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Methods for Estimating Kidney Disease Stage Transition Probabilities
Using Electronic Medical Records

Abstract
Chronic diseases are often described by stages of severity. Clinical decisions about what to do are influenced
by the stage, whether a patient is progressing, and the rate of progression. For chronic kidney disease (CKD),
relatively little is known about the transition rates between stages. To address this, we used electronic health
records (EHR) data on a large primary care population, which should have the advantage of having both
sufficient follow-up time and sample size to reliably estimate transition rates for CKD. However, EHR data
have some features that threaten the validity of any analysis. In particular, the timing and frequency of
labratory values and clinical measurements are not determined a priori by research investigators, but rather,
depend on many factors, including the current health of the patient. We developed an approach for
estimatating CKD stage transition rates using hidden Markov models (HMMs), when the level of information
and observation time vary among individuals. To estimate the HMMs in a computationally manageable way,
we used a “discretization” method to transform daily data into intervals of 30 days, 90 days, or 180 days. We
assessed the accuracy and computation time of this method via simulation studies. We also used simulations
to study the effect of informative observation times on the estimated transition rates. Our simulation results
showed good performance of the method, even when missing data are non-ignorable. We applied the methods
to EHR data from over 60,000 primary care patients who have chronic kidney disease (stage 2 and above). We
estimated transition rates between six underlying disease states. The results were similar for men and women.
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Introduction
The severity of many chronic diseases, including cancer and 

chronic kidney disease (CKD), are characterized, at least in part, 

by stages. The stage of disease and rate of progression or regression 

are important to deciding whether to treat, how to treat, and how 

often to monitor a patient. Moreover, knowledge about transition 

rates between stages helps patients understand what to expect and 

policymakers what to plan.

One approach for analyzing disease stage data is hidden Markov 

models (HMMs) (MacDonald and Zucchini 1997, 2009). Unlike 

ordinary Markov models, HMMs account for the fact that some-

times the observed disease stages are different from the underlying 

disease stages as a result of measurement error. Recently, research-

ers have used continuous-time HMMs to analyze data in a variety 

of clinical areas, such as hepatocellular cancer (Kay 1986), HIV 

progression (Satten and Longini 1996), and aortic aneurysms (Jack-

son 2003). However, a continuous-time model is computationally 

costly, and may be infeasible if the sample size is large, which 

is typically the case with electronic health records (EHR) data. 

Further, for many studies there would be no benefit to having finer 

information about the timing of a measurement than the calendar 

date. Discrete-time HMMs are a useful alternative, and have been 

developed and applied to a variety of health problems (Shirley et al. 

2010; Rabiner 1986; Jackson and Sharples 2002; Scott 1999; Scott 

2002; Scott et al. 2005; Gentleman et al. 1994; Bureau et al. 2000). 

While discrete-time HMMs have many desirable features, the 

estimation of transition rates typically requires large observational 

studies with long follow-up times as transitioning usually occurs 

over years. The resources required for such studies are often costly 

and time prohibitive. Use of longitudinal EHRs data from large 

primary care practices offers an alternative means of assembling 

longitudinal health experience of a population. Such data have the 

advantage of having both sufficient follow-up time and sample size 

to reliably and accurately estimate these rare transition rates. 

In this paper we address challenges with using estimated glomer-

ular filtration rate (eGFR) to study transition rates for chronic 

kidney disease (CKD). While large populations with years of lon-

gitudinal EHR data seem well suited for estimating CKD transition 

rates, two problems arise. First, unlike planned observational stud-

ies, digital patient records vary substantially in when (e.g., a patient 

seeks care for a problem) and why (i.e., a physician decides what to 

measure) a measurement is obtained, including measuring in rela-

tion to the severity of the underlying disease state. While eGFR is 

routinely measured on patients, the reason for measurement is also 
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related to health status. Relatedly, measurement frequency varies 

substantially among patients and is often sporadic, leading to infer-

ential challenges for handling these diverse types of missing data. 

Second, the size of the data set makes it challenging to fit complex 

models that involve computationally expensive optimization.

The objectives of this paper are to test methods for HMM that can 

address the challenges of estimating transition rates from large 

EHR data sets with irregular and potentially informative observa-

tion times. We deal with the size of the data and the irregularity of 

the observation times by developing a discretization method that 

transforms daily data (with a high degree of missingness) to data 

from wider time ranges. We use simulation studies to explore the 

impact of discretization assumptions on bias and variability, as well 

as on computing time. 

In order to ensure that the simulation results are particularly rele-

vant to CKD, we first conducted a preliminary analysis of the CKD 

data. In the simulation studies, we simulated data from models 

whose parameters were similar to those from the CKD analysis. To 

address concerns about potentially informative observation times 

(i.e., the decision to obtain or not obtain eGFR on a given date 

might depend on the observed health state), we conduct simulation 

studies where we apply our method to simulated data that have in-

formative observation times. We find that the informative observa-

tion times do not have significant impact on the inference. We also 

demonstrate the feasibility of using this method on large EHR data, 

and present results from the CKD data as an illustration.

The rest of the paper is organized as follows: Section 2 describes 

the CKD study. Section 3 gives a brief introduction to HMMs and 

discusses in detail the HMM we proposed to fit the CKD data. 

Section 4 describes the simulation study and provides the results. 

The results of the CKD analysis are presented in Section 5. Finally, 

Section 6 includes a discussion of the findings, their implications, 

and some of the future research interests.

Background and Data
The study was approved by the Institutional Review Boards (IRBs) 

of Geisinger Health System and the University of Pennsylvania. 

Methods on CKD stages, access to EHR data, and HMM are de-

scribed herein.

Chronic Kidney Disease
National Kidney Foundation Kidney Disease Outcome Quality 

Initiative (NKFKDOQI) classifies a patient’s CKD as being in one 

of five stages, defined by the level of the patient’s estimated glomer-

ular filtration rate (eGFR) (Levy et al. 1999): kidney impairment 

with normal kidney function (stage 1, eGFR> 90), kidney impair-

ment with mildly decreased kidney function (stage 2, eGFR 60-89), 

moderately decreased kidney function (stage 3, eGFR 44-59), se-

verely decreased kidney function (stage 4, eGFR 15-29) and kidney 

failure (stage 5, eGFR< 15). Many patients who have CKD progress 

through these stages.

