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Time crystal dynamics in a weakly 
modulated stochastic time delayed 
system
Jordi Tiana‑Alsina1 & Cristina Masoller2*

Time crystal oscillations in interacting, periodically driven many‑particle systems are highly regular 
oscillations that persist for long periods of time, are robust to perturbations, and whose frequency 
differs from the frequency of the driving signal. Making use of underlying similarities of spatially‑
extended systems and time‑delayed systems (TDSs), we present an experimental demonstration of 
time‑crystal‑like behavior in a stochastic, weakly modulated TDS. We consider a semiconductor laser 
near threshold with delayed feedback, whose output intensity shows abrupt spikes at irregular times. 
When the laser current is driven with a small‑amplitude periodic signal we show that the interaction 
of delayed feedback and modulation can generate long‑range regularity in the timing of the spikes, 
which lock to the modulation and, despite the presence of noise, remain in phase over thousands of 
modulation cycles. With pulsed modulation we find harmonic and subharmonic locking, while with 
sinusoidal modulation, we find only subharmonic locking, which is a characteristic feature of time‑
crystal behavior.

In many-particle systems, when the translation symmetry in space (in time) is spontaneously broken, the result 
is a space (time) crystal. Time-crystal states are characterized by highly regular oscillations that are stable over 
very long times, are robust under perturbations (“rigidity”) and break time-translation  symmetry1,2. Time-crystal 
states were originally introduced for many-particle systems in  equilibrium3, and after the possibility of such states 
in equilibrium systems was ruled  out4,5, they were investigated in non-equilibrium systems under a periodic 
 drive6. In this case, the periodic forcing defines the discrete time translation symmetry and this symmetry is 
broken in the time crystal phase, where ’discrete time-crystals’ states  occur7–9. In these states the system’s vari-
able displays sub-harmonic oscillations that are rigidly locked to the driving signal. In recent years, time-crystal 
behavior has been studied in a wide range of  systems10–19.

A key requirement for observing discrete time-crystal dynamics is that the system’s oscillations have long-
term regularity that results from the collective synchronization of many interacting degrees of freedom. This 
excludes period-doubling oscillations in low-dimensional dynamical systems, and it also excludes oscillations in 
mode-locked lasers, which arise due to interactions of many modes but which lack long-term regularity because, 
due to noise, they do not remain in phase for long  times1.

Here we address the following questions: Can a feedback loop counteract the effect of noise? Can a delayed 
feedback loop generate long-term order? Can we find discrete time-crystal-like behavior in periodically driven 
stochastic systems with feedback loops?

Time-delayed systems (TDSs) with feedback loops, governed by equations of the form 
du(t)/dt = f (u(t), t)+ Ku(t − τ) , have an infinite phase space because the initial condition is the function u(t) 
defined in [-τ,0]20,21. In this type of TDS, when the feedback delay time, τ , is longer than the internal characteristic 
time-scale of system, analogies have been found with the dynamics of one-dimensional spatially extended systems 
(1D SESs) governed by equations of the form ∂u(x, t)/∂t = f (u, x, t)+ D∂2u/∂x2 with x(t) in [0, L]. Specifically, 
in the TDS, τ plays the role of the size, L, in a 1D SES. When τ is long enough, using the so-called space-time 
 representation22,23, complex spatio-temporal phenomena has been found, such as pattern formation and propa-
gation of defects and localized structures, analogous to that occurring in 1D  SESs24–33. These analogies make 
periodically driven stochastic TDSs promising test benches for finding non-trivial time-crystal-like oscillations.

A semiconductor laser with optical feedback is a well-known TDS, where the delay is due to the finite propa-
gation time of the feedback light. Optical feedback from a distant reflector introduces a set of new modes (the 
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so-called external cavity modes) and generates a complex intensity  dynamics34 that, when viewed using the 
space-time representation, reveals spatio-temporal patterns and defects typical of 1D  SES35.

