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Abstract: Acute spinal cord injury (SCI) is a devastating
condition that results in tremendous physical and psy-
chological harm and a series of socioeconomic problems.
Although neurons in the spinal cord need neurotrophic
factors for their survival and development to reestablish
their connections with their original targets, endogenous
neurotrophic factors are scarce and the sustainable delivery
of exogeneous neurotrophic factors is challenging. The
widely studied neurotrophic factors such as brain-derived
neurotrophic factor, neurotrophin-3, nerve growth factor,
ciliary neurotrophic factor, basic fibroblast growth factor,
and glial cell-derived neurotrophic factor have a relatively
short cycle that is not sufficient enough for functionally
significant neural regeneration after SCI. In the past de-
cades, scholars have tried a variety of cellular and viral
vehicles as well as tissue engineering scaffolds to safely
and sustainably deliver those necessary neurotrophic fac-
tors to the injury site, and achieved satisfactory neural
repair and functional recovery on many occasions. Here,

we review the neurotrophic factors that have been used in
trials to treat SCI, and vehicles that were commonly used
for their sustained delivery.

Keywords: spinal cord injury, neurotrophic factors, sus-
tained delivery, stem cells, viral vectors, tissue engi-
neering, scaffolds

Acute spinal cord injury (SCI) is often caused by high-
energy trauma such as traffic accidents, falls, physical
injuries, stab, and gunshot wounds, and causes devas-
tating motor, sensory and autonomic dysfunctions that
often lead to patient morbidity and mortality [1,2]. With
the industrialization of societies, increasing height of
buildings, and popularity of private cars, the prevalence
of vertebral fractures combined with SCI caused by falling
and traffic accidents is steadily on the rise over the last
decade. Those high-energy incidents are more prevalent in
young male adults, who are the major workforce in con-
struction, transportation, mining, and other industries,
and the main breadwinner of their families [3]. Serious
physical and psychological trauma, long-term high-cost
rehabilitation treatment can be devastating to their
families both economically and psychologically, possibly
leading to serious socioeconomic problems. The direct life-
long cost for the care and treatment of patients with SCI is
about 1.1–4.6 million US dollars [4,5]. Therefore, the pre-
vention, treatment, and rehabilitation of SCI is a topic that
requires urgent attention and in-depth investigation.
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1 Neurotrophic factors for SCI

After the incidence of SCI, neurons in the spinal cord
need neurotrophic factors to guide their growth and
development and reestablish their connections with their
original target organs [6]. The deficiency of endogenous
neurotrophic factors at the SCI site leads to axonal defor-
mation and even neuronal apoptosis [7]. Neurotrophic
factors are characterized as either endogenous or exo-
genous origins. Endogenous neurotrophic factors and
their receptors are widely present in the spinal cord.
However, except for neurotrophic factor-3, whose expres-
sion is relatively high in the early stage of spinal cord
development, the amounts of other neurotrophic factors
are often too low to exude a positive effect on neural regen-
eration in the spinal cord [8]. Geng et al. [9]measured that
brain-derived neurotrophic factor (BDNF) increased 24 h
after SCI and returned to normal level after 28 days. Tyro-
sine kinase receptor C (TrkC) protein decreased within
7 days after spinal cord transection and began to increase
after 7 days, whichwas significantly accelerated in another
7 days. This was consistent with the changes of TrkC
mRNA expression [10]. The mRNA expression of the p75
neurotrophic factor receptor fluctuated after SCI and was
positively correlatedwith neuronal apoptosis, which could
be a regulatory factor during the neuronal repair of SCI
[11]. The upregulation of neurotrophic factors and their
receptors after SCI is time-dependent and has varied posi-
tive effects on promoting spinal cord repair. However, due
to their limited concentration at the site of injury, endo-
genous neurotrophic factors alone cannot maintain the
effective therapeutic concentration for a sustained time.
Therefore, adequate and sustained delivery of exogenous
neurotrophic factors to the injury site is necessary to pro-
mote neural repair and functional recovery after SCI.