Data Description
All data for this study was derived from the Geisinger Health System 

(GHS), an integrated delivery system offering health care services to 

residents of 31 of Pennsylvania’s 67 counties with a significant presence 

in central and northeastern Pennsylvania. GHS includes the Geising-

er Health Plan (GHP), an insurance plan, and the Geisinger Clinic 

(GC)—two major independent business entities with overlapping 

populations—as well as a host of other provider facilities (e.g., hospitals, 

addiction centers, etc.). GC primary care physicians manage approxi-

mately 400,000 patients annually. Adult (i.e., 18+ years of age) primary 

care patients were the source population for this study. These patients 

were similar to those in the region and were predominantly caucasian.

For this study, a database was created from EHR data of GC primary 

care patients that encompassed whether or not they were insured by 

GHP. All health information was integrated, including laboratory 

orders and results, medication orders, and inpatient (since 2007) and 

outpatient encounters. Longitudinal data were available for the period 

from July 30th, 2003 to Dec. 31st, 2009. Patients’ disease stages were 

evaluated according to eGFR values. Data were obtained from the Na-

tional Kidney Registry and the Social Security Death Index, in order to 

determine dates at which any patients had dialysis, a kidney transplant, 

or died. Demographic variables routinely collected as part of patient 

care, such as age and gender, were also available.

Subjects were included in the study if they were between the ages of 30 

and 75 years old, had Stage 2 or higher CKD at the time of their first 

eGFR, and had at least two valid values of disease stage (eGFRs, dialy-

sis, kidney transplant, death). A total of 66,633 patients satisfied these 

criteria. Table 1 shows the baseline demographic information of our 

sample, where we define baseline as the date of first observed eGFR. 

The percentages of female and male were similar for patients who start-

ed with stage two CKD, but there were significantly more females than 

males who started with later stages of CKD. The mean age was 55 years 

old in both the male and female patients. The younger median age for 

stages 4 and 5 indicates the selection inherent to the prevalent sample 

because older patients are more common in more severe CKD stages 

and the risk of death among older patients is higher. There were 2,610 

patients recorded with either dialysis, kidney transplant, or death as the 

outcome at the end of study. 

eGFR was obtained as part of a routine laboratory protocol and to 

monitor patients with CKD. As such, the time interval between lab 

measurements varied substantially among patients. The average 

number of eGFRs was four with a range of visits from 2 to 155 and 

a median number of 144 days between measurements with a range 

of 1 day to 2,169 days. Measurement of eGFR was more frequent 

for patients with more advanced stages of CKD increasing from 

a median of 144 days between measures for patients with Stage 2 

CKD to 91 days for Stage 3 CKD patients, 22 days for Stage 4 CKD 

patients, and 11 days for stage 5 CKD patients. Figure 1 shows the 

distribution, by gender, of the number of days until the next visit 

for different CKD stages. Overall, the distributions are similar 

between men and women except for CKD stage 5 where men have 

more frequent visits than women. It should be noted that the data 

include both prevalent and incident cases.
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Statistical Model and Methodology

Introduction to Hidden Markov Model
A hidden Markov model (HMM) consists of two components: an 

observable component and an unobservable or “hidden” component. 

The hidden component behaves as a Markov process, which is a 

stochastic process with the memoryless property (MacDonald and 

Zucchini 2009). The property states that conditional on the present 

state of the process, its future and past are independent. Let ht be the 

hidden state at time t, where t = 1, ...T , and assume each state can take 

a discrete value from the state space S, ht = 1, ...S. For example, in the 

CKD example, ht would represent the true (unobserved) disease state 

at time t, where the possible disease states are 1, 2, . . ., S. This “hidden” 

or ”latent” variable h, is assumed to follow the Markov process 

expressed below:

Pr(ht+1 = s|ht = r, ht 1, ..., h1) = Pr(ht+1 = s|ht = r)

where r, s  S. The above equation depicts a discrete-time HMM 
because the transition from State r at time t to State s at time t + 
1 happens in an equally spaced time interval, denoted by a time 
increase of 1 unit. A time-homogeneous discrete-time HMM 

 the transition probability from state r to s is the same 
regardless of the time t:

Pr(ht+1 = s|ht = r) = Pr(ht+k+1 = s|ht+k = r)

Of course, because h is unobserved, estimation of transition rates 

will need to rely on linking observed variables to the unobserved 

variable. Let yt denote the observed state at time t, t = 1, ...T , and 

take a discrete value from,1, ..., M. For example, in the CKD data 

yt would represent the observed stage of CKD (1 to 5), based on 

eGFR. This may or may not coincide with the “true” disease state, 

as eGFR is measured with error and is an imperfect marker of 

disease. The probability of observing state m given that the hidden 

state is r at time t, is expressed as Pr(yt = m|ht = r). This is called 

the “state-dependent distribution” because the distribution of the 

observed value depends on the value of the hidden state.

There are three sets of parameters in a discrete-time HMM: the 

initial state probability, π, the transition probability matrix, Γ, and 

the state-dependent probability, P. The initial state probability, π 
= (π1, ...πS ), specifies the distribution of the first hidden state, h1. 

The transition probability matrix, Γ(S) where S denote the hidden 

state space, can be used to describe the distribution of the hidden 

state at time t + 1 given the hidden state at time t.

The element, γ12, for example, is the probability of transitioning 

from State 1 at time t to State 2 at time t + 1, Pr(γt+1 = 2|γt = 1). 

The transition probability matrix requires that each row must sum 
to 1: j ij = 1, i = 1, ...S. Given the hidden state at time t, the ob-
served states are independent from each other and can take on a 
range of values with a probability distribution. It can be described 
using a probability matrix, P (S, M), where S denotes the hidden 
state space and M denotes the observed state space.

Table 1. Baseline demographic characteristics 

Female Male Total

Count

Stage 2-5

Stage 2

3

4

5

37,507(56%)

33,105(55%)

4,215(65%)

168(60%)

19(70%)

29,126(44%)

26,722(45%)

2,283(35%)

113(40%)

8(30%)

66,633

59,827

6,498

281

27

Median and IQR of age

All stages

Stage 2

3

4

5

55(21)

54(20)

67(13)

64(14)

62(13)

55(20)

54(19)

66(13)

62(15)

61(12)

55(20)

54(20)

66(13)

63(15)

62(13)

Figure 1. The boxplot shows the distributions, by CKD 
stages and gender, of the average number of days 
between measurements.
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The element, p12, for example, is the probability of observing State 2, 

given that the hidden state is 1 at time t, Pr(yt   = 2|ht = 1). Like the 

transition probability matrix, each row of the state-dependent proba-
bility matrix must also sum to 1:

  
M

 pij = 1, i = 1, ...S 

The HMM for the CKD Data
If we assume that transitions between disease states are observed 

only at clinical visits, then a continuous-time HMM would be 

ideal to fit the CKD data because these visits happen at irregular 

times. However, such models require converting an instantaneous 

probability matrix to a probability matrix of time t in the con-

struction of likelihood. It is computationally expensive because 

the probability matrix needs to be calculated at each time point 

for all the patients and the CKD data has many patients with 

long follow-up times. In our experience, built-in optimization 

functions in R, such as optim, have difficulty with likelihoods that 

involve latent classes and many parameters. Further, we attempt-

ed to use an existing R package for HMMs, but were unable to 

achieve convergence. If, however, we assume that transitions hap-

pen on a daily basis, then a discrete-time HMM can be used since 

transitions occur at a fixed interval length. A discrete-time HMM 

is more computationally efficient than a continuous-time HMM 

because it models a transition probability matrix rather than an 

instantaneous probability matrix. For daily transitions, ideally, 

we would like to observe the eGFR every day or on any given day. 

