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Abstract: Fullerenes, boron nitride nanotubes (BNNTs), and carbon nanotubes (CNTs) have all been
extensively explored for biomedical purposes. This work describes the use of BNNTs and CNTs as
mycolactone inhibitors. Density functional theory (DFT) has been used to investigate the chemical
properties and interaction mechanisms of mycolactone with armchair BNNTs (5,5) and armchair CNTs
(5,5). By examining the optimized structure and interaction energy, the intermolecular interactions
between mycolactone and nanotubes were investigated. The findings indicate that mycolactone can
be physically adsorbed on armchair CNTs in a stable condition, implying that armchair CNTs can
be potential inhibitors of mycolactone. According to DOS plots and HOMO–LUMO orbital studies,
the electronic characteristics of pure CNTs are not modified following mycolactone adsorption on
the nanotubes. Because of mycolactone’s large π-π interactions with CNTs, the estimated interaction
energies indicate that mycolactone adsorption on CNTs is preferable to that on BNNTs. CNTs can be
explored as potentially excellent inhibitors of mycolactone toxins in biological systems.

Keywords: mycolactone; nanotubes; density functional theory (DFT); boron nitride nanotubes
(BNNTs); carbon nanotubes (CNTs); HOMO–LUMO orbital; inhibitors

1. Introduction

Mycolactone is an immunosuppressive polyketide-derived macrolide toxin secreted
by a group of very closely related pathogenic mycobacterial species, including Mycobac-
terium ulcerans, Mycobacterium liflandii (Frog pathogen), Mycobacterium pseudoshottsii, and
some strains of Mycobacterium marinum (Fish pathogen) [1]. In 1999, George and col-
leagues succeeded in isolating and deciphering a cytotoxic component from M. ulcerans
lipid extracts [2]. The name mycolactone was coined based on the mycobacterial origin
and macrolactone structure of the toxin extract: a 12-membered lactone ring to which is
appended a C5-O-linked polyunsaturated acyl side chain and a C-linked upper side chain
comprising C12–C20 [3]. The structural characteristics of three mycolactones (A/B, C,
and D) isolated from clinical isolates of M. ulcerans have been determined. In humans,
mycolactone is known to be associated with the pathogenesis of Buruli ulcer (BU), a disease
caused by M. ulcerans [4]. BU is one of the most neglected tropical diseases. However, it
is the third most common disease caused by a mycobacterium, besides tuberculosis and
leprosy [5]. Because mycolactone is lipophilic, it is thought to passively penetrate cell
membranes and bind to crucial proteins involved in platelet and mast cell exocytosis,
hence slowing wound healing [6,7]. According to recent research, mycolactone exerts a
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pleiotropic effect and disrupts basic cellular processes such as cell attachment, signaling
pathways, cell proliferation, cell death, and inflammation [8]. This accounts for the painless,
slow-healing ulcer lesions associated with BU. However, significant progress has been
made in understanding the multifaceted role of mycolactone in host colonization. Some
of these roles include an immunomodulatory effect, targeting the Sec61 channel and facil-
itating immunological escape [8], and an analgesic effect, targeting AT2R receptors and
accounting for painlessness in individuals with early BU lesions [3]. Despite this progress,
there remain some challenges since generated neutralizing antibodies have the drawback
of being produced from hybridomas [9].

Biomaterials, in recent times, have become essential elements that are used in a wide
range of biomedical and clinical applications. The employment of nanoparticles in these
fields has a lot of promise, owing to the high ratio of surface atoms, which changes the
physicochemical characteristics and boosts chemical reactivity. Nanotubes are divided
into two categories comprising single-walled nanotubes (SWNTs) and multiple-walled
nanotubes (MWNTs) [10,11]. Nanotubes can be further classified into three configurations
consisting of the armchair, zigzag, and chiral nanotubes. The difference in the various types
of NTs is based on how the sheet is “rolled up” during its production process. The radius of
the closing cylinder and the rolling axis relative to the hexagonal network of the nanosheet
allow for different forms of SWNTs [12,13]. The outside diameter of single-walled CNTs
is typically between 1 and 2 nm; however, the outer diameter of multi-walled CNTs can
approach 100 nm. Increasing the number of layers in MWNTs always increases the number
of flaws, making them easier to change and functionalize, usually at the expense of physical
qualities of degradation [14].