In the treatment of SCI, currently, the most commonly
used exogenous neurotrophic factors include BDNF, neu-
rotrophin-3 (NT-3), nerve growth factor (NGF), ciliary neu-
rotrophic factor (CNTF), basic fibroblast growth factor (bFGF),
insulin-like growth factor (IGF), and glial cell-derived neuro-
trophic factor (GDNF). They have been widely reported to
promote the survival of nerve cells, stimulate the growth of
axons, and promote functional recovery after SCI [12].

1.1 BDNF

BDNF binds to tyrosine kinase receptor B (TrkB), induces
TrkB phosphorylation and activation of intracellular sig-
naling pathways, reduces apoptosis of spinal cord motor
neurons, and elevates the expression of 5-hydroxytryptamine

at the injury site. It maintains and promotes the develop-
ment, differentiation, and regeneration of sensory neurons,
cholinergic neurons, dopaminergic neurons, and d-aminobu-
tyric acid neurons [13]. According to Brock et al. [14], exo-
genous BDNF can reduce cortical atrophy, and significantly,
increase the number of axons andmyelin sheath formation at
the injury site. BDNF can reduce and reverse the atrophy of
injured neurons, and promote the regeneration and func-
tional recovery of the rubrospinal tract after SCI. Han et al.
[15] reported that sustained delivery of BDNF with collagen
scaffolds to the injury site can significantly increase regen-
eration of axons in the corticospinal tract (CST) after SCI. Li
et al. [16] injected the BDNF gene-modified bone marrow
mesenchymal stem cells (MSCs) into the acute SCI site of
adult SD rats, and observed increased survival rate of neu-
rons at the injury site, indicating that BDNF can rescue the
injured anterior horn neurons and promote the recovery of
motor function under the injury level.

1.2 NT-3

NT3 is one of the most potent neurotrophic factors in
neuronal regeneration and functional recovery after SCI
[17]. In addition to maintaining the survival of sympa-
thetic neurons, sensory neurons, basal forebrain cholin-
ergic neurons, and motor neurons, NT3 can also support
the differentiation of dopaminergic neurons and promote
the sprouting of the lateral branches of the CST [18,19].
NT-3 receptor TrkC is mainly concentrated on axons. NT-3
from presynaptic neurons is needed for TrkC-dependent
competitive dendrite morphogenesis in postsynaptic neu-
rons [20]. NT-3 has been widely tested in animal experi-
ments, and mostly delivered to the injured spinal cord and
its adjacent regions shortly after the injury. Kadoya et al.
[21] found significant improvement of spinal cord function
after increasing the concentration of NT-3 and the sur-
rounding microenvironment. Some studies have shown
that NT-3 has a positive effect on the formation of the
myelin sheath. When neurotrophic factor 3 is combined
with other neurotrophic factors such as BDNF, the atrophy,
and death of neurons in the rubrospinal tract can be further
reduced [22].

1.3 CNTF

CNTF is an acidic protein with a relative molecular weight
of 20,000–24,000 that promotes the survival of neurons,
with a special protective effect on motor neurons. In
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the study of Cao et al. [23], the survival of grafted CNTF-
OPCs increased fourfold compared with control-OPCs,
and CNTF significantly increased the percentage of adeno-
matous polyposis coli oligodendrocytes (OLs) from grafted
OPCs, which formed central myelin sheaths around the axons
in the injured spinal cord, and significantly enhanced the
recovery of hindlimb locomotor function, indicating that
Schwann cells (SCs) transfected with CNTF gene can be used
to bridge tissue defects during neural reconstruction after SCI.