However, the observations of eGFR from EHRs are mostly spo-

radic. For purposes of modeling, we define all days between days 

with an observed eGFR to have a missing eGFR value. The combi-

nation of observed and missing values yields a very large data set 

that is computationally expensive to use for HMM. Moreover, the 

daily granularity of the data is far more refined than is necessary 

given the usual rate of change in eGFR. We therefore considered 

alternatives, where, rather than daily data, we explored the use 

of different interval lengths (30, 90, and 180 days). For example, 

when using a 30-day interval, we use the average of the multi-

ple observed states within one interval to determine observed 

status. If this average is not an integer, then either the ceiling or 

the floor of the average will be used depending on the value of 

the last observed state in the interval. For example, if the average 

within a particular state is 2.4 and the last observed state is 4, 

State 3 will be the value in this interval. If the last observed state 

is 1, then State 2 will be used instead. In the last interval, if State 

5 is observed along with other values, then State 5 will be used. If 

there are only missing values in the interval, then a missing value 

is assigned. We used simulation studies to explore the association 

between interval length and bias.

Once the CKD data are combined into different interval lengths, 

we use a discrete-time, time-homogeneous HMM with five 

observable states (1, 2, 3, 4, 5) to model the data. For the number 

of hidden states, we explored different possibilities, including 4, 

5 and 6 state models. For this section, we will describe the model 

with five hidden states (A, B, C, D, E). Generalization to other 

number of states is straightforward. The first four observed states 

(State 1, 2, 3, 4) correspond to CKD stage 2, 3, 4, and 5, where 

State 5 is the absorbing state (kidney transplant, dialysis or death). 

Once a patient enters the absorbing state, the patient will stay in it 

permanently. In other words, if a patient has a kidney transplant, 

was put on dialysis, or died, the patient can no longer regress or 

progress naturally. Note that the hidden states do not necessarily 

correspond to the observed states (i.e., hidden state B does not 

have to imply observed state 2), except for the absorbing state. 

The meaning of the hidden disease states are based on the state 

dependent probabilities.

The HMM follows a natural disease progression model, in which 

transitions are only allowed to be between adjacent states and to 

the absorbing state (Jackson 2007). This model says, for example, 

that a transition from State B to State D does not happen unless 

a transition from State B to State C occurred first. Below is the 

assumed transition probability matrix for our model.

We assume that, conditional on ht  {A, B, C, D}, ht+1 has a 
multinomial distribution. The last row indicates that if the hidden 
state at time t is the absorbed state, then the probability of transi-
tioning to other states at time t + 1 is 0.

The state dependent probability matrix accounts for measure-

ment error in the observed data. Given the hidden state is j, the 

observed state expresses the error distribution, in this case, the 

distribution is multinomial.

We assume that only j or the adjacent states, j  1 or j + 1, can 
be 
the number of parameters needed to be estimated, and it seems 
to represent the majority of the measurement error in the CKD 
data. The absorbing state is assumed to be observed without error. 
This means that if a patient had a transplant or died, it would be 
recorded accurately without the possibility of error.
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Each row of the above matrix has a multinomial distribution with 

0 probability of observing State 5 if the hidden state is not State 

E. The last row shows that if the hidden state is State E, then the 

probability of observing State 5 is 1.

Lastly, the initial hidden state probability distribution, which 

assigns probabilities to the hidden state at t = 1, will also have a 

multinomial distribution and can be represented with a vector, 

π=(πA,...,πD , 0). The last element of the vector is set to 0 because 

we assumed that patients cannot enter the study if they are already 

in State E.

Methodology
Assume the hidden state, hit, where i = 1, ..., N and t = 1, ..., Ti, takes 

on a discrete value, s, from a sample space, S such that S = (A, B, C, 
D, E). The observed state, yit, can also take on a discrete value, m, 

from a sample space, O, such that, m = 1, ..., M . At time t and given 

the hidden state, hit, yit can be observed from a state-dependent 

probability distribution. The likelihood of the observed data for all 

subjects given the parameter, θ = (π, Γ, P ) is below:

It is difficult to estimate θ directly from the above likelihood be-

cause of the product of summations. Instead, the expectation-max-

imization (EM) algorithm can be used; for HMMs, a special case 

of the EM algorithm was developed by Baum and Welch (1970) 

and is called the “Baum-Welch algorithm.” The EM algorithm 

makes use of the augmented likelihood of the complete data (ob-

served data, Y , and hidden data, H ):

The EM algorithm involves iteratively computing the expected 

value of the observed likelihood given the current estimates of the 

parameters (the E-step) and then maximizing this observed likeli-

hood over the parameters (the M-step). The computational details 

of the EM algorithm, the likelihood and θ are listed in the appen-

dix. We use the nonparametric bootstrap to derive the standard 

errors (SEs). The resampling is done at the patient level.

Simulation Study

Data Generation
We conducted simulation studies to investigate the bias caused by 

different interval lengths and to investigate the effect of different 

missing data mechanisms on bias and variability. The reason for 

using intervals rather than analyzing daily data is to reduce the 

computational burden. The simulations are intended to provide 

information about the trade-off between bias, variability and com-

puting time. As seen in Table 1, there is a large amount of variabil-

ity in the frequency at which lab values are collected in EHRs. This 

is potentially a type of informative missing data. The simulation 

study is designed to provide insight into the effect that informa-

tive missingness might have on inference. Data in the simulation 

study were simulated to mimic the CKD data. We have used five 

hidden and five observed states to perform exploratory analysis on 

the CKD data. The results are used as the parameter values in the 

simulation. The simulation and all the analysis are coded in R.

