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Codon-specific Ramachandran plots show amino
acid backbone conformation depends on identity of
the translated codon
Aviv A. Rosenberg 1,2, Ailie Marx1,2 & Alex M. Bronstein 1✉

Synonymous codons translate into chemically identical amino acids. Once considered

inconsequential to the formation of the protein product, there is evidence to suggest that

codon usage affects co-translational protein folding and the final structure of the expressed

protein. Here we develop a method for computing and comparing codon-specific Rama-

chandran plots and demonstrate that the backbone dihedral angle distributions of some

synonymous codons are distinguishable with statistical significance for some secondary

structures. This shows that there exists a dependence between codon identity and backbone

torsion of the translated amino acid. Although these findings cannot pinpoint the causal

direction of this dependence, we discuss the vast biological implications should coding be

shown to directly shape protein conformation and demonstrate the usefulness of this method

as a tool for probing associations between codon usage and protein structure. Finally, we urge

for the inclusion of exact genetic information into structural databases.
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One of the most critical cellular processes is the decoding
of genetic information into functional proteins. Transfer
RNA (tRNA) molecules recognize codons of the mes-

senger RNA (mRNA) sequence as it passes through the ribosome
and deliver specific amino acids sequentially for addition to the
growing peptide chain. 61 codons map to 20 amino acids,
meaning that most amino acids are encoded by more than one,
synonymous, codon. Once considered a silent redundancy of the
genetic code, synonymous coding is now known to be function-
ally important, subject to evolutionary selective pressure and
clearly associated with disease1–5. Changes in synonymous coding
can alter mRNA splicing, mRNA folding, and stability6–8, and
can affect translational speed and accuracy and the conformation
of the translated protein9–12.

Numerous studies have shown that changes in the rhythm of
translation can alter the kinetics of co-translational folding and so,
the global conformation of the final protein product13,14. Trans-
lation rate is affected by synonymous codon usage which alters
mRNA structure and tRNA abundance, the latter coevolving with
codon bias15–20. This mechanism provides an indirect association
between codon usage and global protein structure. Nevertheless,
whether and how synonymous variants of a gene will alter the
conformation of the final folded protein is still poorly predictable
and additionally the literature is riddled with reports of single
synonymous mutations causing measurable functional effects that
are not well-explained by current mechanisms21–24. Together this
suggests that we are far from fully understanding the role of codon
usage in orchestrating protein folding.

To the best of our knowledge, no studies have investigated
whether the specific backbone torsion of an amino acid is asso-
ciated with the synonymous codon from which it was translated.
To probe for such a direct and local association, we developed a
method for estimating and comparing codon-specific backbone
dihedral angle distributions, which we term codon-specific
Ramachandran plots. Comparing these distributions for pairs of
synonymous codons, statistically significant differences are
observed. Our results demonstrate that the backbone dihedral
angle of an amino acid is statistically dependent on the identity of
the codon from which it was translated, however, these results
cannot shed any light on the causal direction of this dependence.

Results
Data collection, codon assignment and development of analysis
tools. The first challenge in investigating the dependence between
codon identity and the protein backbone structure is, regrettably,
the absence of annotation within the Protein Data Bank (PDB)
for the actual genetic template used in producing the protein for
crystallization. Automatic assignment of codon identity to each
position in a protein structure is a prerequisite to calculate codon-
specific Ramachandran plots. It is imperative to stress that any
method used for large-scale codon reassignment will carry an
inherent limitation of being contaminated with uncertainty and
error. The main reason is that codon optimization is very com-
monly used to improve heterologous gene expression25, especially
in structure determination which necessitates the production of
large amounts of soluble protein. There is not one common
approach to codon optimization, and the choice of method often
depends on trial and error26,27. To limit codon assignment errors
from including codon-optimized genes, we selected only struc-
tures of E. coli proteins expressed in E. coli, the most common
expression system in the PDB. We purposely did not include all
natively expressed proteins from other species, since codon biases
differ between organisms28 and such generalization could
obfuscate the sought for associations between coding and
structure.

The procedure for computing and comparing codon-specific
backbone dihedral angle distributions is displayed in Fig. 1 and
detailed in the Methods. Briefly, high-resolution PDB structures
are retrieved, structures are filtered to remove homology bias and
the resulting proteins are grouped according to their unique
Uniprot entry. For each position in a protein chain, the backbone
dihedral angles, φ and ψ, are calculated; if multiple PDB
structures are available, the angles are averaged. Alongside this
precise structural information, DSSP secondary structure is
designated, and codons are assigned according to the genetic
sequences obtained from ENA records cross-referenced in the
Uniprot entry. Only locations with unambiguously assigned
secondary structures and codons are retained.

We used only well-fitted X-ray crystal structures having a
resolution no worse than 1.8 Å (Supplementary Fig. 1), as a recent
study considering alternate backbone conformations found
resolutions better than 2.0 Å useful for such purposes29.

A second challenge in investigating the dependence between
codon identity and the protein backbone structure is that
synonymous codons vary greatly in relative abundance (Supple-
mentary Table 1). The challenge is that any difference we see in
terms of the measured distance between estimated distributions,
could be due to chance, arising from the availability of only finite
data. Thus, our approach is to determine whether the distance we
measure is large enough such that the probability of obtaining
such a distance by chance from identical underlying distributions
is extremely small.

Specifically, our analysis carefully accounts for this by
comparing non-parametric distribution estimates which are
calculated using the same sample size for all codons in a
synonymous group; that of the rarest codon. We combine this
with bootstrap-resampling to account for all available data from
the abundant codons. We do not assume any specific parametric
form of the underlying (i.e., real) distribution of codon dihedral
angles because these distributions are complex, unknown, and
unlikely to be accurately approximated by any closed-form
parametric model. Instead, we aim only to compare the estimated
distributions and as such do not require that samples from each
codon distribution exhaustively represent the entire underlying
distribution. Rather we developed tools and employed existing
statistical methods which are sensitive and capable of comparing
between nonparametric estimated distributions. We quantify the
differences using a distribution-free statistical test to calculate the
p-value of observing these data under the assumption that the two
codons in question have the same underlying distribution. The
Methods section describes these details in full and shows
additional experiments on synthetic and real data which validate
our approach on various sample sizes.

Codon-specific backbone angle distributions are significantly
distinct within the β mode. Synonymous codons are known to
have distinct propensities to different secondary structures30–33,
which is manifested as different probabilities of the correspond-
ing modes in the full codon-specific Ramachandran plots (Fig. 2).
The difference in propensity for the main two, α and β, secondary
structure modes might therefore dominate the difference between
the codon-specific Ramachandran plots of synonymous codons.
To factor out this effect, we conditioned the dihedral angle dis-
tribution on the secondary structure, effectively restricting it
either to the distinct β or α modes. Select examples of the
resulting codon-specific Ramachandran plots, conditioned on
these modes, are shown (Fig. 3), while the full set is provided
(Supplementary Figs. 2, 3). Visually, it is evident that synon-
ymous codons of some amino acids have clearly distinguishable
distribution shapes especially in the β-mode.
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To quantify those differences and their significance, we used a
distribution-free two-sample permutation test with the L1
distance between KDEs serving as the test statistic and assigned
p-values to each synonymous codon pair with respect to the null
hypothesis that the two codons have the same underlying
distribution of backbone angles. To determine the p-value
threshold for statistical significance in a setting where multiple
hypotheses are considered together, we employed the Benjamini-
Hochberg correction with false discovery rate set to 0.05. This
process is shown schematically (Fig. 1) and detailed in the
Methods. Matrices and multidimensional scaling (MDS) plots
visualizing the distances between select pairs of synonymous
codon distributions are shown alongside the contour plots (Fig. 3)
and for all synonymous codon groups (Supplementary Figs. 4–7).