1.4 Basic fibroblast growth factor

FGFs can promote the survival and regeneration of a
variety of central and peripheral neurons both in vivo
and in vitro. According to the different isoelectric charac-
teristics, FGF can be divided into acidic FGF (aFGF) and
basic FGF (bFGF). Because aFGF has no signal peptide, it
cannot be synthesized and secreted from cells, and may
play a nutritional role through internal secretion. bFGF
can provide neurotrophic support to spinal cord neurons,
and selectively promote axonal growth [24]. The possible
working mechanism of bFGF is to inhibit apoptosis and
c-fos gene expression at the injury site, stabilize calcium
and magnesium ion levels and inhibit their toxicity, reg-
ulate the reaction of glial cells and reduce glial scar
formation [25]. Goldshmit et al. [26] found that subcuta-
neous injection of fibroblast growth factor 2 in adult mice
can reduce activation of microglia and macrophages and
inhibit the inflammatory reaction. Reis et al. [27] used
FGF-2 that was encapsulated into core–shell microfibers
by coaxial electrospinning to treat rat SCI and found that
it supported the survival and proliferation of PC12 cells
in vitro, and increased the locomotor recovery of the ani-
mals 4 weeks after injury.

1.5 GDNF

GDNF belongs to the transforming growth factor b (TGF-b)
superfamily. It has a strong neurotrophic effect on the
motor, sensory, and dopaminergic neurons, and its ther-
apeutic effect on central and peripheral nervous system
injuries has been confirmed in previous studies [28].
Sharma [29] applied high concentrations (0.5mg) of BDNF
and GDNF after SCI and found that motor function recovery
and inhibition of blood spinal cord barrier damage were sig-
nificantly improved, neuronal apoptosis was inhibited and
neural regeneration was promoted. When the lentivirus-

mediated GDNF secreting cells were transplanted to the SCI
site, the density of nerve fibers at the injured site was sig-
nificantly increased, and the motor function was better
restored [30], showing that lentivirus-mediated GDNF
gene transfer can increase the secretion of GDNF for a
prolonged time, promote the recovery of injured sensory
and motor neurons and the regeneration of motor axons.
Meanwhile, GDNF also causes axon trapping. Verhaagen
et al. reported that, in the peripheral nervous system,
although GDNF can promote the survival and outgrowth
of motoneurons, locally elevated levels of GDNF could
cause trapping of regenerating axons and the formation
of nerve coils. They used lentiviral vectors to create gradi-
ents of GDNF in the sciatic nerve after ventral root avulsion
and found that controlled expression of GDNF can be used
to avoid motor axon trapping [31].

Single or a cocktail of exogenous neurotrophic fac-
tors can reach the spinal cord through the vein, abdom-
inal cavity, muscle, and subcutaneous tissue injections.
However, the concentration of neurotrophic factors in
plasma decreases rapidly after administration through
those routes. Due to the high molecular weight of neuro-
trophic factors, only a small portion of in plasma can pass
through the blood spinal cord barrier to the injury site
[32]. Although direct injection into the injury site or sub-
arachnoid space could guarantee high concentrations of
neurotrophic factors where they are needed, they could
easily spread, and due to the short half-life cycle of neu-
rotrophic factors, they cannot provide continuous neuro-
trophic support to the neurons [33]. In the treatment of
SCI, it is vital to find economic and easily available
methods to sustainably deliver various neurotrophic fac-
tors to the injury site to support neural regeneration and
functional recovery. Precursor or stem cells transferred
with vectors encoding the sequence of desired neuro-
trophic factors, recombinant proteins such as osmotic
pumps, nanoparticles, viral vectors, as well as polymer
scaffolds, were used to sustainably deliver the much
needed neurotrophic support in the site of SCI.

2 Stem cells overexpressing
neurotrophic factors

Stem cells have long been used to consistently secrete
various desirable proteins after being genetically manipu-
lated in regenerative medicine for a few decades. Stem
cells have the ability of self-renewal and can differentiate
into functional cells of specific tissues. They can be used as
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seed cells in various tissue regeneration and repair pro-
cesses. Previous studies have shown that cell transplanta-
tion can be safely and effectively promote the recovery of
motor, sensory or autonomic nerve function after SCI
[34,35]. Transplanted cells can regulate immune function,
produce various neurotrophic factors, and promote neural
and vascular regeneration, which is closely related to func-
tional recovery after SCI [36]. A variety of cells, including
MSCs, neural stem cells (NSCs), embryonic stem cells
(ESCs), olfactory ensheathing cells (OECs) as well as OLs
have been used to repair SCI (Table 1). Together with var-
ious viral vectors (Table 2), different neurotrophic factors
were successfully delivered in a sustained and controlled
manner to promote neural regeneration after SCI.