Near threshold and for appropriated feedback parameters the laser output intensity displays spikes that occur 
at irregular times. A typical intensity time series is shown in Fig. 1a and a video of the spiking dynamics can 
be found  in36. In this regime the laser dynamics is strongly influenced by noise: simulations of the well-known 
Lang-Kobayashi  model37 indicate that when a noise term is not included in the model, the spikes are periodic or 
are  transient38–40. When the laser current is modulated with a small-amplitude periodic signal, the spikes tend 
to occur at intervals of time that are integer multiples of the period of the  modulation41–49.

We have recently  shown50 that a small-amplitude pulsed modulation (less than 2.5% of the dc value of the 
laser current) generates regular 1:1 locked spikes. A typical intensity time series is shown in Fig. 1b (details of 
the experimental setup and parameters can be found  in50). In Fig. 1b we see that the spikes are periodic but in 
between the spikes the intensity shows irregular fluctuations.

Results
To determine whether the laser with delayed feedback and weak modulation can display non-trivial discrete 
time-crystal-like dynamics, we begin by analyzing how regular the spike timing is, and how the spike timing 
regularity is affected by the waveform and by the parameters of the driving signal. The experimental dataset 
(described  in50) consists of time series of the laser output intensity recorded over an interval of 5 ms. We analyze 
the effects of sinusoidal and pulsed modulation, varying the modulation frequency, fmod , and the dc value of 
the laser current, Idc , keeping constant the modulation amplitude (0.631 mA). The intensity time traces contain 
between 9000 spikes (for low Idc and fmod ) and 120000 spikes (for high Idc and f).

In Fig. 2 we compare the distribution of time intervals between consecutive spikes (inter-spike-intervals, ISIs) 
generated by pulsed modulation (left) and by sinusoidal modulation (right), as a function of the modulation 
frequency. The vertical axis displays the ISI normalized to the modulation period, Tmod , and the distribution 
of ISI values in shown in log color code. We see that for particular modulation frequencies the ISI distribution 
is narrow, and the ISIs are multiples of Tmod . For the pulsed waveform, Fig. 2a, there are three “plateaus” where 
ISI/Tmod =1 or 2 or 3 (a spike is emitted every one, two or three modulation cycles), but for the sinusoidal wave-
form, Fig. 2b, there are only two plateaus where ISI/Tmod =2 or 3.

Figure 1.  Laser intensity without modulation (a) and with pulsed modulation (b). In both panels the dc 
value of the laser current is Idc=26 mA. In (b) the modulation amplitude is 0.631 mA ( ∼2.4% of Idc ) and the 
frequency is fmod = 7 MHz. The pulsed modulation generates periodic spikes that are harmonically locked to 
the modulation; however, in between the spikes, the intensity fluctuations are irregular.
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Therefore, pulsed modulation generates harmonic and subharmonic locking, while sinusoidal modulation, 
only subharmonic locking. In Fig. 2b we note that for fmod ≈ 3 MHz, �ISI� /Tmod ≈ 1 , i.e., the sinusoidal wave-
form generates, on average, a spike per modulation cycle; however, there is no locking because the ISI distribu-
tion is broad and there is no plateau, i.e., there is no interval of frequencies in which �ISI� /Tmod ≈ 1 . These 
observations are consistent with previous experiments using small-amplitude sinusoidal  modulation47,48, where 
we found subharmonic locking but not 1:1 locking.

The lack of 1:1 locking generated by small-amplitude sinusoidal modulation contrasts with the dynamics of 
low-dimensional (non-delayed) dynamical systems, where small-amplitude sinusoidal modulation can gener-
ate harmonic  locking51,52. It also differs from the stochastic resonance  phenomenon53 that has been observed 
in many noisy oscillators, including in a similar laser  system45, whose characteristic feature is a peak in the ISI 
distribution at ISI/Tmod=1, whose strength is maximum for appropriated parameters.

With sinusoidal current modulation harmonic locking has been observed experimentally; however, under 
large-amplitude modulation ( ∼14% and 20% of Idc  in42  and49 respectively). With large-amplitude modulation the 
feedback-induced spikes are a perturbation of a sinusoidal-like oscillation. To shed light on this situation we have 
carried out simulations of the Lang-Kobayashi (LK)  model37 and found a good agreement with the observations: 
large-amplitude sinusoidal current modulation produced harmonic locking, while small-amplitude modulation 
produced sub-harmonically locked  spikes54.