Among them, CNTs have proven to be powerful tools for improved biomedical
approaches in the management of numerous diseases, such as cancer and Alzheimer’s
disease [15]. Carbon nanotubes (CNTs) are widely employed in biology and medicine for
in vitro and in vivo detection, imaging, and drug administration [16]. They are one of the
most splendid nanostructures. CNTs were also found to have low toxicity when used as
a medication carrier [17]. CNT pores (CNTPs) have been discovered to have water-salt
permselectivity values comparable to those of conventional desalination membranes [18]
due to their great chemical stability. CNTs have an excellent ability to penetrate cell
membranes, and their carbon atoms have sp2 hybridization, enabling their functionalization
with almost every biomolecule or compound [15]. This allows them to target cells and
deliver drugs under the appropriate environmental stimuli [15]. BNNTs have also been
extensively used in many applications [19]. BNNTs—structural analogs of CNTs—have
piqued the interest of researchers in nanomedicine due to their one-dimensional (1D)
physical structure, stable chemical composition, low toxicity, and a plethora of other
properties, making them particularly promising for drug carriers, tissue scaffolds, chemical
agents for boron neutron capture therapy (BNCT), and irreversible electroporation for
cancer therapy [20–22]. BNNTs are naturally noncytotoxic and can be functionalized
with chemical groups to bind proteins and cells. According to research, BNNTs have
considerable promise in biosensor and nanomedicine applications [23]. Both CNTs and
BNNTs exhibit comparable heat conductivity and mechanical stiffness.

Few studies have been conducted seeking to annihilate the effect of mycolactone on
host tissues. A study [9] developed an anti-mycolactone immune-sera and monoclonal
antibody (mAb) showing in-vitro-neutralization activity by immunizing mice with a protein
conjugate of a non-toxic synthetic truncated mycolactone variant. Despite this progress,
there remain some challenges since the neutralizing antibodies have the drawback of being
produced from hybridomas [9]. This renders them suboptimal for the treatment of human
subjects owing to the risk of anti-murine antibody reactions [24]. Although, humanized
variants of these murine antibodies can be obtained to possibly treat BU, this technique
is time-consuming and does not necessarily ensure that the ‘converted’ antibodies will
retain the same effectiveness or might still evoke an immunogenic response [24]. Again,
the currently known antibodies against mycolactone are few, hence the need to investigate
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novel inhibitors for mycolactone to optimize BU treatment. The purpose of this paper was
to evaluate if armchair BNNTs (5,5) and CNTs (5,5) can behave as inhibitors when DFT
calculations are used in this investigation. The electrical properties of mycolactone, as well
as its interactions with armchair BNNTs (5,5) and CNTs (5,5) were thoroughly explored.
When compared to other NT topologies, the NT configuration (5,5) was shown to be the
most stable following biomolecular adsorption [25].

2. Materials and Methods
Computational Details

The original structures of the armchair BNNTs (5,5), armchair CNTs (5,5), and mycolac-
tone molecules were modeled using the Avogadro [26] Following that, we optimized their
molecular geometries using the DFT with the Quantum Espresso [27]. The hybrid B3LYP
(Becke’s three-parameter hybrid functional with Lee-YangParr correlation functional B3LYP
at a 6-31G* basis set was used for all quantum-chemical calculations. In the investigation of
the electrical structure and characteristics of various BN nanostructures, B3LYP has been
shown to be a reliable and widely used functional [28]. For the treatment of intermolecular
interactions, it is generally accurate [29]. Several electronic parameters were estimated us-
ing the DFT approach with the hybrid B3LYP [30,31], including frontier molecular orbitals,
gap energies, and reactivity descriptors. Quantum Espresso software was also used to gen-
erate density of state (DOS) plots. The cartesian coordinates are provided in Supplementary
File S1.

3. Results and Discussion
3.1. Molecular Geometry and Adsorption Energy

The structures were optimized before the pure DFT calculations using the self-consistent
density functional tight-binding method with empirical dispersion (SCCDFTB) [32], which
is derived from the DFT total energy’s second-order expansion. The SCC-DFTB-D approach
is two or three orders of magnitude faster than pure DFT, and it has been effectively em-
ployed in analyzing the electronic structures and properties of massive systems [33]. It also
has lesser precision than pure DFT [34]. The pure DFT approach was then used to finely
calculate the structures and properties of the interacting system.