Note that together with the 87 synonymous pairs, we also
included the 61 comparisons of each codon to itself. The latter
served as a control, and indeed, the null hypotheses were not
rejected for any of the same codon pairs in either of the secondary
structures. No synonymous pairs were rejected in comparisons of
the distributions of the α-mode, however, when comparing
distributions for the β- mode, 57 of the 87 synonymous pairs were
rejected (Fig. 4).

It is not surprising that α-helices, being less flexible than β-
sheets34,35, display less variability in codon-specific Ramachan-
dran plots. The Ramachandran plot defines a richer range of
structural contexts than the discrete categories available in DSSP
annotation36, especially in the β-mode. It is therefore possible
that some of the differences we observe between codon-specific
dihedral angle distributions in the β-mode are attributable to
codon preferences for finer secondary structure categories such as
parallel and antiparallel β-sheets. However, it should be noted
that we used a strict conditioning by the secondary structure,

taking only the DSSP annotation37 E (extended strand – β-sheet
in parallel and/or anti-parallel sheet conformation with minimum
length of 2 residues) for the β-mode, and H (α-helix – a 4 turn
helix with minimum length of 4 residues), for the α-mode.

Having found synonymous codons which have different
dihedral angle distributions within the β-mode, we explored the
possibility that synonymous codon preferences for specific
positions within this secondary structure (beginning, middle or
end; refer to Supplementary Fig. 8)36 are reflected in these
differences, at least in some amino acids. In Supplementary Fig. 9,
we present codon-specific Ramachandran plots for secondary
substructures of the β-mode in an amino acid with large codon
sample sizes (alanine). Substantial distribution differences are still
observed between synonymous codons, even with such finer
secondary structure conditioning. This indicates that distinct
codon propensities for sub-structures of a β-mode cannot fully
explain their distribution differences observed in the full β-mode.

Distances between dihedral angle distributions of synonymous
codons hint at a correlation to features of the translation
process. Our findings remain silent regarding the origin of the
observed differences in synonymous codon backbone dihedral
angle distributions; in particular, the causation direction cannot
be established unambiguously. It is tempting to speculate, how-
ever, that the translation process plays an active role in the
observed effect. To illustrate this speculation, we considered how
two features of the translation machinery correlate to the calcu-
lated distances between backbone dihedral angle distributions of
synonymous codon pairs. Firstly, we demonstrate that the dif-
ference in the codon-specific translation speed between a pair of
synonymous codons appears to positively correlate to the distance
between their dihedral angle distributions (Fig. 5, left). Although

Fig. 1 Data Collection and Analysis. Querying the PDB for high resolution (≤1.8 Å), high quality (Rfree≤ 24%) X-ray crystal structures of E. coli proteins
expressed in E. coli (A), out of which unique chains were extracted (B). To ensure the protein set was non-redundant, pairwise sequence alignment scores
were calculated between every pair of unique sequences (C). A farthest point sampling procedure was then employed to produce a sub-set of structures
with normalized pairwise similarity not exceeding 0.7 (D). Structures were then grouped according to their unique Uniprot identifier. Genetic sequences
were retrieved from ENA records cross-referenced by Uniprot (E), adopting a conservative approach: locations having more than one genetic variant for a
specific residue are excluded from further analysis (F). For each group, a single protein record was generated with each point in the amino acid sequence
annotated with the φ, ψ backbone dihedral angles averaged over all the structures in the record, the codon, and DSSP secondary structure assignment (G).
The final data set included 1343 protein chains. We estimated the codon distributions from their samples using kernel density estimation (KDE) on a torus
with a Gaussian kernel width of 2°. We used a bootstrap-resampling scheme to estimate multiple realizations of these codon specific distributions.
p-values were calculated via permutation test on the L1 distance between the estimated densities (steps H–J); the rejection threshold (p= 0.019) was
established by Benjamini-Hochberg multiple hypothesis correction with the false discovery rate set to q= 0.05 (K).
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ribosome profiling has facilitated the measurement of translation
speed to exquisite single-codon resolution in human and yeast
cells, the application to bacteria has been more problematic38. We
used the data from Chevance et al. who developed an in vivo
bacterial genetic assay for measuring ribosomal speed indepen-
dent of the stability of the mRNA transcript or the translated
protein product39. Note that in order to limit confounding fac-
tors, we considered only pairs of codons being translated by the
same tRNA.

In a second illustration, we identified codons translated
unambiguously by a single tRNA, following Bjork et al.40, and
grouped codon pairs as being translated by either the same or
different tRNA molecules. Figure 5 (right) shows that synon-
ymous codon pairs translated by different tRNAs tend to have a
larger distance between their backbone dihedral angle
distributions.

While these two trends can by no means be conclusive, they
suggest the potential value of the proposed methods in analyzing
relations between synonymous coding and the features of the
translation process.

Discussion
In this work we generate codon-specific Ramachandran plots,
showing that there is some association between synonymous
codon usage and the structure of the translated amino acid. In
contrast to previous works showing that synonymous codons

have preferences for different secondary structures, this work
probes for a much more local association, namely between the
backbone dihedral angle distributions of an amino acid and the
synonymous codon from which it was translated. To factor out
the phenomenon of secondary structure preference, we analyzed
the α and β modes separately and found that many synonymous
codon distributions are statistically significantly different in the β
mode. We found no statistically significant differences in dis-
tributions for the α mode; perhaps not surprisingly given that α-
helices fold into more rigid structures. Although our results
cannot determine causal direction, it is worth clarifying that
should synonymous codon usage be found to directly affect the
formation of local protein structure this would not challenge the
dominance of the amino acid sequence and protein environment
in directing protein folding, especially for globular proteins
having a well-defined fold. We would suspect that only some
positions in a structure could carry a memory of potential
structural bias introduced by synonymous coding, and that any
environmental effects will not be biased towards any particular
codon. This would mean that although the inability to factor out
the environment is a limitation of our study, the differences
between synonymous codon distributions would underestimate
the effect that synonymous coding could have at positions, which
are sensitive to this effect.