To precisely quantify the regularity of the spike timing we calculate the Fano  factor55, F, which is a well-known 
measure of the variability of sequences of  events56, described in Sec. Methods.

Figure 3 displays the Fano factor (in log color code) of sequences of spikes recorded for different Idc and fmod . 
In panel (a) the modulation is pulsed, while in (b), it is sinusoidal. In both panels we see parameter regions where 
F < 10−2 (dark-blue) and regions where F > 1 (yellow). We remark that F < 1 ( F > 1 ) indicates that, in the time 
scale of 5 µ s, the sequence of counts is more (less) regular than a sequence of events generated by a HPP process.

Figure 2.  Inter-spike-interval (ISI) distribution in log color code for pulsed (a) and for sinusoidal (b) 
modulation, as a function of the modulation frequency; other parameters are as in Fig. 1b. The solid line 
indicates the mean ISI normalized to the modulation period. The plateau at low frequencies for pulsed 
modulation [panel (a)] where �ISI� /Tmod = 1 is not seen in panel (b), where the modulation is sinusoidal.

Figure 3.  Fano factor (in log color code) versus the modulation frequency and the dc value of the laser current, 
Idc , for pulsed (a) and for sinusoidal (b) modulation. The blue region located at low frequencies in panel (a), 
where the spikes are 1:1 locked to the modulation is not seen in panel (b).
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Comparing with the ISI distributions shown in Fig. 2 for Idc = 26 mA, we see (as expected) that the blue 
regions in Fig. 3 correspond to the “plateaus” in Fig. 2 where the ISI distribution is narrow and thus, the spike 
timing is regular. In Fig. 3 we see that for the pulsed signal there are three blue regions, while for the sinusoidal 
signal, only two, confirming that 1:1 locking is not generated by small-amplitude sinusoidal modulation.

We interpret the different response of the laser to low-frequency modulation, pulsed or sinusoidal, as due 
to two reasons. First, the pulsed signal produces small but abrupt variations of the pump current that precisely 
define the timing of the spikes (the current changes at instants of time, producing spikes at those times); in con-
trast, the sinusoidal signal varies the laser current gradually, and this variation is unable to precisely define the 
spike timing. Second, the pulsed signal decreases the current for only short time intervals, while the sinusoidal 
signal decreases the current during longer intervals, which may lead to a stronger influence of noise.

To analyze the time scale of the spike timing regularity, we study how F depends on the duration of the count-
ing interval, Tint , and on the modulation frequency, fmod (in color code). Figure 4 displays results for pulsed 
modulation, when Idc = 26 mA. Panel (a) displays F vs. Tint , and we see that, as expected, F → 1 when Tint is 
short enough, for all fmod . For the longest Tint (5 µs), F varies in the range 10−4 − 101 , depending on fmod . After 
re-scaling the horizontal axis to the period of the signal, panel (b), we see that, for some modulation frequencies, 
F dips sharply when Tint/Tmod = n with n = 1, 2, 3, . . . . These minima reveal that, for frequencies that produce 
locked spikes, the sequence of counts is very regular when the counting interval contains an integer number of 
periods. In contrast, when the modulation is sinusoidal, Fig. 5a, the first dip occurs for Tint/Tmod = 2 and no 
modulation frequency produces a dip at Tint/Tmod = 1 , confirming that a small-amplitude sinusoidal modula-
tion does not generate harmonic locking.

In Figs. 4 and 5a we also note that for some frequencies F grows with Tint as a power law. This behavior reveals 
spike clustering (bursts of spikes) and has been observed in sequences of events, in different  fields56–58.

To determine whether the F values are due, in part, to “dynamic” properties of the spike sequence (the pres-
ence of temporal correlations between the spike times), or they are only due to “static” properties (the shape of the 
ISI distribution) we shuffled the sequence of ISIs, recalculated the spike  times59, re-calculated F, and compared 
the F values of the original and shuffled spike sequence. The presence of long-range order in the timing of the 
spikes is detected by F values that are significantly higher or lower in the original spike sequence than in the 
shuffled one. The high or low variability of the sequence of counts reveals the presence of temporal correlations 
between spikes, which are washed out when we randomly shuffle the values in the ISI sequence.