First, complete daily status (i.e., no missing data) for 5,000 

subjects, each with data up to six years, were generated using the 

discrete-time, time-homogeneous HMM described in section 3.2. 

The first hidden state, hit, was generated with initial probabilities π 
= (0.80, 0.10, 0.07, 0.03, 0.0). Then, the first observed state, yit, was 

generated with state-dependent probability matrix:

.

The rest of the data were created in two steps. In the first step, the 

hidden state at time t, hit, t = 2, ..., Ti was generated using the 

transition probability matrix. The 180-day transition probability 

matrix is listed below.

The daily transition probability, which is used to generate the 

true disease status, can be derived by calculating Γ 180 . Since the 

progression of CKD at a later stage is more aggressive than that of 

an earlier stage, in the transition probability matrix, γ45 > γ34 > 
γ23 > γ12. We assumed that the regression of the disease was the 

same across all the states. In the second step, the observed state 

at time t, yit, were generated with the state-dependent probability 

matrix again. This sequence of data were terminated when either 

six years of data were created or the absorbing state, State 5, was 

reached.
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Missing Data Mechanisms. Next, we generated an indicator vari-

able for missing data. Let Wit be the indicator variable of whether 

the value at time t was missing for subject i (equal to 1 if missing 

and 0 otherwise). We assumed that the first and the last values 

will always be observed. This assumption ensures that at least one 

transition will be observed for each subject.

mechanism would be valid under the missing at random (MAR) 
assumption. MAR means that the missing data mechanisms 
depends only on the observed data. The missing data indicator 
variable, Wit, was generated sequentially, starting at visit 2 (since 
we assume no missing data at visit 1). In particular, we assume 
that Pr(Wit) depends only on the most recent observed value of y. 
For the second missing data mechanism, we assumed that Pr(Wit) 
depends only on yi,t 1, regardless of whether it was observed 
or not. This mechanism violates the MAR assumption because 
yi,t 1 might not be observed, hence, it is a type of missing not 
at random (MNAR). We call this mechanism MNAR1. 
missing data mechanism that we considered assumes that the 
probability of missingness at time t depends only on the hid-
den state, hit at time t. This mechanism also violates the MAR 
assumption because h is never observed. We call this mechanism 

Missing Mechanism

MAR Pr(Wit  = 1|yij  = 1)

MNAR1 Pr(Wit  = 1|yit 1  = 1)

MNAR2 Pr(Wit  = 1|hit  = 1)

 

For each missing data mechanism, we further used three schemes 

to describe the differences in the number of days until the next 

visit. These three schemes are displayed in Table 3. Each cell gives 

the probability of being missing at each time. These probabilities 

determine how long on average a patient will wait until the next 

visit. The value in parentheses indicates the average number of 

days until the next visit. In scheme 1, the probability αk is chosen 

so that the number of missing values between two observed values 

mimics the actual CKD data. In the CKD data, individuals with 

CKD stage 2 tend to have a longer time for the next eGFR mea-

surement than individuals in CKD stage 3 and later stages. For 

patients in stage 2, the average time to the next measurement is 

169 days. This time dropped down to 93 days for patients in stage 

3, and so on. Hence, the lower the value of k, the higher the value 

of αk. In scheme 2, αk also depends on the value of k but the range 

for the number of days until the next visit (50–100 days) is shorter 

in length than the ones from scheme 1 (11–143 days). In scheme 

3, the range of the duration (2–200 days) is longer in length than 

the ones from scheme 1 (11–143 days). αk is assigned such that the 

sample size among the three schemes are similar. These schemes 

are intended to represent different realistic scenarios and are a 

good way to test the robustness of our model.

Table 3. Probability of missing data on a given day, 
in each disease state, for each of the 3 missing data 
scenarios

Scheme State 1 State 2 State 3 State 4

1

2

3

0.993 (143)

0.990 (100)

0.995 (200)

0.989 (91)

0.987 (77)

0.950 (20)

0.954 (22)

0.984 (62)

0.750 (4)

0.909 (11)

0.980 (50)

0.550 (2)

Note: The number in parentheses is the average number of days until the next observed 
value.

Finally, we used our “discretization” method to group the daily 

data into intervals of 30, 90, and 180 days.

Analysis. The convergence criteria used was less than 0.1 percent 

maximum difference between the current estimates and previous 

estimates. For each scenario and each parameter, we recorded the 

average value of the parameter estimates, the empirical standard 

deviation, and the absolute bias. In addition, the average time to 

convergence was recorded. 

Results
We report detailed results here for all the missing data mecha-

nisms in scheme 1 (the number of days till the next visit mimics 

the actual CKD data). The other two schemes had very similar 

results and are reported in the appendix. Table 4 lists the average 

computation time (seconds) used in 100 simulations for each 

interval length and the missing mechanisms. As expected, the 

convergence time decreases as the interval length increases. There 

seems to be more savings in going from the 30 day interval to the 

90 day interval, compared to going from the 90 day to the 180 day 

interval. The computational times are not much different among 

different missing mechanisms within each interval length.

Table 4. The average computation time (seconds)

Missing Mechanism 30 Day 90 Day 180 Day

MAR
MNAR1
MNAR2

9592
8602
9394

2821
4106
3790

2373
1513
2602

Tables 5–13 list the parameter estimates and empirical standard 

deviations (ESD) for the MAR, MNAR1, and MNAR2 mecha-

nisms, respectively. Figures 2–3 show a graphical comparison 

of the absolute biases of different intervals and different missing 

mechanisms for the transition- and state-dependent probability 

parameters. The results show that, in general, there is not a lot of 

bias regardless of which interval length was selected. The estimates 

from the 30-day interval tended to have the least bias and the ones 

from the 180-day interval tended have the most bias. This result 
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is not surprising since the shorter interval length means fewer data 

have been combined and more data are used for estimation. For 

example, consider the transition probability from State 4 to State 4, 

γDD. Under the MAR missing mechanism the absolute bias is 0.007 

in the 30-day interval, 0.013 in the 90-day interval, and 0.023 in the 

180-day interval. For each interval length, the absolute biases among 

the missing mechanisms are comparable. That is, we did not observe 

any pattern of biases tending to be larger for either NMAR1 or 

NMAR2, compared to MAR. We speculate in the Discussion section 

about why this might be the case.

For both the state-dependent and transition probability parameters, 

the ESD tended to increase as the interval length increased. This is 

expected since a widening interval decreases the number of data 

points. There was no difference in ESD for the initial probabilities, 

since the information for these parameters comes from the baseline 

data (not affected by interval length choice). We observed a larger 

impact of interval length on ESD than we did on bias. Thus, when 

choosing an interval length, the primary considerations should be 

the trade-off between standard errors and computational feasibility.