2.1 MSCs

MSCs are first isolated from bone marrow and now can be
obtained from adipose tissue, placenta, as well as periph-
eral blood. MSCs can regulate immune response and
secrete a variety of immunomodulatory and neurotrophic
factors including interleukin-6 (IL-6), NGF, BDNF, GDNF,
and the vascular endothelial growth factor (VEGF). MSCs
have been widely used in the repair of SCI due to their
easy isolation, proliferation, and low immunogenicity
[77–81]. White et al. used mesenchymal progenitor cells
injected via the tail vein of mice cervical SCI models 1 to
10 days after injury and found that those cells were
evenly distributed in lungs, and may play as cellular
target decoys to the immune system of mice SCI model,
and reduce secondary injury to the spinal cord tissue
[82]. When MSCs overexpressing TrkC and NT-3 were
transplanted into the SCI site of adult rats, the motor
evoked potential and hindlimb function were significantly
improved after 8 weeks compared to nontransfected MSCs
[83,84]. Those studies showed that genetically modified
MSCs that can consistently secrete certain neurotrophic fac-
tors can be effective and safe tools to promote nerve regen-
eration and nerve function recovery.

2.2 NSCs

NSCs are undifferentiated cells that exist in specific parts
of the central nervous system during development and
adulthood. They can self-renew and differentiate into neu-
rons, astrocytes, and OLs in the nervous system [85].

Reynolds et al. [86] successfully isolated NSCs from adult
mouse striatum in 1992. NSCs can be isolated or induced
from developing and adult neural tissues, ESCs, as well as
induced pluripotent stem cells (IPSCs).

However, although cellular transplantation has shown
great potential in the treatment of SCI, there are still many
hurdles that limit its further application, the most important
being the diffusion of stem cells after injection. Because of
the dynamic cerebrospinal fluid in the spinal cord, it is
difficult for NSCs to colonize the injury site. It could be an
effective strategy to limit the proliferation of stem cells by
transplanting stem cells into the injury site using tissue
engineering scaffold materials as a method of sustained
drug delivery [87].

3 Biomaterials for sustained
neurotrophic factor delivery

Tissue engineering scaffolds and biomaterials can pro-
vide support and guidance for the regeneration of injured
nerves and build a bridge for nerve regeneration in the
injured area [88]. At the same time, it can be used as a
carrier of neurotrophic factors or stem cells overexpress-
ing various neurotrophic factors. Nerve scaffold mate-
rials combined with neurotrophic factors and stem cells
form functional biomaterials that can be used to treat the
SCI [89]. Nerve scaffolds can be composed of both syn-
thetic and natural materials. Synthetic materials have the
advantage of easy mass production and easy control of
physical properties but they could have poor cell compat-
ibility. The acidic environment after the degradation of
synthetic materials may affect the survival and growth
of cells. The main components of natural materials are
extracellular matrices such as natural macromolecular
proteins, collagen, and fibrin, and natural polymers such
as hyaluronic acid and chitosan. Their main advantages
are the convenient source and low immunogenicity. When
the neurotrophic factors are imbedded in nerve scaffolds,
they can effectively maintain their therapeutic concentra-
tion at the injury site by modulating the scaffold degrada-
tion and the kinetics of release, reducing the overall dosage,
and avoiding side effects of multiple injections [90,91].
Mini-osmotic pumps, fibrin glue, polyglycolic acid/poly-
lactic acid, agarose, chitosan, as well as the acellular spinal
cord, were used successfully to sustainably deliver neuro-
trophic factors to the injury site and promote cellular sur-
vival, tissue sparing, axonal regeneration, and functional
recovery (Table 3).
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3.1 Chitosan

Chitosan has fine biodegradability and biocompatibility,
fine mechanical strength, and plasticity. Its shape, mechan-
ical properties, and degradability can be easily controlled,
and it induces little host immune reaction after transplanta-
tion. Therefore, it is widely used in wound dressing, drug
delivery, and various issue engineering scaffolds, and is an
excellent candidate to be used as a neural scaffold in the
treatment of SCI [17,22,128].