Given the mounting evidence for an association between codon
usage and protein structure, it is not surprising that there have
been previous attempts to combine genetic information with the

β− α−

β

α

Fig. 2 Different propensities for secondary structures of synonymous codons are manifested in the dihedral angle distribution. Out of the two codons
GTA and GTT translating valine, GTA has 8% lower propensity for the β mode and 9.4% higher propensity for the α mode. Propensities are manifested
through the relative weights of the corresponding modes in the Ramachandran plot, which is visible in the marginal distributions of the dihedral angle φ
plotted here. When conditioned by secondary structure (i.e., restricted to a specific mode), the distributions of the two synonymous codons become
indistinguishable. By conditioning on secondary structure, our analysis is made robust to distribution differences arising from propensities differences.
Kernel density estimates are shown with the shaded regions denoting 10–90% confidence intervals calculated on 1000 random bootstraps.
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structural description of the protein products these genes pro-
duce. The Integrated Sequence-Structure Database (ISSD) cata-
logued in its second edition 88 E. coli, 25 yeast and 166
mammalian non-homologous proteins having a resolution better
than 2.5Å41 and the Cod-Conf Data Base assigned coding
information to almost 1900 non-homologous proteins from all
species42. Two important trends have eventuated in the two
decades passed since the development of these databases: (1)
there has been an exponential rise in the number of high-
resolution protein structures, and (2) codon optimization has
become common place in heterologous gene expression for

structural studies. This means that whilst we now have a wealth of
structural data which could be used to explore associations with
codons, they are not readily usable since structural databases,
notably the PDB, rarely annotates the genetic sequence from
which the protein was produced.

Codon-specific Ramachandran plots and their comparative
analysis could serve as a useful, quantitative tool in future studies
looking at the association between coding and local protein
structure. It is likely that codon-specific backbone dihedral angle
distributions will show even more significant variations when
extended to pairs or triplets. Codon pair usage bias has been

Fig. 3 Codon-specific Ramachandran plots of select amino acids and distances between them. Shown left-to-right are cysteine, isoleucine, threonine, and
valine. Contour plots depict the level lines containing 10, 50, and 90% of the probability mass. Shaded regions represent 10%-90% confidence intervals
calculated on 1000 random bootstraps. The β- (top) and α- (bottom) modes are depicted. The matrices show L1 distances between pairs of codon-specific
Ramachandran plots, normalized so that the self-distance is 1. Red dots indicate pairs with significantly different dihedral angle distributions based on their
p value. The scatter plots visualizing the distance matrices were obtained by a variant of multidimensional scaling (MDS). Each point represents a codon;
pairwise Euclidean distances between the points approximates the L1 distance between the corresponding codons. Circles approximate the uncertainty
radii. The more two circles overlap, the less distinguishable are the corresponding codon-specific Ramachandran plots.

Fig. 4 p values obtained comparing pairs of synonymous codons in the β and α modes. The p values were obtained from the one-sided test detailed in
the Methods. The total set of hypothesis tests included the 87 synonymous codon pairs with the addition of 61 comparisons of the codon with itself for
control (denoted as empty circles). To correct for multiple tests, the rejection threshold corresponding to false discovery rate q = 0.05 was established
using the Benjamini-Hochberg procedure (red curve). The set of tests on which the null was rejected is marked in green. For the identities of the rejected
pairs, refer to Supplementary Fig. 4.
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observed in E. coli43 and in human disease44,45. It has been
suggested that codon translation efficiency is modulated by
adjacent single nucleotides46, that codon pair order significantly
affects translation speed40, and, more recently, the case for a
genetic code formed by codons triplets has been argued24.

The main challenge in extending the presented methods to
codon pairs or longer tuples is the relative scarceness of data and
the need to compare multi-dimensional density functions char-
acterizing the backbone structure of a tuple of amino acids.
Extending the analysis to other expression systems faces a similar
data scarceness challenge. Considering genes from various source
organisms expressed in E. coli, either to probe for evolutionary
distinctions between species or to overcome data scarceness when
probing codon pairs in a hypothesized translation-dependent
mechanism, is burdened by the uncertainty associated with codon
(re)assignment. The latter will be overcome when structural
databases start annotating the exact genetic source used for
producing protein, which is crucial, given the ever-amounting
evidence for the critical functional importance of codon usage.

We hope that the associations between synonymous coding
and local backbone conformation revealed through codon-
specific Ramachandran plots will spark subsequent investiga-
tions which should directly probe the possible causal relationships
that might underpin these observations. The implications of an
active, coding-dependent process would be tremendous, necessi-
tating an immediate rethink as to how we manipulate the genetic
code through codon optimization. This question could not be
timelier, as mRNA vaccines are taking centre stage in global
medicine. Moreover, the observed dependence between coding
and local structure can potentially improve protein prediction
algorithms, since in such tasks the causal relationship between the
two is superfluous. To conclude, these results may affect how we
define the role of synonymous variants in health and disease and
understand protein folding in general.

Methods
Data collection. Protein structure data is collected from the Protein Data Bank
(PDB)47 through a structured query against the search API defining the following
criteria: (i) Method: X-Ray Diffraction; (ii) X-Ray Resolution: Less than or equal to

1.8 Å; (iii) Rfree: Less than or equal to 0.24, (iv) Expression system contains the
phrase “Escherichia Coli” and (v) Source organism taxonomy ID equal to 562
(Escherichia Coli). Queries return a list of PDB IDs having entity numbers, e.g.,
1ABC:1. An entity corresponds to one or more identical polypeptide chains in the
structure and we select the first of its matching chains using lexicographic order. A
structure may have more than one unique entity (e.g., 1ABC:1 and 1ABC:2), in
which case we would obtain both.

Next, we query the PDB’s entry data API to obtain a mapping from chains to
Uniprot48 IDs. We keep only chains which map to a unique Uniprot ID, which is
most chains. An exception, which we discard, are chimeric chains i.e. those that
contain sections from multiple different proteins. We align the protein sequence of
each chain to the Uniprot record sequence, using the same pairwise alignment
algorithm as described in Codon assignment (below), to provide a Uniprot index
for each residue in the PDB chain.

After removing homology bias using the procedure described under
Redundancy filtering, backbone dihedral angles (φ,ψ) are calculated and secondary
structure is assigned by DSSP37 per residue. Finally, we assign each residue with a
codon using the method described below (codon assignment). The result of this
process is what we call a Protein Record for each PDB chain. The Protein Record
contains, per residue: corresponding Uniprot ID and residue index, torsion angles
(φ,ψ), secondary structure and codon.

Redundancy filtering. To remove homology bias from our data, we performed a
filtering step. First, each pair of Uniprot sequences is aligned using the BioPython49

software package, with a match score of 1 and all penalty scores set to zero. Thus,
we obtain an alignment score sij ≥ 0 between every pair of Uniprot sequences i,j.
We then calculate normalized scores,

esij ¼ sijffiffiffiffiffiffiffiffisiisjj
p : ð1Þ

Note that by definition 0 ≤esij ≤ 1 and esii ¼ 1 for every i,j. In other words, this
normalization ensures that the self-alignment score is 1 and all other scores are
normalized to be in [0,1], regardless of the sequence lengths or the alignment
penalty values. This normalization also makes it simple to choose a similarity cutoff
threshold, since the threshold is chosen in the fixed range [0,1] where 1 equates to
an exact match and 0 to a complete mismatch. We chose a normalized similarity
threshold of τ = 0.7.