Table 5. Parameter estimates with MAR missing mechanism

True value  ̂(ESD)  ̂(ESD)  ̂(ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80

0.10

0.07

0.03

0.799 (0.007)

0.103 (0.005)

0.069 (0.004)

0.029 (0.002)

0.794 (0.006)

0.109 (0.005)

0.068 (0.004)

0.030 (0.002)

0.775 (0.006)

0.127 (0.006)

0.068 (0.004)

0.030 (0.002)

Table 6. Parameter estimates with MNAR1 missing 
mechanism

True Value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80

0.10

0.07

0.03

0.787 (0.006)

0.109 (0.006)

0.072 (0.003)

0.031 (0.002)

0.777 (0.007)

0.121 (0.005)

0.071 (0.003)

0.031 (0.002)

0.754 (0.007)

0.143 (0.007)

0.072 (0.003)

0.032 (0.003)

Table 7. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days
Initial Prob.

A

B

C

D

0.80

0.10

0.07

0.03

0.791 (0.006)

0.105 (0.005)

0.073 (0.004)

0.031 (0.002)

0.781 (0.006)

0.116 (0.005)

0.072 (0.004)

0.031 (0.002)

0.758 (0.006)

0.138 (0.006)

0.071 (0.004)

0.033 (0.003)

 

Table 8. Parameter estimates with MAR missing mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition Prob.

AA 

AB 

AE

0.90

0.07

0.03

0.895 (0.0003)

0.070 (0.0003)

0.031 (0.0002)

0.894 (0.0011)

0.073 (0.0010)

0.030 (0.0006)

0.895 (0.0023)

0.075 (0.0022)

0.030 (0.0010)

BA

BB

BC

BE

0.03

0.85

0.09

0.03

0.030 (0.0004)

0.840 (0.0008)

0.094 (0.0006)

0.030 (0.0003)

0.030 (0.0013)

0.835 (0.0022)

0.100 (0.0016)

0.030 (0.0009)

0.029 (0.0028)

0.834 (0.0045)

0.109 (0.0032)

0.029 (0.0017)

C B

C C 

C D 

C E

0.03

0.80

0.14

0.03

0.029 (0.0006)

0.799 (0.0012)

0.140 (0.0011)

0.033 (0.0003)

0.027 (0.0015)

0.795 (0.0034)

0.144 (0.0031)

0.034 (0.0015)

0.025 (0.0035)

0.795 (0.0071)

0.144 (0.0059)

0.035 (0.0030)

DC 

DD 

DE

0.03

0.75

0.22

0.029 (0.0008)

0.757 (0.0017)

0.213 (0.0015)

0.027 (0.0025)

0.763 (0.0042)

0.209 (0.0042)

0.023 (0.0051)

0.773 (0.0092)

0.203 (0.0077)

Table 9. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA

AB

AE

0.90

0.07

0.03

0.891 (0.0004)

0.075 (0.0004)

0.030 (0.0002)

0.892 (0.0010)

0.076 (0.0010)

0.030 (0.0006)

0.894 (0.0019)

0.077 (0.0018)

0.029 (0.0010)

BA

BB 

BC 

BE

0.03

0.85

0.09

0.03

0.031 (0.0003)

0.840 (0.0006)

0.092 (0.0005)

0.030 (0.0003)

0.032 (0.0011)

0.838 (0.0020)

0.096 (0.0016)

0.029 (0.0009)

0.032 (0.0025)

0.838 (0.0043)

0.102 (0.0031)

0.029 (0.0017)

C B 

C C 

C D 

C E

0.03

0.80

0.14

0.03

0.031 (0.0005)

0.803 (0.0011)

0.135 (0.0010)

0.031 (0.0003)

0.031 (0.0016)

0.798 (0.0036)

0.139 (0.0029)

0.032 (0.0011)

0.030 (0.0033)

0.797 (0.0061)

0.140 (0.0059)

0.033 (0.0028)

DC 

DD 

DE

0.03

0.75

0.22

0.031 (0.0008)

0.752 (0.0017)

0.216 (0.0014)

0.031 (0.0024)

0.758 (0.0050)

0.211 (0.0039)

0.031 (0.0059)

0.768 (0.0092)

0.202 (0.0083)
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Table 10. Parameter estimates with MNAR2 missing 
mechanism

True 
value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA

AB

AE

0.90
0.07
0.03

0.892 (0.0003)
0.074 (0.0003)
0.030 (0.0002)

0.892 (0.0011)
0.076 (0.0010)
0.030 (0.0005)

0.894 (0.0020)
0.076 (0.0019)
0.029 (0.0010)

BA

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.031 (0.0004)
0.837 (0.0007)
0.096 (0.0005)
0.029 (0.0003)

0.032 (0.0013)
0.834 (0.0023)
0.100 (0.0016)
0.029 (0.0009)

0.032 (0.0023)
0.835 (0.0044)
0.105 (0.0033)
0.028 (0.0017)

C B 

C C 

C D 

C E

0.03
0.80
0.14
0.03

0.030 (0.0005)
0.805 (0.0010)
0.133 (0.0008)
0.031 (0.0004)

0.031 (0.0014)
0.800 (0.0030)
0.137 (0.0029)
0.032 (0.0014)

0.031 (0.0037)
0.798 (0.0069)
0.139 (0.0054)
0.032 (0.0029)

DC 

DD 

DE

0.03
0.75
0.22

0.031 (0.0007)
0.752 (0.0016)
0.216 (0.0015)

0.031 (0.0025)
0.757 (0.0048)
0.212 (0.0042)

0.030 (0.0057)
0.768 (0.0099)
0.202 (0.0081)

 

Table 11. Parameter estimates with MAR missing 
mechanism

True 
value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90

0.10

0.905 (0.0019)

0.095 (0.0019)

0.915 (0.0019)

0.085 (0.0019)

0.925 (0.0023)

0.075 (0.0023)

p
B1 

p
B2 

p
B3

0.10

0.80

0.10

0.104 (0.0026)

0.830 (0.0028)

0.066 (0.0019)

0.112 (0.0037)

0.849 (0.0039)

0.039 (0.0020)

0.127 (0.0053)

0.846 (0.0054)

0.027 (0.0025)

p
C2 

p
C3 

p
C 4

0.10

0.80

0.10

0.139 (0.0029)

0.800 (0.0035)

0.061 (0.0019)

0.191 (0.0052)