3.2 Collagen

Collagen is the main component of the extracellular
matrix. It has fine biocompatibility and degradability.
Its collagen-binding domain (CBD) and ordered structure
provide a satisfactory basis for containing the neurotrophic
factors in a certain area and guiding the orderly growth of
nerve axons in a certain direction [129]. Yang et al. injected
collagen hydrogel imbedded with neural growth-promoting
molecules to treat mouse SCI and achieved satisfactory
axonal regeneration and locomotion recovery [130].

3.3 Fibrin glue

Fibronectin is a glycoprotein on the cell surface in blood,
bodily fluids, and connective tissues. Functional fibro-
nectin biomaterials are clustered structures that can be
used to release the desired neurotrophic factors into the
nervous system in a controlled manner [131,132]. In pre-
vious studies, fibronectin has been used as a carrier of
soluble factors such as NGF and NT-3. Phillips et al. [133]
showed that fibronectin can support the growth of fibro-
blasts, Schwann cells, and astrocytes, and provide an
appropriate environment for axon growth in rats with
SCI. Alovskaya et al. [134] used fibronectin as a scaffold
for repairing SCI in vivo, and the results showed that the
axonal growth in the scaffold was accompanied by the
migration of Schwann cells and reactive astrocytes, which
led to effective myelination of the regenerated axons and
between functional recovery.

3.4 Alginate hydrogel

Alginate is a natural polysaccharide carbohydrate, which
can be degraded in vivo, and provides three-dimensional
scaffolds needed for cell growth. Alginate is cross-linked
to form calcium alginate gel, which is permeable to requiredTa
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nutrients. After hydrolysis, products are excreted via kid-
neys with little toxicity [135]. Stokols and Tuszynski used
alginate hydrogel to bridge tissue deficit after SCI and found
that capillary tunnels in the alginate hydrogel provided
ideal conditions for nerval and vascular regeneration in
the injured spinal cord [136].

3.5 Polyglycolic acid

Polyglycolic acid is a biodegradable synthetic polymer
that can be used to synthesize poly (lactic acid glycolic
acid) copolymers. Polyglycolic acid carrying supportive
stem cells and neurotrophic factors can be directly applied
in the injury site, bypassing blood–spinal cord barrier
that significantly decreases the efficacy of intravenous
stem cell injection [137–139]. Novikov et al. [140,141] first
used polyhydroxybutyrate scaffolds to treat SCI in mice
and found that they could reduce the death of neurons
after SCI. When the tubular polyhydroxybutyrate scaffolds
were seeded with Schwann cells and transplanted into the
injured spinal cord of mice, it was found to promote the
survival and differentiation of Schwann cells, and the
regeneration of spinal cord axons. Moore et al. [142]
used the polyglycolic acid/poly(lactic acid) scaffolds con-
taining Schwann cells to treat the injured spinal cord of
rats. A month later, the axonal regeneration was observed
to be significantly more robust than the control group.

3.6 Heparin-conjugated fibrin (HCF) gel

The HCF-loaded controlled-release system was reported
to have certain advantages in clinical translation. The
HCF gel can be used as an injectable material and is
easy to operate, as well as various loading doses of neu-
rotrophic factors can be modulated within the allowable
range [143]. The HCF gel can sustainably deliver a variety
of growth factors, including bFGF, NGF, and VEGF. Because
various neurotrophic factors such as NGF and bFGF have a
heparin-binding domain, heparin can combine with those
factors, increase their stability, release them evenly and
steadily, and enhance their bioavailability. The HCF gel
compound neurotrophic factor, released in a controlled
and sustained way, can be a safe and effective treatment
option with great clinical potential. When fibrinogen is
mixed with thrombin, they transform into fibrin through
polymerization, cross-linked into a three-dimensional net-
work structure, and finally, form fibrin glue. Fibrin glue is
the main component of the natural extracellular matrix,
biological material with low antigenicity, toxicity, and the