The Fano factor of the shuffled spikes is displayed in Fig. 5b, where we see that the dips are less pronounced 
with respect to those in the original spike sequence, Fig. 5a, and we also note that the power law grow disappears 
in the shuffled data. These differences reveal the presence, in the original spike sequence, of long-range correla-
tions in the spike timing, which are removed after shuffling the ISIs.

The presence of long-range correlations in the spike timing is intriguing at first sight, because near threshold 
the spiking dynamics of the un-modulated laser is irregular, and we modulate the laser with a small amplitude 
signal (for Idc = 26 mA the modulation produces a variation of the laser current <3%). However, the delayed 
feedback introduces a degree of periodicity, and particular combinations of the feedback and modulation param-
eters can induce spikes that rigidly lock to the modulation with high timing regularity.

Figure 4.  (a) Fano factor versus the duration of the counting interval, Tint . The modulation is pulsed, 
Idc = 26 mA, and the color code indicates the modulation frequency in MHz. (b) F versus Tint normalized to 
the period of the modulation, Tmod (i.e., F vs. the number of modulation periods contained in the counting 
interval). F decreases sharply when Tint/Tmod = n with n ≥ 1.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4914  | https://doi.org/10.1038/s41598-022-08776-y

www.nature.com/scientificreports/

For most frequencies that generate locked spikes, the dips for Tint = nTmod gradually disappear when Tint 
increases, revealing that the spike timing regularity does not persist over long intervals, i.e., the spikes do not 
remain in phase. However, for particular modulation frequencies F decreases with Tint as T−1

int  , and the dips for 
Tint = nTmod persist for large n. Figure 6 shows two examples of locked spikes, with and without long-range 
regularity, generated by sinusoidal modulation with frequency 25 MHz and 23 MHz, respectively. As shown in 
panels (a) and (b), differences can not be distinguished when the intensity dynamics is inspected in a short time 
interval. In both panels we see that the spikes are periodic but the intensity dynamics is not, because in between 
spikes, the oscillations are irregular (a similar behavior -regular spikes and irregular oscillations in between 
spikes- was observed in Fig. 1b). However, if we examine the dynamics over longer time intervals, the spike 
timing regularity disappears when fmod = 23 MHz, while it persists when fmod = 25 MHz. This difference is 
seen in the plots of the Fano factor, panels (c) and (d), and also, in the space-time representation of the intensity 
time series, (e) and (f).

To demonstrate that the regularity of the spike timing generated by sinusoidal modulation with frequency 
25 MHz is indeed very long range, we calculate the Fano factor considering longer counting intervals (so far we 
divided the intensity time series in 1000 intervals of 5 µ s each). To increase the length of the intervals, we need 
to decrease the number of intervals. The results are shown in Fig. 7a, where we see that F continues decreasing as 
T−1
int  , even when we calculate F using intervals of 500 µ s each (each interval contains 12,500 modulation cycles). 

In the shuffled spike sequence, Fig. 7b, we see that for large Tint the decrease of F saturates and the dips disappear. 
This confirms a long-range timing regularity in the original spike sequence, which is removed in the shuffled 
spike sequence, where F values are low just because of the narrow shape of the ISI distribution. This long-range 
suppression of fluctuations in the timing of the spikes on time scales that contain thousands of modulation cycles, 
together with the aperiodic nature of the oscillations in between spikes and the lack of 1:1 locking, allows us to 
interpret this spiking behavior as a non-trivial form of time-crystal dynamics.

Discussion
Summarizing, we have found that near threshold a weak modulation of the laser current induces, for particu-
lar modulation conditions, long-range regularity in the timing of the spikes, as revealed by Fano factors that 
decrease with the length of the spike counting interval as T−1

int  . With pulsed modulation we found harmonic and 
subharmonically locked spikes, but with sinusoidal modulation, we found only subharmonic locking, which is 
a common feature with time-crystal behavior. We have interpreted the difference in the laser response to pulsed 
and sinusoidal modulation as due to (1) the existence of the lasing threshold and (2) the fact that harmonic 
locking occurs for low modulation frequencies. In these conditions the pulsed modulation decreases sharply 
the laser current, but only for short time intervals, inducing spikes with well-defined periodicity. In contrast, 
the sinusoidal modulation decreases the current gradually, and this smooth variation brings the laser current 
close to threshold for longer intervals, allowing for a larger influence of noise and preventing the generation of 
harmonically locked spikes. Therefore, we have found, in a stochastic dynamical system, discrete time-crystal-
like behavior generated by the interplay of periodic modulation and delayed feedback.