0.766 (0.0052)

0.043 (0.0027)

0.204 (0.0070)

0.753 (0.0071)

0.043 (0.0046)

p
D3

p
D4

0.10

0.90

0.149 (0.0032)

0.851 (0.0032)

0.172 (0.0061)

0.828 (0.0061)

0.161 (0.0097)

0.839 (0.0097)

Table 12. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.905 (0.0019)
0.095 (0.0019)

0.905 (0.0022)
0.095 (0.0022)

0.906 (0.0024)
0.094 (0.0024)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.105 (0.0023)
0.806 (0.0024)
0.089 (0.0018)

0.101 (0.0026)
0.814 (0.0031)
0.085 (0.0023)

0.098 (0.0043)
0.825 (0.0043)
0.078 (0.0033)

p
C2 

p
C3 

p
C 4

0.10
0.80
0.10

0.099 (0.0021)
0.814 (0.0026)
0.087 (0.0018)

0.085 (0.0033)
0.840 (0.0039)
0.075 (0.0027)

0.074 (0.0048)
0.856 (0.0055)
0.070 (0.0050)

p
D3

p
D4

0.10
0.90

0.106 (0.0028)
0.894 (0.0028)

0.103 (0.0052)
0.897 (0.0052)

0.095 (0.0091)
0.905 (0.0091)

Table 13. Parameter estimates with MNAR2 missing 
mechanism

True 
value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90

0.10

0.904 (0.0016)

0.096 (0.0016)

0.904 (0.0019)

0.096 (0.0019)

0.905 (0.0026)

0.095 (0.0026)

p
B1 

p
B2 

p
B3

0.10

0.80

0.10

0.104 (0.0024)

0.805 (0.0029)

0.091 (0.0022)

0.102 (0.0032)

0.810 (0.0043)

0.088 (0.0026)

0.102 (0.0041)

0.816 (0.0048)

0.082 (0.0036)

p
C2 

p
C3 

p
C 4

0.10

0.80

0.10

0.097 (0.0020)

0.812 (0.0026)

0.091 (0.0017)

0.083 (0.0034)

0.839 (0.0042)

0.078 (0.0032)

0.073 (0.0053)

0.853 (0.0058)

0.074 (0.0051)

p
D3

p
D4

0.10

0.90

0.101 (0.0025)

0.899 (0.0025)

0.100 (0.0045)

0.900 (0.0045)

0.091 (0.0072)

0.909 (0.0072)
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Application to CKD Data
We applied our proposed HMM, described in Section 3.2, to the 

CKD data, which were described in Section 2. We decided to use 

a 90-day time window, as that seemed to be a reasonable trade-off 

between computational feasibility and efficiency. We fitted separate 

models for men and women.

Number of Hidden States. Models with four, five, and six hidden 

states were fitted to the data for both male and female subgroups with 

an interval length of 90 days. We decided not to consider a seven state 

model because a model with several more latent states than observed 

states can become unstable. The Akaike information criterion (AIC) 

and the Bayesian information criterion (BIC) were calculated for all 

the models (four, five, six hidden states). The results are listed in Table 

14. The HMM with six hidden states produced much smaller AIC 

(105222.1 for male, 154025.1 for female ) and BIC (105424.7 for male, 

154227.7 for female) values than the ones with four hidden states and 

five hidden states. Since the smaller AIC or BIC indicates a better fit of 

the model, we decided to fit the data with a six hidden state (A, B, C, D, 

E, F) and five observed state (1, 2, 3, 4, 5) model.

Parameter estimates and standard errors, stratified by sex, are 

displayed in Tables 15–17.

Table 14. Comparison of HMMs

Four hidden 
states

Five hidden states Six hidden states

Men

AIC 108,895 106,224 105,222

BIC 109,009 106,378 105,424

Women

AIC 158,880 155,665 154,025

BIC 158,994 155,819 154,227

Table 15. Parameter estimates for the CKD data: 90 Day

Women Men

Estimate (SE) Estimate (SE)

Initial 
Prob.

A

B

C

D

E

0.799 (0.0080)
0.122 (0.0066)
0.074 (0.0025)
0.005 (0.0045)
0.000 (0.0001)

0.862 (0.0032)
0.081 (0.0033)
0.053 (0.0021)
0.004 (0.0004)
0.000 (0.0001)

Figure 2. The absolute bias of the average of 14 transition probability parameter estimates of 100 samples for each interval 
length (30, 90, 180) under MAR, MNAR1, and MNAR2 missing mechanisms. 

Note: (A,A) is the transition from State A to State A.
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State-Dependent Probabilities. We begin with the state-depen-

dent probability results, because these provide information about 

the interpretation of the hidden states. Recall that we focused on 

CKD stages 2–5 (along with the absorbing state). Thus, observed 

state y = 1 corresponds to CKD stage 2. Observed state y = 5 is 

the absorbing state (transplant, dialysis, or death). Hidden state F 

always corresponds with observed state 5. From the results in men 

(women have similar results), we see that hidden state A almost 

always corresponds with observed state 1 (stage 2 CKD). However, 

hidden state B is a mixture of observed state 1 (probability 0.58) 

and observed state 2 (probability 0.41). Thus, we could think of 

hidden state B as subjects who might be near the CKD stage 2 

and 3 boundary. Ninety-seven percent of the time, hidden state C 

corresponds with observed state 2. Thus, we could think of hidden 

state C as CKD stage 3. This finding suggests that it might be clini-

cally meaningful to divide stage 3 into stage 3a and 3b where some 

patients progress to the next stage while others do not. With hid-

den state D, state 3 has been observed 86 percent of the time and 

observed state 4 only 9 percent of the time. Thus, we could think 

of hidden state D as being subjects who are typically in CKD stage 

4. Finally, 95 percent of the time,  hidden state E corresponds with 

observed state 4. Thus, we could think of hidden state E as subjects 

who are in CKD stage 5. The SEs are very small in general, but are 

particularly small for the parameters involving hidden states A to 

C. We estimate pD3 and pD4 with a little less accuracy, which is 

not surprising due to the fact that there are far fewer subjects in 

later disease stages.

Figure 3. The absolute bias of the average of 10 state-dependent probability parameter estimates of 100 samples for 
each interval length (30, 90, 180) under MAR, MNAR1, and MNAR2 missing mechanisms. 

Note: (A,1) is observing state 1 giving the hidden state is State A.
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Table 16. Parameter estimates for the CKD data: 90 Day

Women Men

Estimate (SE) Estimate (SE)

Transition Prob.