Using the normalized alignment scores we then employ a farthest-first traversal
procedure to sort the Uniprot sequences: the first sequence is selected arbitrarily,
and each successively selected sequence is such that it has the lowest maximum
normalized alignment score between itself and all previously-selected sequences.
Formally, denote by S and U the sets of selected and un-selected sequences,
respectively. We initialize to S ¼ 0f g and U¼ 1; 2; ¼ ;N � 1f g where N is the
number of Uniprot sequences. At each step k of this traversal, for each unselected
sequence j2U , we calculate its greatest similarity to any of the so-far selected

Same tRNA

Different tRNA

Fig. 5 Distances between codon-specific Ramachandran plots are related to parameters of the translation process. Left: The mean absolute difference
in the relative translation speed as a function of the mean distance between backbone dihedral angle distributions for pairs of codons translated
unambiguously by the same single tRNA. The two quantities are positively correlated (r2= 0.6). Translation speed data and confidence intervals are
reproduced from Chevance et al. (2014). Translation speed (vertical) error bars were calculated from Fig. S1 A and B in Chevance et al. (2014) based on 3
or more independent assays; distribution distance (horizontal) error bars were obtained from 250 bootstrap samples. Both error bars indicate 1σ. Right:
Pairwise distances between backbone dihedral angle distributions of codons translated unambiguously by the same tRNA (green) or two distinct tRNAs
(red), sorted in ascending order (left) and as cumulative histograms (right). Noncognate codon pairs tend to exhibit a significantly bigger distance.
Horizontal lines indicate means. In both plots, the normalized L1 distances are reported with the ±σ confidence intervals calculated on 1000 bootstraps.
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sequences,

Sk j
� � ¼ max

i2S
esij: ð2Þ

We then choose the sequence which has the lowest maximal similarity to the
selected sequences, i.e., we add

j ¼ argmin
j02U

Sk j0
� �

ð3Þ

to S. We stop the procedure once Sk (j) > τ for the sequence j that was selected at
step k, and retain S as the output filtered set of Uniprot sequences. This ensures
that no two sequences in the selected set have a normalized similarity score greater
than τ. After performing this procedure, we keep in our dataset only PDB chains
that were mapped to one of the Uniprot sequences in S. Any PDB chain mapped to
a Uniprot sequence from U is discarded from analysis. Note that we keep all chains
from different PDB structures that correspond to the same selected Uniprot
sequence in order to aggregate their backbone angles as explained below (under
Angle aggregation).

Codon assignment. Since the genetic sequences used for expressing each protein are
not annotated in the PDB, we assigned codons from the native sequence in the
European Nucleotide Archive (ENA)50 IDs, cross-referenced from the mapped
Uniprot ID. All available genetic sequences for the specific protein are translated to
an amino-acid sequence and aligned pairwise to the sequence of the PDB chain.
The alignment is performed using the BioPython47 implementation of the Gotoh
global alignment algorithm51. We used BLOSUM80 as the substitution matrix for
the alignment, a gap-opening penalty of −10 and a gap extension penalty of −0.5.

Following the pairwise alignment of the amino acid sequence to all translated
genetic sequences, we obtain the aligned codons from each sequence and assign
them to corresponding residues from the PDB chain. This process yields zero or
more assigned codons per residue in the PDB chain. In cases where more than one
codon is assigned, we consider the assignment ambiguous and exclude that residue
from further analysis.

Angle aggregation. Since some proteins have been characterized by multiple crystal
structures, there are residues from different PDB chains which map to the same
Uniprot ID and location in the Uniprot sequence. For example, in our dataset, the
residues 1SEH:A:42, 1RNJ:A:42 and 2HRM:A:42 were all aligned to the Uniprot ID
and index P06968:41. We consider such cases as different experimental realizations
of the same protein residue and aggregate the backbone angles from such residues,
to obtain an average measurement.

When aggregating the angles, we must account for the fact that a torsion angle
pair φ = (φ,ψ) is defined on a torus (i.e. the domain S1 × S1 where S1 is a circle).
Intuitively, each angle naturally wraps around at ±180°, and the space spanned by
two such angles is a torus. Thus, taking a simple average of each angle separately
would not be correct. Instead we use the torus-mean function defined in the
mathematical tools section (below).

Backbone angle distribution distance. Our aim is to measure the distance between
distributions of backbone torsion angles of synonymous codons in α-helix and β-
sheet secondary structure modes. Denote f φjc;X� �

the distribution of backbone
angles φ of codon c in secondary structure X . We denote the distance between the
backbone angle distributions of two synonymous codons c and c′ in secondary
structure X as d c; c0ð ÞjX and estimate them between all pairs of synonymous
codons. We include all cases of c = c′ as controls. Empirical tests with the L1,, L2
and smoothed Wasserstein distances showed that the L1 metric provided the
highest statistical power of all three at reasonable computational costs and so this
was the distance metric selected. It is defined as,

d1 c; c0ð ÞjX≜ f �jc;Xð Þ � f �jc0;Xð Þ
�� ��

1
¼

Z
�π;π½ �2

f φjc;X� �� f φjc0;X� ��� ��dφ:
Although the underlying backbone angle distributions f φjc;X� �

are unknown,
we sample from the distributions to obtain a finite sample φi � f �jc;Xð Þ� �

i for
each codon c and secondary structure X . We use these samples to fit a kernel-

density estimate (KDE), bf φjc;X� �
, of each distribution, as explained under Kernel

density estimation (below). The distance metric d1 c; c0ð ÞjX is then calculated on the
KDEs of each synonymous codon pair. Since the KDEs are discrete, the integration
above becomes a sum,

bd1 c; c0ð ÞjX ¼ ∑
K

k1 ;k2¼1

bf φk1 ;k2
jc;X

	 

�bf φk1 ;k2

jc0;X
	 
��� ���;

where K is the number of KDE bins in each direction and φk1 ;k2
¼ φk1

;ψk2

	 

are

discrete evenly-sampled grid points. We then use permutation-based hypothesis
testing to determine whether the distance supports the (alternative) hypothesis that
the codons have a significantly different distribution, as explained below.

Detecting synonymous codons with different angle distributions. Faced with

finite-sample estimations of codon backbone angle distributions, bf φjc;X� �
, we aim

to determine whether there exist pairs of synonymous codons c; c0ð Þ for which the
underlying distributions, f φjc;X� �

, are different. For every pair of synonymous
codons and secondary structure c; c0ð ÞjX (where we allow c ¼ c0), we define a null
hypothesis, which states that they have identical underlying backbone angle dis-
tributions:

H0; c;c0ð ÞjX : f φjc;X� � ¼ f φjc0;X� �
We used permutation-based hypothesis testing52 to obtain valid p-values for

each of these null hypotheses without the need to make assumptions about the
backbone angle distributions f φjc;X� �

or the distribution of the distance metric
d1 c; c0ð ÞjX under the null. The permutation testing procedure is detailed below
(under Permutation-based two-sample hypothesis test). We thus obtain,
per secondary structure, a total of 148 p-values: 61 for identical codons, c ¼ c0 , and
an additional 87 for non-idential but synonymous codons, c≠c0 .