To optimize the structures of the mycolactone, armchair BNNT (5,5), and armchair
CNT (5,5), the computationally fast SCC-DFTB-D approach was used. After that, the
optimized geometries were employed as the starting points for pure DFT calculations.
There were no constraints used, and frequency calculations were carried out to guarantee
that the optimized structures were indeed at their local minimum. Because the SCC-
DFTB-D approach is theoretically approximated by the pure DFT method, this two-step
optimization procedure greatly accelerated our calculations while preserving precision.
The SCC-DFTB-D approach proved to be a very useful tool for researching the properties
of large systems. Figure 1 depicts the optimized structures as well as the atom labeling.
According to the findings, the mycolactone developed a non-planar form. The average
bond lengths of the B–N bonds in BNNT and the C–C bond length in CNT, as shown in the
optimized geometries of the nanotubes in Figure 1B,C, are 1.47 and 1.43 Å, respectively,
which agree well with earlier theoretical conclusions [35,36].
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Figure 1. Optimized structures of mycolactone, armchair BNNT (5,5), and armchair CNT (5,5). (A) 
the optimized structure of mycolactone, (B) the structure of armchair BNNT (5,5), and (C) the struc-
ture of armchair CNT (5,5). Carbon, boron, and nitrogen are represented by grey, brown, and blue, 
respectively. 
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To ensure that different sections of the mycolactone molecule interact correctly with the 
tube surface, it was initially placed in various positions in the tube and its orientation was 
changed. Figure 2 shows the optimized structures of mycolactone on armchair BNNT (5,5) 
and armchair CNT (5,5), as well as their relative orientations in top and side views. Table 
1 shows the DFT (PBE) level of theory estimated binding energies and equilibrium bond 
lengths at the binding sites of mycolactone functionalized nanotube complexes. In Figure 
2, the two most representative locations for the mycolactone on BNNT are labeled B1 and 
B2, respectively. The representative locations of C1 and C2 for mycolactone on CNT are 
also labeled in Figure 2. According to the optimized structures, the most stable adsorption 
sites for mycolactone on BNNT are at the tube’s two ends. The mycolactone molecule in-
teracts weakly with the BNNT surface towards the tube’s ends in the B1 case (Figure 2), 
which has a maximum interaction energy of 43.90 kcal/mol. 

Figure 1. Optimized structures of mycolactone, armchair BNNT (5,5), and armchair CNT (5,5).
(A) the optimized structure of mycolactone, (B) the structure of armchair BNNT (5,5), and (C) the
structure of armchair CNT (5,5). Carbon, boron, and nitrogen are represented by grey, brown, and
blue, respectively.

The optimization of the geometry of the interacting complex structures was then used
to investigate the adsorption of mycolactone on the outer surface and near the tube cave.
To ensure that different sections of the mycolactone molecule interact correctly with the
tube surface, it was initially placed in various positions in the tube and its orientation was
changed. Figure 2 shows the optimized structures of mycolactone on armchair BNNT (5,5)
and armchair CNT (5,5), as well as their relative orientations in top and side views. Table 1
shows the DFT (PBE) level of theory estimated binding energies and equilibrium bond
lengths at the binding sites of mycolactone functionalized nanotube complexes. In Figure 2,
the two most representative locations for the mycolactone on BNNT are labeled B1 and B2,
respectively. The representative locations of C1 and C2 for mycolactone on CNT are also
labeled in Figure 2. According to the optimized structures, the most stable adsorption sites
for mycolactone on BNNT are at the tube’s two ends. The mycolactone molecule interacts
weakly with the BNNT surface towards the tube’s ends in the B1 case (Figure 2), which has
a maximum interaction energy of 43.90 kcal/mol.
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Figure 2. The top and side views of the optimized structures of the mycolactone on armchair BNNT 
(5,5) and armchair CNT (5,5). (B1)—Mycolactone on a center of BNNT’s surface, (B2)—Mycolactone 
on the far end of the BNNT’s surface, (C1)—Mycolactone on the center of the CNT’s surface, and 
(C2)—Mycolactone on the far end of the CNT’s surface. 

Figure 2. The top and side views of the optimized structures of the mycolactone on armchair BNNT
(5,5) and armchair CNT (5,5). (B1)—Mycolactone on a center of BNNT’s surface, (B2)—Mycolactone
on the far end of the BNNT’s surface, (C1)—Mycolactone on the center of the CNT’s surface, and
(C2)—Mycolactone on the far end of the CNT’s surface.
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Table 1. Computed adsorption energies (Eads), closest contact distance (R) between the binding
site and the closest atom of the mycolactone molecule, HOMO, LUMO energies, band gap (Egap),
chemical potential (µ), global hardness (η), and electrophilicity index (ω) for the most stable structures
of the mycolactone-nanotube complexes. Units for Eads are kcal/mol, other energies in eV, and bond
length in Å.