AA 

AB 

AF

0.987 (0.0004)

0.011 (0.0004)

0.002 (0.0001)

0.989 (0.0004)

0.009 (0.0004)

0.002 (0.0001)

BA 

BB 

BC 

BF

0.029 (0.0015)

0.932 (0.0024)

0.036 (0.0019)

0.003 (0.0004)

0.025 (0.0025)

0.928 (0.0037)

0.038 (0.0020)

0.009 (0.0007)

C B 

C C 

C D 

C F

0.014 (0.0008)

0.973 (0.0009)

0.007 (0.0005)

0.006 (0.0004)

0.016 (0.0018)

0.962 (0.0019)

0.011 (0.0006)

0.011 (0.0007)

DC 

DD 

DE 

DF

0.031 (0.0043)

0.918 (0.0051)

0.016 (0.0019)

0.035 (0.0033)

0.029 (0.0046)

0.896 (0.0057)

0.026 (0.0036)

0.049 (0.0052)

ED 

EE 

EF

0.000 (0.0000)

0.839 (0.0329)

0.161 (0.0329)

0.033 (0.0152)

0.704 (0.0303)

0.263 (0.0311)

Table 17. Parameter estimates for the CKD data: 90 Day

Women Men

Estimate (SE) Estimate (SE)

State-dep. Prob.

p
A1

p
A2

0.980 (0.0010)
0.020 (0.0010)

0.986 (0.0007)
0.014 (0.0007)

p
B1

p
B2 

p
B3

0.583 (0.0194)
0.416 (0.0193)
0.001 (0.0003)

0.584 (0.0165)
0.414 (0.0164)
0.002 (0.0003)

p
C1 

p
C2 

p
C 3

0.025 (0.0026)
0.964 (0.0021)
0.011 (0.0013)

0.020 (0.0033)
0.968 (0.0031)
0.012 (0.0013)

p
D2 

p
D3 

p
D4

0.143 (0.0177)
0.847 (0.0172)
0.010 (0.0019)

0.130 (0.0192)
0.861 (0.0187)
0.009 (0.0033)

p
E3

p
E4

0.174 (0.0565)
0.826 (0.0565)

0.050 (0.0541)
0.950 (0.0541)

Initial State Probabilities. Initially, about 86 percent of men and 

80 percent of women were in hidden state A. Approximately 8 

percent were in State B and 5 percent in State C for men and 12 

percent were in State B and 7 percent in State C for women. Very 

few subjects began in hidden state D and almost none of them 

began in hidden state E. All of these parameter estimates had very 

small SEs (less than 0.005).

Transition Probabilities. The transition probabilities refer to the 

probabilities of transitioning from one hidden state to another 

within a 90-day period. In general, subjects are likely to remain in 

the same disease state over a 90-day period, with all of the same 

state probabilities at 0.70 and above. Subjects who were in State B 

were more likely to transition to State C than to State A. However, 

subjects who were in States C were more likely to transition to 

State B than to State D. Subjects who were in state D were equally 

likely to transition to state C and state E. In general, the results are 

very similar for men and women, with the exception being that the 

transition from State E to the absorbing State F is higher for men 

(0.26) than for women (0.16).

Progression probabilities (transition to the next higher state) has 

the following pattern: low for A to B, then increase for B to C, then 

decrease for C to D, but then increase for D to E and again for E to 

F. This pattern is consistent with what one might expect if there is 

a pathophysioligic channel at State C that determines if someone 

will have progressive disease.

Discussion
In this paper, we made novel use of a large EHR data set to esti-

mate disease stage transition rates. Using EHR data for this pur-

pose has many challenges, including the size of the data and the 

extreme variation (and likely informativeness) in the observation 

times. We proposed a discretization method to convert a contin-

uous-time HMM to a discrete-time HMM and studied the effect 

of different amounts of discretization in a simulation study. We 

also investigated, via simulations, what effect disease stage-depen-

dent observation times will have on the results. This is a common 

challenge with EHR data, where, typically: (1) more severe disease 

means more visits and a greater likelihood of being observed; and 

(2) the more one is observed the more the observations are condi-

tioned by a desire to monitor.

The simulation results were promising for the method of discret-

ization, in that the amount of bias was relatively small, even for 

the 180-day time window. Perhaps surprisingly, we found very 

little impact of nonignorable missing data on bias and variability. 

The missing data mechanisms that we considered depended on 

current or recent disease states. Other mechanisms might lead to 

more bias. Perhaps, for example, if the probability of missing data 

depended on the proximity to a transition, rather than the current 

disease state, there would be more bias. This is an area in need of 

further research. 
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For the CKD data, we found that of the four, five, and six hidden 

state models that we considered, the six hidden state model fits 

the data best. In the six state model, we found that all the CKD 

disease stages correspond to at least one hidden state in the model. 

One hidden state consists of subjects who are between stage 2 

and 3. This suggests that there may be a disease state that is not 

well captured by the current five stage classification system. It also 

suggested that distinguishing CKD stage 3 into a stage 3a and stage 

3b may be clinically sensible and correspond to empirical obser-

vations that some patients transition to a more severe stage while 

most patients do not. Within a 90-day period, transitions between 

hidden states were rare. The disease course, in terms of transitions 

between states, was very similar for men and women.

There were some limitations to this research. First, it should be 

noted that the population was mostly white and mostly from rural 

Pennsylvania (40 percent rural, whereas the national average is 20 

percent), and might not be representative of the general popula-

tion. Second, we used observed stages of CKD rather than eGFR 

values themselves. An alternative approach would be to relate 

eGFR values to hidden states. However, this approach is more 

computationally burdensome. Third, despite promising simulation 

results, we cannot rule out the possibility that selection bias (in 

terms of who had eGFR measured when) biased the results. It is 

also important to note that while a 90-day interval seemed to have 

good properties for CKD, a shorter window might be necessary for 

diseases that have rapid progression.

There is great potential for using EHR data to study characteris-

tics of chronic diseases, due to the large population size and long 

follow-up times. The proposed discretization method makes the 

use of HMMs applied to large data sets more practical. While the 

simulation studies were promising, it will also be important to val-

idate these results on a longitudinal CKD data set that was part of 

a research study (with planned data collection times and uniform 

standards). While transition rates themselves are important for 

understanding disease progression, the methods proposed here 

can be extended to another important area—prediction modeling. 