We used the Benjamini-Hochberg method53 for multiple hypothesis testing. In
this approach a significance threshold is calculated dynamically from the set of all
obtained p-values, in a way which controls the False-Discovery Rate (FDR) for the
entire set of tests (instead of the type-I error of each individual test). The method
allows us to specify the FDR-control parameter, q, and ensures that over repeated
trials the expected value of the proportion between false discoveries (i.e. false
rejections of the null hypotheses) and total discoveries (all rejections of null
hypotheses) will be q.

Preventing bias due to sample size differences. One way to account for vastly dif-
ferent sample sizes this would be to cross-validate the KDE kernel bandwidth and
choose an appropriate value for each sample size. This is challenging, however,
since we would need to separately cross-validate for all codons, some with very
limited data.

Instead, we opted to use a single kernel bandwidth, but fix the sample size for
each set of synonymous comparisons. For each amino acid A, and per secondary
structure X , we used the same, minimum, sample size NA;X to estimate the
distributions for all codons in a synonymous group. Due to computational
constraints, we also set an upper limit Nmax of 200. Thus, the sample size for all
codons of amino acid A was calculated as

NA;X ¼ min Nmax;min
c2A

Nc;X
n o� �

;

where Nc;X is the sample size for codon c in secondary structure X .
Having limited the sample size, we employed also a bootstrapped-sampling54

scheme on top of the distribution estimation and comparison, so as to exploit all
available data for more common codons. Specifically, for each codon c2A, we
estimate its distribution B times from NA;X samples drawn with replacement from
its collected data. This gives us access to at most B � NA;X samples from each codon
c2A, instead of only NA;X . We then compare B pairs of distributions for each
synonymous codon pair c; c02A using the permutation test, and use the results of
all permutations in all bootstrap iterations to calculate the p-value of c; c0ð Þ.

Statistical tests were performed with B = 25 bootstrap iterations with K = 200
permutations each, for a total of 5000 permutations used for p value calculation.
We used Nmax = 200 for all comparisons and set an FDR threshold of q = 0.05.
Figure 6 presents a synthetic-data experiment validating this approach using
various sample sizes.

Full procedure. The procedure for comparing synonymous codon backbone angle
distributions and then identifying codon pairs having significantly different dis-
tributions is described here.

For each synonymous codon pair, c; c0ð Þ and secondary structure X , we
calculate a p-value with respect to the null hypothesis H0; c;c0ð ÞjX , i.e. that they come
from the same underlying distribution:

For b 2 1; ¼ ;Bf g:
Sample NA;X observations randomly from c and from c0 (each with
replacement).
Denote the sampled observations from c and c0 as C and C0 respectively.
Apply permutation test procedure (Permutation-based two-sample hypothesis
test) on C and C0 for K permutations. The test-statistic T(X,Y) first computes the
KDEs of X and Y, then calcultates the L1 distance between them.
Denote by ηb the number of times the base metric no greater than the permuted
metric in the current permutation test.

Calculate the p-value with respect to H0; c;c0ð ÞjX :

p c;c0ð Þ;X ¼
1þ ∑

B

b¼1
ηb

1þ B � K :

For each secondary structure X , we calculate the significance threshold based
on the Benjamini-Hochberg method as follows:

Denote pi;X
n oM

i¼1
the set of M = 148 p-values obtained from all pairwise

comparisons of synonymous codons in secondary structure X .
Sort the p-values and denote p ið Þ;X the i-th sorted p-value.
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Calculate the threshold p-value index for an FDR of q, which is the largest p
value smaller than the adaptive threshold of q � i=M:

i0 ¼ max i : p ið Þ;X ≤ q � i
M

� �
:

Set the adaptive significance threshold: αM ¼ p i0ð Þ;X .
Reject the i-th null-hypotheses if p ið Þ;X<αM .

The set of synonymous codon pairs corresponding to the rejected null
hypotheses are deemed to have significantly different backbone angle distributions.
Figure 7 presents an experiment on real codon data, visualizing how the p-values
calculated by our method correspond to expected differences between codons.

Mathematical Tools
Torus mean. Given a set of N points on a torus φi

� �N
i¼1 where φi ¼ φi;ψi

� � 2
S1 ´ S1, we would like to calculate the mean of these points, �φ in a way which
accounts for the wrap-around of each angle at ±180°. We define a function which
approximates a centroid on a torus, by calculating the average angle with circular
wrapping in each direction separately. We denote this function as
�φ ¼ torm φi

� �� �
. For example, if φ1 ¼ 170; 170ð Þ and φ2 ¼ �170;�130ð Þ then we

expect torm φ1;φ2

� �� � ¼ 180;�160ð Þ. We define the function as follows

�φ ¼ torm φi

� �N
i¼1

	 

¼ �φ; �ψ

� �
¼ atan2 ∑

N

i¼1
sinφi; ∑

N

i¼1
cosφi


 �
; atan2 ∑

N

i¼1
sinψi; ∑

N

i¼1
cosψi;


 �
 �
;

where atan2 y; x
� �

is a signed version of arctan y=x
� �

which uses the sign of both
arguments to unambiguously recover the sign of the original angle θ such that y =
sinθ and x = cosθ.

Torus distance. Given two points on the torus, φ1 ¼ φ1;ψ1

� �
and φ2 ¼ φ2;ψ2

� �
,

we measure the distance, in angles between these points using the torus distance
function as follows:

tord φ1;φ2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arccos2cos φ1 � φ2

� �þ arccos2cos ψ1 � ψ2

� �q
:

Kernel density estimation. We used two-dimensional kernel density estimation
(KDE)55 to estimate backbone angle distributions from finite samples. Given

samples φi

� �N
i¼1 from torsion angles of a codon c in secondary structure X , we

calculate

bf φjc;X� � ¼ γ

N
∑
N

i¼1
K tord φ;φi

� �� �
;

where φ represents points on a discrete grid, K is a scalar kernel function, tord(⋅,⋅)
is the torus wrap-around distance defined under Torus distance, and γ is a constant
factor which normalizes the KDE so that it sums to one. The KDE was evaluated on
a discrete grid of size 128 × 128, which corresponds to a bin width of
360=128 � 2:8� . By applying the kernel to the wrap-around distance, we correctly
account for the distance on the torus between each sample and each grid point. We
used a simple univariate Gaussian kernel, K xð Þ ¼ exp �x2=2σ2

� �
, with a variance

of σ = 2 (equivalent to the kernel bandwidth). We used a fixed bandwidth for all
KDEs, ensuring to always compare KDEs calculated from the same number of
samples.

