,34]. However, during this process,
it is uncertain whether rearrangements or other parental chromosomes merge between
homologous. Even in previous studies, the repetitive sequences under homologous chromo-
somes differed in diploid groups or sub-genomic groups, such as sorghum [35], potato [36],
miscanthus [37], strawberry [38], etc. However, for neo-polyploid, it is an enigma still.
We analyzed the different copy numbers from the Cot-20 library and then revealed the
differences in repetitive sequence among homology. Using repeated FISH of the same
chromosome, 37 special barcodes were located from seven repetitive sequence probes
and the difference of repetitive sequences on the T. arundinaceum homology chromosomes.
These differences may imply that under the polyploidization events, among homology,
duplication is often accompanied by variation of the difference ratio to the expansion of
gene or the random insertion of the transposon, etc. [39,40]. That as a possible reason leads
to diploidization or a pre-subgenome.

4. Materials and Methods
4.1. Plant Material and DNA Extraction

T. arundinaceum (HN 92–105, 2n = 60) was provided by Hainan Sugarcane Breeding
Station and grown in the greenhouse at Fujian Agriculture and Forestry University. Leaf
tissues from these materials were ground in liquid nitrogen and stored at −80 ◦C. Total
genomic DNA (gDNA) was extracted following an improved CTAB methodology [41].

4.2. Repetitive Sequence Libraries Preparation

The gDNA was digested by adding 0.005 U/µL DNase I; then, it was put at 15 ◦C
for 2 h. The fragment size was checked by an agarose gel. Finally, they were marked with
Dig-11-dUTP or Bio-11-dUTP dUTP.

The gDNA was renatured at 65 ◦C according to the renaturing time of T(s) = 1/M (mol/L),
20/M (mol/L), 60/M (mol/L), and 100/M (mol/L) (M is the final gDNA concentration (g/L)
divided by 339 (g/mol)). Then, it was digested with S1 nuclease at 37 ◦C for 8 min. The
enriched DNA sequences were added to a poly-A tail and cloned. The corresponding primers
were designed by Primer 5.0, and the probes labeled with Dig-11-dUTP were used by PCR
for hybridization.

4.3. Reverse Dot Blot Hybridization for Library Selection

All purified plasmids containing clone sequences were quantified in NanoVue PlusTM
(GE Healthcare, Princeton, NJ, USA) and then diluted to a final concentration of 50 ng/µL.
These plasmids were denatured by heating to 100 ◦C for 7 min and then quickly chilled in
an ice/water for 10 min. The denatured plasmids were transferred onto the Amersham
Hybond-NC nylon membrane (GE Healthcare, Life Sciences, Indianapolis, IN, USA). Then,
1 µL of each plasmid was spotted onto the membranes, and DNA was fixed to the membrane
by UV crosslink using a StratalinkerTM UV Crosslinker (Stratagene, La Jolla, CA, USA).
After fixation, the membrane underwent pre-hybridization for 30 min. The T. arundinaceum
gDNA probe was labeled with digoxigenin-11-dUTP (DIG) using a DIG Nick Translation Kit
(Roche Diagnostics). Hybridization was performed as described in the Instruction Manual
of the DIG High Prime DNA Labeling and Detection Starter Kit I (Roche Diagnostics).
Hybridization signals were subsequently detected and quantified by using the AxioVision
measurement module of the Carl Zeiss Scope.A1 Imager fluorescent microscope (Carl Zeiss,
Gottingen, Germany). Adobe Photoshop 6.0 was used to adjust the pictures.



Int. J. Mol. Sci. 2022, 23, 6726 9 of 11

4.4. Selection of the Barcode Probe from Cot-20 Library

In order to obtain a valid barcode sequence, we selected the sequences located at the
centromeres, one end, and the two ends of the chromosome. From the sequencing results,
we compared with the nucleotide database on the NCBI website to find the highest ho-
mology. Then, these sequences were compared with DNAMAN to obtain the conservative
sequences as a candidate, and the corresponding 3 pairs of primer sequences were designed
(Table 2). A 200–300 bp target band was obtained by amplifying the probe sequence using
the genomic DNA of T. arundinaceum as the template.

Table 2. The designed primer sequence by comparing.

Primer Name Primer Sequence (5′—3′)

EaCent-F CGGTTTGTTTGGAGACTTGC
EaCent-R GCCCTAAATGATTTCTGAGCCTAT
EaST1-F TTTTGGGACTCAGTTTCATTTC
EaST1-R TGAAGACGCTAGAGTAGTATTTGTG
EaST2-F TTACCATAAGCCACAAATC
EaST2-R CATCTAAATACTCCACCCTAACT

Each 20 µL PCR reaction included DNA template, 1× LA Buffer, 10 µM of the primer,
20 µM dNTP and 0.5 U LA Taq. Meanwhile, the PCR conditions were 95 ◦C for 3 min,
followed by 35 cycles of 95 ◦C for 20 s, 54 ◦C for 20 s, 72 ◦C for 30 s and final incubation at
72 ◦C for 6 min.

4.5. Fluorescence In Situ Hybridization

We selected the thick root tips according to the enzymatic method with some adjust-
ment [42]. The section of root tips containing dividing cells was dissected and digested in an
enzyme mixture (1% pectolyase Y23, 2% pectinase, 2% RS and 4% cellulase Onozuka R-10)
for 4 h at 37 ◦C. After digestion, the root sections were washed in water and then washed
in Carnoy’s fixative (ethanol: acetic acid = 3: 1) two times briefly. The root sections were
carefully broken by using a pipette tip. The cell suspension was dropped onto glass slides,
and another 10 µL acetic acid was dropped when the slide almost dried. The prepared
slides were placed at room temperature overnight to make the chromosome aging. We put
the slides in 2× SSC three times in 3 min. The slides were dehydrated in 75% and 100%
ethanol each for 3 min; then, we added 70% FD at 70 ◦C to denature. The slides were dried,
and we added the probes for hybridization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23126726/s1.
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