properties of tissue adhesion prevention, and repairing
tissue defects. Fibrin gel has a fine three-dimensional
porous structure, good biocompatibility, and biodegrad-
ability. It is an ideal scaffold material for tissue engi-
neering. It can not only be used as an active cell scaffold,
but also as drug controlled release system for various neu-
rotrophic factors with a short half-life cycle. Itosaka et al.
[144] planted bonemarrowmesenchymal stem cells (BMSCs)
as seed cells on the three-dimensional scaffold constructed
by fibrin and then implanted them into the SCI site of mice.
They found that the fibrin scaffold significantly improved
the survival of BMSCs, promoted cellular migration, and
improved functional recovery after SCI. Taylor et al. [145]
also reported significantly thickened heparin spinal nerve
fibers after implanting the fibrin gel into the injured
spinal cord.

3.7 Agarose

Agarose is mainly composed of galactose and its deriva-
tives. It has a uniform structure, little toxicity, and porous
structure that enables it to imbed necessary stem cells
and neurotrophic factors [146]. While it is mainly used
for cell culture, it can also be used as a scaffold material
in tissue engineering. Stokols and Tuszynski [136] used
porous freeze-dried agarose scaffold combined with recom-
binant BDNF to treat adult rat SCI models, and it signifi-
cantly promoted axon regeneration at the injured site.

3.8 Synthetic polymers

Synthetic polymers have been widely used as surgical
sutures for more than 20 years, and many other synthetic
polymers have also been approved by food and drug
administration. Synthetic materials used as tissue engi-
neering scaffolds have many advantages: they can be
designed according to the specific requirements of mechan-
ical properties and degradation rate, can incorporate var-
ious properties into one piece of the scaffold, and havemore
reliable sources of raw materials [147,148].

3.8.1 Synthetic hydrogels

The synthetic hydrogel has no degradability in vivo and
can form three-dimensional scaffolds needed for cell
adhesion and axonal growth. The mechanical properties
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of those scaffolds are very similar to those of the spinal
cord. They induce little immune reaction after the implan-
tation into the injured spinal cord, and the regenerating
axons can grow into the scaffold [149]. Hejcl et al. [150]
implanted synthetic hydrogels 7 days after SCI and found
that the formation of spinal cord cavity was inhibitedwhile
axon regeneration and myelination were promoted, sug-
gesting that synthetic hydrogel can inhibit the formation
of glial scar after SCI, and provide a suitable microenviron-
ment for spinal cord axonal regeneration and myelination.

3.8.2 Polylactic acid

Polylactic acid is made from renewable plant resources.
Polylactic acid is a biodegradable polymer material with
good biocompatibility, and it can be 3-D printed into any
shape that is needed at the site of injury [151]. Patist et al.
[118] transplanted polylactic acid-containing brain-derived
growth factors into the spinal cord of rats with thoracic cord
transection. The results showed that the survival rate of
tissues was significantly increased, the vascular growth
was more prominent, and the axonal growth was slow,
indicating that a more intense nonspecific aseptic inflam-
matory reaction was induced by polylactic acid.

3.8.3 Polyethylene glycol (PEG)

PEG has low toxicity, fine water solubility, and good com-
patibility with many organic components. PEG can be
used as a sealant for axonal membrane damage. Luo
and Shi [152] implanted PEG at the site of SCI. The results
showed that PEG can significantly inhibit the activity of
apoptotic protease-3 and inhibit programmed cell mor-
tality. They hypothesized that PEG can repair the injured
cell membrane, protect the function of mitochondria,
inhibit cell apoptosis, and hence, promote neural regen-
eration and repair after SCI.