Permutation-based two-sample hypothesis test. Given two statistical samples, X ¼
xi

� �NX

i¼1 and Y ¼ yi
� �NY

i¼1 containing NX and NY observations respectively, we wish
to test whether the observations in both samples were obtained from the same
underlying data distribution. A powerful and well-known approach to do this, is by
conducting a two-sample statistical hypothesis test, with the null hypothesis that X

Fig. 6 Normalized L1 distance statistics and p values obtained comparing pairs of synthetic samples. Samples were drawn from anisotropic von-Mises
distributions with standard deviations of 35° in the φ direction and 18° in the ψ direction. One of the distributions was rotated by an increasing angle; the
ground truth distance between the distributions was measured using the Wasserstein (W2) and L1 metrics. Three sample sizes (N= 50, 100, and 200) are
shown. Confidence intervals are 20%- and 80%-percentiles calculated on 10 random trials. Larger sample sizes allow to discern smaller distribution
changes with higher significance.

d – dperm

Fig. 7 Example of test statistic distribution in the permutation test. Left: Codon pairs are compared using the L1 distance statistic between their dihedral
angle KDEs in the β-sheet secondary structure mode. For each pair, depicted is one minus the cumulative distribution function (1-CDF) of the difference
between the L1 distance between the pair of KDEs and one between the pair of KDEs constructed with permuted labels. The intersection of 1-CDF with the
vertical axis yields the p-value of the one-sided test (null hypothesis: d-dperm≥ 0). When comparing a codon to itself (I-ATT, I-ATT), the null hypothesis
holds, and the difference is expected to be positive half of the times (p-value≈0.5). The indistinguishable pair I-ATT, I-ATC produces a high p-value, while
the more clearly distinguishable pair I-ATT, I-ATA yield a very low p-value. Two non-synonymous codons (I-ATT, A-GCG) appear perfectly distinguishable.
Distributions were calculated using 100 bootstrap samples with 200 permutations in each. Right: p-values of pairwise comparison of a full sample of I-ATT
in the β-mode (1365 samples) vs. different sample sizes of I-ATC and T-ACC (N= 50, 100, 150, and 200). The p-value of the distinguishable T-ACC,
I-ATT pair decreases with the growth of the sample size. Confidence intervals are 20%- and 80%-percentiles calculated on 10 random trials.
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and Y are sampled from the same distribution, i.e., H0 : PX xð Þ ¼ PY y
� �

. Such a test
allows one to determine whether there is sufficient evidence to reject the null
hypothesis, while limiting the chance of a type-I error (false positive, or rejecting
H0 when it is true) to be at most 0<α � 1. Denote by T X;Yð Þ2R a test statistic of
our choosing, which numerically summarizes the differences between X and Y,
such that the smaller the value of T(X,Y), the more X and Y are deemed similar.
Further denote by bτ ¼ T X;Yð Þ the value of this test statistic when evaluated on the
samples at hand. To perform the hypothesis test, a p-value is calculated, which is
the probability of obtaining a result at least as large as bτ under the assumption that
H0 is true: p ¼ Pr T ≥bτjH0

� �
. The null hypothesis H0 is then rejected if p < α,

thereby limiting the probability of type-I error to be α.
In order to avoid making unfounded assumptions about the data or

compromising on the choice of test-statistic, we employed a permutation-based
two-sample hypothesis test50, where the distribution of T|H0 can be estimated for
any choice of T by randomly permuting the observations’ labels. The procedure can
be described as follows:

Inputs: samples X ¼ xi
� �NX

i¼1, Y ¼ yi
� �NY

i¼1, test-statistic T X;Yð Þ2R, number of
permutations K.
Compute the base statistic value: bτ ¼ T X;Yð Þ.
Pool the observations: Z ¼ z1; ¼ ; zNXþNY

n o
¼ x1; ¼ ; xNX

; y1; ¼ ; yNY

n o
.

Compute a random permutation π of 1; ¼ ;NX þ NY

� �
, such that π(i) is the i-

th element of this permutation.
For k 2 1; ¼ ;Kf g:

Permute the pooled observations: Zπ ¼ zπ 1ð Þ; ¼ ; zπ NXþNYð Þ
n o

.
Split the permuted observations:

Xπ ¼ zπ 1ð Þ; ¼ ; zπ NXð Þ
n o

Yπ ¼ zπ NXþ1ð Þ; ¼ ; zπ NXþNYð Þ
n o

Compute the permuted statistic value: eτk ¼ T Xπ ;Yπð Þ.
Calculate η ¼ ∑

K

k¼1
1 bτ ≤eτk� �

, the number of times that the base statistical was no

greater than the permuted statistic.
Calculate the p-value p ¼ 1þη

1þK.
Output: p and η.

The key observation behind this approach is that under the null, we can treat X
and Y as labels which are randomly assigned to observations from the same data
distribution. Therefore, by permuting the labels and calculating the permuted test-
statistic, we are obtaining samples of T|H0. If H0 is indeed true, we expect thatbτ � eτk , thereby yielding p ≈ 0.5 as K→∞. Conversely, if H0 is false, we would
expect that bτ>eτk , and then p→0 as K→∞. In practice, the number of permutations
K is limited by computational constraints. Nevertheless, since the smallest p-value
which can be obtained is pmin ¼ 1= 1þ Kð Þ, we know the upper limit for the
number of necessary permutations for a given significance level (in case of a
single test).

Pairwise distance plots. For each secondary structure X and each amino acid A,
the statistical test procedure outlined under Permutation-based two-sample
hypothesis test returns a matrix of all pairwise L1 distance statistics d c; c0ð ÞjX
averaged over bootstrap iterations, where c; c0 are two codons encoding A. Since
the used statistic is a metric, it is convenient to visualize it the form of a scatter plot
in which each point represents a codon, and the Euclidean distances between each
pair of points c; c0 approximate the distance statistic d c; c0ð ÞjX . Such scatter plots
are typically produced using multidimensional scaling (MDS)56. However, our case
is different in the fact that the pairwise distance statistics are random variables, and
the input data are finite sample approximations of their expected values. We

devised a variant of multidimensional scaling capable of handling this setting,
which as far as we know is novel.

We aim at finding a collection of isotropic two-dimensional normal
distributions N μc; σ

2
c I

� �
with locations μc and scales σc, each representing a codon

c. The scales represent the uncertainty in location and constitute an extension of
the standard MDS procedure which considers only locations. A simple calculation
shows that the difference between two samples randomly drawn fromN μc; σ

2
c I

� �
is

itself normally distributed with zero mean and covariance 2σ2c I. Consequently, the
squared Euclidean distance d22 c; cð Þ is distributed as 2σ2c � χ22, where χ22 denotes the
chi-squared distribution with two degrees of freedom. The expected value of the
latter squared distance is given by 4σ2c and should approximate the square of the
measured statistic d2 c; cð ÞjX (the latter corresponds to the diagonal of the input
distance matrix). We therefore determine the scale parameters by setting
σc ¼ 0:5 � d c; cð ÞjX .

A similar reasoning applies to the off-diagonal entries: the squared Euclidean
distance d22 c; c0ð Þ is distributed as jjμc � μc0 jj22 þ σ2c þ σ2c0

� � � χ22, and its expectation
is therefore given by

Ed22 c; c0ð Þ ¼ jjμc � μc0 jj22 þ 2 σ2c þ σ2c0
� �

and should approximate d2 c; c0ð ÞjX . Defining the target pairwise distances

δ c; c0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 c; c0ð ÞjX�0:5 d2 c; cð ÞjXþd2 c; c0ð ÞjX� �q

;

we now invoke a regular MDS to solve for the locations μc.
Note that the procedure is exact when the input statistics are Euclidean

distances between two-dimensional normal vectors; in other cases, the recovered
locations and scales are merely an approximation of the underlying distributions.