Systems Eads R HOMO LUMO Egap µ η ω

B1 −43.90 2.36 −5.01 −4.31 0.70 −4.66 0.35 31.02

B2 −36.40 2.48 −5.06 −4.23 0.83 −4.65 0.42 25.74

BNNT - - −6.54 −2.10 4.44 −4.32 2.22 4.20

C1 −105.20 2.38 −3.86 −3.56 0.30 −3.70 0.16 44.10

C2 −96.77 2.74 −3.86 −3.55 0.31 −3.71 0.15 44.57

CNT - - −3.83 −3.52 0.31 −3.67 0.16 42.94

The features of good inhibitors do not vary considerably during the inhibition process,
allowing them to block the target. Following that, we investigated whether mycolactone
adsorption affects the characteristics of nanotubes. At the DFT level, the density of states
(DOS) of the complexes were determined and compared (Figure 3). In these figures, the
HOMO energies are adjusted to zero. The fact that BNNTs are wide-gap semiconductors
with a HOMO–LUMO gap of roughly 5 eV is widely known. The HOMO–LUMO gap of
the armchair BNNTs (5,5) was predicted to be around 4 eV by our calculations at the DFT
(PBE) level. This conclusion was consistent with DFT and tight-binding calculations based
on LDA [37]. The CNTs’ DOS graphs show that there were no gaps between the HOMO
and LUMO orbitals, indicating that they had electrical conductivity. The tight-binding
band-structure calculations [38] verified this observation. The B1 and B2 examples had
gaps of 0.70 and 0.83 eV, respectively. When compared to the gap of isolated BNNT, the
interaction with the mycolactone molecule significantly altered the gap. The adsorption
of mycolactone on the nanotubes introduced some new states around the LUMO areas,
and the HOMO level was displaced to the lower regions, as shown in the images when
compared to the pure BNNT. As a result, the BNNT tube gap was significantly reduced.
As a result of the computed DOS plots, it appears that the electrical conductivity of the
nanotubes may be modestly altered by mycolactone molecule adsorption. Despite this, the
noncovalently functioned BNNTs retained the semiconductor features of the nanotubes.
The adsorption of mycolactone on CNTs did not produce any additional states, and the
HOMO and LUMO orbitals remained intact. The DOS profile of the CNTs appears to be
unaltered by the non-covalent interaction of the mycolactone molecule, with the exception
of slight alterations in peak strength in the lower areas. The un-separated HOMO and
LUMO peaks of CNTs revealed that the CNTs retain their conducting properties even when
a mycolactone molecule is adsorbed on them. The electrical conductivity of the BNNTs
may be considerably modified by the mycolactone adsorption, while the conductance of
the CNTs remains intact. This suggests that CNTs may be a more effective inhibitor of
mycolactone than BNNTs.
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Figure 3. The density of states (DOS) of the mycolactone- nanotube complexes calculated at the DFT
level. (B1)—Mycolactone on a center of BNNT’s surface, (B2)—Mycolactone on the far end of the
BNNT’s surface, (C1)—Mycolactone on the center of the CNT’s surface, and (C2)—Mycolactone on
the far end of the CNT’s surface.

3.2. Frontier Orbitals Analysis

In the next stage, the frontier orbitals of the mycolactone molecule and nanotubes were
studied to explore how interaction affects the electric charge properties of the nanotubes. In
Figure 4, the isosurfaces of the mycolactone molecule’s frontier orbitals and the nanotubes
that interact with it are shown. The isolated mycolactone’s HOMO and LUMO were both
concentrated on the long chain ends, indicating that both orbitals were delocalized. The
HOMO and LUMO of the non-covalently functionalized B1 were mostly found on the
mycolactone molecule. In B2, the HOMO was mostly found on BNNT, while the LUMO
was found on the mycolactone molecule. The electronic charges can then be transferred
from the BNNT to the mycolactone molecule in the case of the B2 complex, but not in the
case of the B1 complex. The HOMOs in mycolactone on CNTs were mostly found on the
CNTs, while the LUMOs were mostly found on the mycolactone molecule. The atoms of
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mycolactone made no contributions to the border orbitals. Because CNTs are conductive,
mycolactone’s electronic charges can easily be transferred within the CNTs rather than
between the mycolactone and the CNTs.
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Figure 4. The frontier HOMO and LUMO orbitals of the mycolactone and its interaction with
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surface, (B2)—Mycolactone on the far end of the BNNT’s surface, (C1)—Mycolactone on the center
of the CNT’s surface, and (C2)—Mycolactone on the far end of the CNT’s surface.