Regarding the level of noise, compared to other types of lasers, semiconductor lasers are more affected by 
quantum spontaneous emission because of the phase-amplitude coupling of the optical field (due to the variation 
of the semiconductor refractive index with the carrier population, an effect that is phenomenological modeled 
by Henry’s alpha  factor38,60). Other sources of noise include electric, thermal and mechanical fluctuations. We 
have not measured the level of noise in our system, but we have performed extensive simulations of the dynamics 
of the laser with optical feeedback and sinusoidal current modulation using the LK  model37 and found a very 

Figure 5.  (a) Fano factor vs. the number of modulation periods contained in the counting interval, Tint/Tmod . 
The experimental parameters are as in Fig. 4b, but the modulation waveform is sinusoidal. (b) F is computed 
from the shuffled sequence of spikes. In both panels, F dips when Tint/Tmod = n with n ≥ 2.
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good agreement experiments-simulations, when the model includes an stochastic term that takes into account 
spontaneous emission, and disregards other sources of  noise61,62.

Figure 6.  Comparison of different long-term locked behaviors when Idc = 26 mA and the frequency of the 
sinusoidal modulation is 25 MHz (a, c, e), 23 MHz (b, d, f). (a), (b) Short segment of the intensity time series; 
(c), (d) F versus Tint/T ; (e), (f) spatio-temporal representation of the intensity time series: all the intensity values 
{Ii , i = 1 . . . 107} , are plotted in color code versus t and n such that i = n�T + t and �T=2 µs.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4914  | https://doi.org/10.1038/s41598-022-08776-y

www.nature.com/scientificreports/

Our findings open a new path for studying the emergence of long range regularity in disordered systems, 
exploiting the analogy between time-delayed systems and spatially-extended ones. This analogy can be extended 
to the transverse section of a broad area laser, where, under optical injection, localized structures (that can be 
regarded as spikes) are created and move as the result of the combined action of nonlinearity, diffraction, carrier 
diffusion and delayed  feedback63,64.

The harmonically locked spiking behavior with long-range regularity generated by pulsed modulation may 
be consider analogous, in the temporal domain, to hyper-uniform states in multi-particle systems, which are 
characterized by long length scale suppression of density  fluctuations65. Moreover, because delayed feedback is 
a popular control technique with multiple applications, we expect that our observations will motivate studies 
to generate, characterize, and exploit the highly regular oscillations that can be generated by the interplay of 
nonlinearity, feedback and modulation.

Methods
To compute the Fano Factor we first divide the intensity time trace in Nint non-superposing segments of duration 
Tint and count the spikes in each segment; then, we calculate F = σ

2
(Ni)/ �Ni� , where σ 2

(Ni) and 〈Ni〉 are the 
variance and the mean of the sequence of counts, {Ni , i = 1 . . .Nint} . F is a function of Tint ; if Tint is very small, 
F = 1 because the sequence of counts is a sequence of 0s and 1s, while in time scales over which the spikes are 
regular, the variance of {Ni} is small and F takes low values. Unless specifically stated, to calculate the Fano factor 
we divide the intensity time-series in Nint = 1000 non-overlapping segments of Tint = 5 µ s each.

If the spikes are generated by a fully random, homogeneous Poisson point (HPP) process, the probability 
that N spikes occur in an interval Tint is p(N ,Tint) = (�Tint)

N exp(−�Tint)/N ! where � is the average number 
of spikes per unit time (i.e., the spike rate). For this distribution σ 2

(Ni) = �Ni� = �Tint and thus, F = 1 ∀ Tint
56.

Data availibility
The experimental sequences of inter-spike-intervals are available here https:// doi. org/ 10. 5281/ zenodo. 59135 06.
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