For visualization completeness, we also report the averaged distance statistics.
For convenience, the distances are normalized as d c;c0ð ÞjXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d c;cð ÞjX �d c0 ;c0ð ÞjX
p .

Dihedral angle distribution plots. The standard Ramachandran plot is often
visualized either as a φ,ψ scatter of the individual samples or as a density image
estimated using KDE (the latter is sometimes plotted as level contours). Often,
regions containing a certain amount of probability are superimposed. However,
none of these visualization techniques represent the amount of uncertainty in the
finite sample estimate of the probability density function. To capture the latter, we
devised a new visualization (Fig. 8), described below.

Given a sample φi

� �N
i¼1 of dihedral angles to visualize, we bootstrap B

independent samples of size min N;Nmax

� �
. A normalized density image f b φ

� �
is

constructed from each sample b 2 f1; ¼ ;Bg using the KDE procedure outlined
under Kernel density estimation. The density images are averaged into a single
density image f φ

� �
:

For the level contour λ 2 ð0; 1Þ, a threshold τ is calculated such that

Z
φ2 �π;π½ �2 :f φð Þ ≥ τ

f φ
� �

dφ ¼ λ:

To calculate the uncertainty region of the above contour, we calculate the
threshold τb for each density image f b φ

� �
individually and produce a set of binary

images containing 1 wherever f b φ
� �

≥ τb and 0 elsewhere; such images represent
the λ-super level sets of the f b0 s. We then average these binary images and calculate
their α- and (1 – α)-level sets. The region between these two contours is shaded in
the plot and represents the ½α; 1� α� confidence set.

In all our figures, unless specified otherwise, we used B = 1000 bootstraps with
Nmax = 200; three levels λ 2 f0:1; 0:5; 0:9g were plotted with confidence set to
α = 0.1.

Fig. 8 Ramachandran plots of synthetic distributions from Fig. 6. Contours depict the level lines containing 10%, 50% and 90% of the probability mass.
Shaded regions represent 10%-90% confidence intervals calculated on 1000 random bootstraps. The distributions are rotated one with respect to the
other; the legend shows the ground truth Wasserstein (W2) distance. Three sample sizes (N = 50, 100, and 200) are shown left-to-right. Larger samples
lead to narrower confidence intervals.
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Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The protein records data collected for this study as well as full output datasets have been
deposited in the Harvard Dataverse database [https://doi.org/10.7910/DVN/5P81D4].

Code availability
The code implementing the described data collection and analysis methods has been
deposited in the Zenodo repository [https://doi.org/10.5281/zenodo.6345285]. Code is
available under restricted access conditioned on user identification and agreement to
academic use license.

Received: 17 November 2021; Accepted: 28 April 2022;

References
1. Chen, R., Davydov, E. V., Sirota, M. & Butte, A. J. Non-synonymous and

synonymous coding SNPs show similar likelihood and effect size of human
disease association. PLoS One 5, e13574 (2010).

2. Sharma, Y. et al. A pancancer analysis of synonymous mutations. Nat.
Commun. 10, 2569 (2019).

3. Walsh, I., Bowman, M., Soto Santarriaga, I., Rodriguez, A. & Clark, P.
Synonymous codon substitutions perturb cotranslational protein folding
in vivo and impair cell fitness. Proc. Natl Acad. Sci. 117, 3528–3534 (2020).

4. Komar, A. The Ying and Yang of Codon Usage. Hum. Mol. Genet 25,
R77–R85 (2016).

5. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes
substrate specificity. Science 315, 525–528 (2007).

6. Mueller, W. F., Larsen, L. S., Garibaldi, A., Hatfield, G. W. & Hertel, K. J. The
Silent Sway of Splicing by Synonymous Substitutions. J. Biol. Chem. 290,
27700–27711 (2015).

7. Pagani, F., Raponi, M. & Baralle, F. E. Synonymous mutations in CFTR exon
12 affect splicing and are not neutral in evolution. Proc. Natl Acad. Sci. 102,
6368–6372 (2005).

8. Zhou, X. et al. A Comprehensive Analysis and Splicing Characterization of
Naturally Occurring Synonymous Variants in the ATP7B Gene. Front. Genet.
11, 592611 (2021).

9. Purvis, I. J. et al. The efficiency of folding of some proteins is increased by
controlled rates of translation in vivo. A hypothesis. J. Mol. Biol. 193, 413–417
(1987).

10. Zhao, F., Yu, C. H. & Liu, Y. Codon usage regulates protein structure and
function by affecting translation elongation speed in Drosophila cells. Nucleic
acids Res. 45, 8484–8492 (2017).

11. Akashi, H. Synonymous codon usage in Drosophila melanogaster: natural
selection and translational accuracy. Genetics 136, 927–935 (1994).

12. Drummond, D. A. &Wilke, C. O. Mistranslation- induced protein misfolding as
a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

13. Liu, Y. A code within the genetic code: codon usage regulates co-translational
protein folding. Cell Commun. Signal 18, 145 (2020).

14. Buhr, F. et al. Synonymous codons direct cotranslational folding toward
different protein conformations. Mol. Cell. 61, 341–351 (2016).

15. Riba, A. et al. Protein synthesis rates and ribosome occupancies reveal
determinants of translation elongation rates. Proc. Natl Acad. Sci. 116,
15023–15032 (2019).

16. Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes
modulate protein expression by altering mRNA secondary structure. Science
314, 1930–1933 (2006).

17. Bartoszewski, R. A. et al. A synonymous single nucleotide polymorphism in
ΔF508 CFTR alters the secondary structure of the mRNA and the expression
of the mutant protein. J. Biol. Chem. 285, 28741–28748 (2010).

18. Bulmer, M. Coevolution of codon usage and transfer RNA abundance. Nature
325, 728–730 (1987).

19. Ikemura, T. Correlation between the abundance of Escherichia coli transfer
RNAs and the occurrence of the respective codons in its protein genes: a
proposal for a synonymous codon choice that is optimal for the E. coli
translational system. J. Mol. Biol. 151, 389–409 (1981).

20. Yulong, W., Silke, J. & Xia, X. An improved estimation of tRNA expression to
better elucidate the coevolution between tRNA abundance and codon usage in
bacteria. Sci. Rep. 9, 3184 (2019).

21. Karakostis, K. et al. A single synonymous mutation determines the
phosphorylation and stability of the nascent protein. J. Mol. Cell Biol. 11,
187–199 (2019).

22. Rajeshbhai Patel, U., Sudhanshu, G. & Chatterji, D. Unraveling the Role of
Silent Mutation in the ω-Subunit of Escherichia coli RNA Polymerase:
Structure Transition Inhibits Transcription. ACS Omega 4, 17714–17725
(2019).

23. Simhadri, V. L. et al. Single synonymous mutation in factor IX alters protein
properties and underlies haemophilia B. J. Med Genet 54, 338–345 (2017).

24. Chevance, F. & Hughes, K. Case for the genetic code as a triplet of triplets.
Proc. Natl Acad. Sci. USA 114, 4745–4750 (2017).