3.3. Chemical Reactivity Analysis

In order to investigate the effects of mycolactone on nanotube reactivity, the chemical
potential (µ), global hardness (η), and electrophilicity index (ω) were calculated to study
the reactivities of pristine and mycolactone-adsorbed nanotubes. Table 1 shows three
DFT-based chemical descriptors for BNNTs and CNTs, respectively. In these quantities, µ is
calculated as the average of HOMO and LUMO energies, η is calculated as the half of the
differences between the HOMO and LUMO energies. Then,ωwhich is calculated according
to the equation: ω = µ2/2η, can be used to estimate the reactivity of the molecule [38].
The electrophilic index of various chemical compounds and the rate of reaction in the
biochemical system have been discovered to be related. When a chemical system receives
additional charges from the environment, the electrical index influences its energy stability.
The HOMO–LOMO gap was reduced by around 3 eV as a result of the mycolactone
adsorption on BNNTs. The µ, η indexes were lowered by about 0.2–2 eV, while the ω
index was increased by about 27 eV. When the mycolactone was adsorbed on the CNTs,
no significant changes were observed for both the HOMO–LOMO gap and the three
electrophilic indexes. It was then revealed that when the mycolactone molecule is adsorbed
on the surface, the chemical stabilities of CNTs are maintained, while there is a large
fluctuation in the reactivities of BNNTs. The 43.90 kcal/mol obtained was the maximum
interaction energy between BNNTs and the mycolactone molecule, which is a bit low.
However, −105.20 kcal/mol is the maximum interaction energy between CNTs and the
mycolactone molecule, which makes CNTs more favorable than BNNTs.

3.4. Significance, Limitations, and Suggestions for Future Work

The precision of DFT for investigating biomolecular characteristics has been exten-
sively studied. DFT has been shown to effectively predict the geometries of smaller organic
compounds, indicating its efficacy in predicting the geometries of medicinal molecules.
Various studies comparing DFT calculations and experimental values have been conducted,
revealing the appropriateness of the DFT approach [39,40]. Other studies, such as charge
transfer, prolonged pi conjugation, and bond cleavage [41,42] have pointed out some of
its limits.

SWNTs exhibited higher stability when adsorbed with a biomolecule than MWNTs [43],
and when NT configuration (5,5) was compared to zig-zag and chiral configurations, the NT
configuration (5,5) was found to be the most stable following biomolecular adsorption [25],
so we may not expect the same behavior for MWNTs, zig-zag, and chiral configurations.
For the remaining configurations, we advocate computational as well as experimental
evaluations in the future.
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4. Conclusions

In conclusion, DFT calculations were used to investigate the ability of BNNTs and
CNTs to act as mycolactone inhibitors in this study. As demonstrated by the optimized
structure, the mycolactone molecule could adsorb parallel to the tube surface via π-π
stacking interactions. The mycolactone primarily interacted with the nanotube surface via
π-π stack interactions in parallel orientations. Because of these orientations, mycolactone’s
ability to interact with nanotube surfaces via strong electrostatic interactions was limited.
As a result, mycolactone’s interaction strength on the nanotube surface was weaker than in
the end side case. The positive regions of the mycolactone surface cover a greater domain
than the negative regions, indicating that the mycolactone was electrophilic rather than
nucleophilic reactive. This indicated that the mycolactone molecule is more likely to bind to
negatively charged surfaces. Because of the abundance of negative charges and aromaticity
of the CNTs, the π-π stack interaction and electrostatic interaction of mycolactone on CNTs
were stronger than on BNNTs, which explains the stronger interaction of mycolactone on
CNTs. CNTs may thus be a more effective inhibitor of mycolactone toxin in biological
systems. The CNTs’ unseparated HOMO and LUMO peaks revealed that the CNTs retain
their conducting properties even when a mycolactone molecule was adsorbing on them.
The mycolactone adsorption left the conductance of the CNTs unchanged, but the electrical
conductivity of the BNNTs may be significantly altered. The CNTs could block the toxin
without dramatically changing their characteristics in the process. This suggests that
CNTs may be a better inhibitor of the mycolactone toxin. We anticipate that studying the
adsorption and inhibitory capabilities of nanotubes will lead to the identification of new
nanomedicine applications.
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