A combined application of neurotrophic factors, stem
cells, and tissue engineering scaffolds have shown posi-
tive results in providing continuous neurotrophic support
to the SCI injury site, accelerating neural regeneration,
and promoting functional recovery below the injury level.
Chen et al. [153] reported that the acellular biological
scaffolds can improve the survival of seed cells, promote
their migration and differentiation, and reduce the apo-
ptosis of host nerve cells, so as to protect the host tissue
and promote functional recovery after SCI. Zhou et al.
[154] used polycaprolactone scaffolds containing acti-
vated Schwann cells and NSCs derived from IPSCs to treat

SCI rats. The results showed that the cells grew well on
the scaffolds, and this method reduced the volume of the
lesion cavity and promoted the recovery of motor func-
tion of rats. Ferrero-Gutierrez et al. [155] treated SCI rats
with a novel serum-derived albumin scaffold inoculated
with adipose-derived stem cells and OECs. After 45 days,
it was found that the scaffold played a positive role in
filling the lesion cavity and reducing the formation of the
glial scar. The acellular biological scaffold inoculated with
human umbilical cord blood BMSCs were also reported to
bridge the spinal cord cavity and promote axonal regen-
eration and functional recovery in SCI rats [156]. Lin et al.
[157] designed and tested a collagen scaffold according
to the structural characteristics of the spinal cord. They
fused the CBD with neurotrophic factors to store and
release neurotrophic factors including NT3, BDNF, NGF,
and bFGF in controlled fashion. When the ordered nerve
regeneration collagen scaffold and neurotrophic factor
with specific collagen binding ability were applied to the
injured site in rat and canine SCI models, neurotrophic
factors were continuously released and maintained at a
certain concentration, thus reducing the injury volume
and CSPGs deposition, and guiding nerve regeneration
and axonal myelin formation, resulting in significantly
promoted motor function recovery. The CBD-NT3 con-
trolled release system was also used in canine and non-
human primate models with satisfactory results by Han
et al. [158,159]. The Langer team of MIT achieved using
poly-l-lactic-polyglycolic acid biodegradable scaffolds to
promote tissue remodeling and functional improvement
in nonhuman primates with acute SCI with satisfactory
results and moved into human trials [160].

4 When and for how long?

To promote neural regeneration after SCI, genetically
modified cells, viral vectors, recombinant proteins such
as osmotic pumps, biopolymers as well as natural and
synthetic scaffolds were used to sustainably deliver the
neurotrophic factors to the site of SCI. To prevent loss
of spinal neurons, and retraction and demyelination of
axons, in most studies the neurotrophic factors were deliv-
ered immediately after the injury at the lesion site. While
there is less frequent application of subacute (within 2
weeks after injury) injection, there are a few reports of
their application in the chronic phase. Nonetheless, there
are several animal studies and [161] and human trials [162]
that reported improved neural regeneration and functional
recovery after weeks, months, and even up to 8.5 years
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after injury. There are no systematic studies comparing the
time at which the neurotrophic factors should be sustained
in the injury site for better morphological preservation and
functional recovery [12]. Olfactory ensheathing glia over-
expressing BDNF or GDNF maintained the expression of
those neurotrophic factors up to 8 weeks after injection
[63,65]. Adenoviral injections were reported to overexpress
BDNF and NT-3 at the injury site as long as 16 weeks after
injection [38]. The biomaterial PLA-bPEG-b-PLA hydrogel
was reported to keep the concentration of NT-3 elevated at
the injury site 2 weeks after injection [113]. Note, however,
that long-term vector-mediated expression of growth fac-
tors can not only potentially entrap axons but also alter the
dendritic architecture of both the transduced and adjacent
nontransduced neurons [163], and can induce major factor-
specific changes in the expression of endogenous genes in
tissues containing transduced neurons [164]. Clearly, further
studies are needed to determine the optimal concentration
and duration of neurotrophic support at SCI sites.

With the rapid advancement of tissue engineering
techniques and satisfactory animal experiment results,
there are numerous examples of human trials involving
different neurotrophic factors, stem cells, and tissue engi-
neering scaffolds for their timely and abundant delivery.
However, there are not yet any reports of recovery after
total SCI. Considering the complex biomechanical changes
after SCI, any single approach has proven to be unsatis-
factory. Adequate combination of neurotrophic factors that
can be released into the injury site in a controlled manner
using cellular and viral vehicles with tissue engineering
materials is necessary to achieve satisfactory functional
recovery after acute SCI.
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