25. Angov, E., Hillier, C. J., Kincaid, R. L. & Lyon, J. A. Heterologous Protein
Expression Is Enhanced by Harmonizing the Codon Usage Frequencies of the
Target Gene with those of the Expression Host. PLoS ONE 3, e2189 (2008).

26. Fu, H. et al. Codon optimization with deep learning to enhance protein
expression. Sci. Rep. 10, 17617 (2020).

27. Ranaghan, M. J., Li, J. J., Laprise, D. M. & Garvie, C. W. Assessing optimal:
inequalities in codon optimization algorithms. BMC Biol. 19, 36 (2021).

28. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and
consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

29. Keedy, D. A., Fraser, J. S. & van den Bedem, H. Exposing Hidden Alternative
Backbone Conformations in X-ray Crystallography Using qFit. PLoS Comput
Biol. 11, e1004507 (2015).

30. Adzhubei, A. A., Adzhubei, I. A., Krasheninnikov, I. A. & Neidle, S. Non-
random usage of ‘degenerate’ codons is related to protein three-dimensional
structure. FEBS Lett. 399, 78–82 (1996).

31. Gu, W., Zhou, T., Ma, J., Sun, X. & Lu, Z. The relationship between
synonymous codon usage and protein structure in Escherichia coli and Homo
sapiens. Bio Syst. 73, 89–97 (2004).

32. Gupta, S. K., Majumdar, S., Bhattacharya, T. K. & Ghosh, T. C. Studies on the
Relationships between the Synonymous Codon Usage and Protein Secondary
Structural Units. Biochemical Biophysical Res. Commun. 269, 692–696 (2000).

33. Saunders, R. & Deane, C. M. Synonymous codon usage influences the local
protein structure observed. Nucleic Acids Res 38, 6719–6728 (2010).

34. Emberly, E. G., Mukhopadhyay, R., Tang, C. & Wingreen, N. S. Flexibility of
β-sheets: Principal component analysis of database protein structures.
Proteins: Struct., Funct., Bioinf 55, 91–98 (2004).

35. Emberly, E. G., Mukhopadhyay, R., Wingreen, N. S. & Tang, C. Flexibility of
α-helices: Results of a statistical analysis of database protein structures. J. Mol.
Biol. 327, 229–237 (2003).

36. Hollingsworth, S. A. & Karplus, P. A. A fresh look at the Ramachandran plot
and the occurrence of standard structures in proteins. Biomolecular concepts 1,
271–283 (2010).

37. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22,
2577–2637 (1983).

38. Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome
profiling method for bacteria reveals pauses at single-codon resolution. Elife 8,
e42591 (2019).

39. Chevance, F. F., Le Guyon, S. & Hughes, K. T. The effects of codon context on
in vivo translation speed. PLoS Genet 10, e1004392 (2014).

40. Björk G. R., & Hagervall T. G. Transfer RNA Modification: Presence,
Synthesis, and Function. EcoSal Plus 6, (2014)

41. Adzhubei, I. & Adzhubei, A. ISSD Version 2.0: taxonomic range extended.
Nucleic Acids Res. 27, 268–271 (1999).

42. Singh, V., Suri A. and Thomas-Cherian S. “Cod-ConfDB: a codon -
conformation database “ Proceedings of 2005 International Conference on
Intelligent Sensing and Information Processing, 2005., pp. 355–358 (2005)

43. Yarus, M. & Folley, L. S. Sense codons are found in specific contexts. J. Mol.
Biol. 182, 529–540 (1985).

44. Alexaki, A. et al. Codon and Codon-Pair Usage Tables (CoCoPUTs):
Facilitating Genetic Variation Analyses and Recombinant Gene Design. J. Mol.
Biol. 431, 2434–2441 (2019).

45. Diambra, A. Differential bicodon usage in lowly and highly abundant
proteins. PeerJ., 5, e3081 (2017)

46. Cutler, R. W. & Chantawannakul, P. Synonymous codon usage bias dependent
on local nucleotide context in the class Deinococci. J. Mol. Evol. 67, 301–314
(2008).

47. Sussman, J. L. et al. Protein Data Bank (PDB): Database of Three-Dimensional
Structural Information of Biological Macromolecules. Acta Crystallogr. Sect. D:
Biol. Crystallogr. 54, 1078–1084 (1998).

48. Apweiler, R. et al. UniProt: The Universal Protein Knowledgebase. Nucleic
Acids Res. 32, D115–D119 (2004).

49. Cock, P. J. A. et al. Biopython: Freely Available Python Tools for
Computational Molecular Biology and Bioinformatics. Bioinformatics 25,
1422–1423 (2009).

50. Leinonen, R. et al. The European Nucleotide Archive. Nucleic Acids Res. 39,
D28–D31 (2010).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30390-9

10 NATURE COMMUNICATIONS |         (2022) 13:2815 | https://doi.org/10.1038/s41467-022-30390-9 | www.nature.com/naturecommunications

https://doi.org/10.7910/DVN/5P81D4
https://doi.org/10.5281/zenodo.6345285
www.nature.com/naturecommunications


51. Gotoh, O. Optimal Sequence Alignment Allowing for Long Gaps. Bull. Math.
Biol. 52, 359–373 (1990). 1990.

52. Chung, E. Y. & Romano, J. P. Exact and Asymptotically Robust Permutation
Tests. Ann. Stat. 41, 484–507 (2013).

53. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc.: Ser. B
(Methodol.) 57, 289–300 (1995).

54. Efron, B., and Tibshirani, R. J. An Introduction to the Bootstrap. CRC press
(1994)

55. Simonoff, J. S. Smoothing Methods in Statistics. Springer Science & Business
Media (2012)

56. Boyarski, A., and Bronstein, A. M. Multidimensional scaling. Computer
Vision: A Reference Guide, Ikeuchi (Ed.) (2020)

Acknowledgements
We are grateful to Joel Sussman and John Moult for their constructive skepticism and
valuable comments. We thank Yaniv Romano for his helpful discussions on statistical
methods.

Author contributions
AM posed the original hypothesis; A.R., A.M. and A.B. designed the studies, interpreted
the results and wrote the manuscript; A.R. and A.B. developed all the computational
methods and performed the analyses. A.R. and A.M. contributed equally to this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-30390-9.

Correspondence and requests for materials should be addressed to Alex M. Bronstein.

Peer review information Nature Communications thanks Henry van den Bedem and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30390-9 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2815 | https://doi.org/10.1038/s41467-022-30390-9 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-022-30390-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Codon-specific Ramachandran plots show amino acid backbone conformation depends on identity of the translated codon
	Results
	Data collection, codon assignment and development of analysis tools
	Codon-specific backbone angle distributions are significantly distinct within the β mode
	Distances between dihedral angle distributions of synonymous codons hint at a correlation to features of the translation process

	Discussion
	Methods
	Data collection
	Redundancy filtering
	Codon assignment
	Angle aggregation
	Backbone angle distribution distance
	Detecting synonymous codons with different angle distributions
	Preventing bias due to sample size differences
	Full procedure
	Mathematical Tools
	Torus mean
	Torus distance
	Kernel density estimation
	Permutation-based two-sample hypothesis test
	Pairwise distance plots
	Dihedral angle distribution plots

	Reporting Summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