It is of interest to clinicians to be able to know who is likely to be a 

fast or slow progressor. Our models can be extended to allow tran-

sition rates to vary as a function of clinical predictors. The most 

direct way to do this is using stratification, like was done here for 

gender. For many predictors, the model could be extended to allow 

several latent classes for disease transition rates, with latent class 

probabilities depending on covariates.  Relatedly, the model could 

be extended to have the disease transition rates vary from person 

to person according to a random effects distribution where the 

covariates may predict the random effects (Altman, 2007; Shirley 

et al., 2010)
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Appendix
Formulas

Likelihood
Let’s assume the hidden state, hit, where i = 1, ..., N and t = 1, ..., 
Ti, takes on a discrete value, s, from a sample space, S, such that, s 
= 1, ..., S. The observed state, yit, can also take on a discrete value, 

m, from a sample space, M , such that, m = 1, ..., M . At time t and 

given the hidden state, hit, yit can be observed from a state-de-

pendent probability distribution.

From the likelihood above, we can see that given the hidden 

states, the initial state probability, the transition probability, and 

the state dependent probability have multinomial distributions 

with parameter π, γjk , and pjk . To simplify the estimation of the 

parameters, the log of this augmented likelihood is often used.

Expectation Maximization (EM) Method
To estimate the parameters, θ, an iterative algorithm called the “ex-

pected-maximization (EM) algorithm” is used. The EM algorithm 

is an iterative algorithm in which iteratively, the expected value of 

the complete data log likelihood given the current parameters is 

computed (E-step) and then this expected value is maximized over 

the parameters (M-step). The special case of the EM algorithm for 

HMMs was developed by Baum and Welch (1970). For the E-step, 

the forward-backward (FB) algorithm is used. This algorithm is 

composed of two passes: the forward and the backward (MacDon-

ald and Zucchini 1997). In the forward pass, the joint distribution 

of the observed data up to time t and the hidden state at time t is 

calculated. After all the data are observed, the backward pass will 

update the information on the hidden state from the last time point 

to the first based on all the observed data. In the forward pass, 

denoted by αt, the joint distribution of the observed data up to time 

t and the hidden state at time t is calculated as below:

After all the data are observed, the backward pass, βt, will update 

the information on the hidden state from the last time point to the 

first based on all the observed data.

The observed likelihood for each subject, i, can be calculated 

using αi in the following way:

Since there are hidden data, H, in the log likelihood, we use the 

expected value of the missing information to compute the ex-

pected value of the complete data log likelihood given the current 

parameter estimates:

The expectation of the missing data are calculated as follows. Note 

the superfix g represents the gth iteration of the parameters.
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In the M-step, θ can be estimated in closed form using the expect-

ed values derived from above.

The initial probability distribution, π, can be estimated as follows:

The transition probability, γij , where i = 1, ...S, j = 1, ..., S, can be 

estimated as follow:

The state dependent probability, pjk , where j = 1, ...S, k = 1, ..., M , 
can be estimated as follow:

The EM method does not provide the standard errors for the pa-

rameters. We have decided to estimate the standard errors using 

bootstrap with replacement.

How to Handle Missing Data
If data is missing at a particular time point, an empty transition is 
assumed to occur. This is illustrated by replacing the state depen-
dent probability, Ps,yt,with 1’s in the calculation of t, t, and E[I 
(hit = k)I (hit 1 = j)].

Simulation Results: Scheme 2

Table 18. The average computation time (seconds)

Missing Mechanism 30 Day 90 Day 180 Day

MAR

MNAR1

MNAR2

9643

14036

14941

2657

2490

2760

1568

1513

2254

Table 19. Parameter estimates with MAR missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80
0.10
0.07
0.03

0.799 (0.007)
0.103 (0.005)
0.069 (0.004)
0.029 (0.002)

0.794 (0.006)
0.109 (0.005)
0.068 (0.004)
0.030 (0.002)

0.775 (0.006)
0.127 (0.006)
0.068 (0.004)
0.030 (0.002)

Table 20. Parameter estimates with MAR missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA 

AB 

AE

0.90
0.07
0.03

0.895 (0.0004)
0.071 (0.0003)
0.031 (0.0002)

0.894 (0.0011)
0.073 (0.0011)
0.031 (0.0005)

0.895 (0.0020)
0.075 (0.0017)
0.030 (0.0010)

BA 

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.030 (0.0005)
0.840 (0.0007)
0.094 (0.0005)
0.029 (0.0003)

0.030 (0.0014)
0.836 (0.0021)
0.100 (0.0017)
0.029 (0.0009)

0.029 (0.0027)
0.834 (0.0046)
0.109 (0.0032)
0.029 (0.0018)

C B 

C C 

C D 

C E

0.03
0.80
0.14
0.03

0.029 (0.0006)
0.799 (0.0011)
0.139 (0.0009)
0.033 (0.0004)

0.027 (0.0016)
0.795 (0.0036)
0.144 (0.0030)
0.034 (0.0013)

0.026 (0.0037)
0.795 (0.0066)
0.145 (0.0058)
0.035 (0.0035)

DC 

DD 

DE

0.03
0.75
0.22

0.030 (0.0007)
0.757 (0.0017)
0.213 (0.0015)

0.028 (0.0024)
0.762 (0.0045)
0.210 (0.0041)

0.025 (0.0053)
0.772 (0.0092)
0.203 (0.0085)

14

eGEMs (Generating Evidence & Methods to improve patient outcomes), Vol. 1 [2013], Iss. 3, Art. 6

http://repository.academyhealth.org/egems/vol1/iss3/6
DOI: 10.13063/2327-9214.1040



eGEMs

15

Table 21. Parameter estimates with MAR missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.905 (0.0017)
0.095 (0.0017)

0.915 (0.0018)
0.085 (0.0018)

0.925 (0.0023)
0.075 (0.0023)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.104 (0.0026)
0.830 (0.0030)
0.066 (0.0018)

0.112 (0.0032)
0.849 (0.0033)
0.039 (0.0018)

0.126 (0.0047)
0.846 (0.0053)
0.027 (0.0025)

p
C2 

p
C3 

p
C 4

0.10
0.80
0.10

0.139 (0.0023)
0.800 (0.0028)
0.061 (0.0017)

0.191 (0.0046)
0.766 (0.0045)
0.043 (0.0028)

0.203 (0.0078)
0.754 (0.0073)
0.043 (0.0046)

p
D3

p
D4

0.10
0.90

0.149 (0.0030)
0.851 (0.0030)

0.173 (0.0058)
0.827 (0.0058)

0.159 (0.0092)
0.841 (0.0092)

Table 22. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80
0.10
0.07
0.03

0.787 (0.006)
0.109 (0.005)
0.073 (0.003)
0.031 (0.002)

0.778 (0.007)
0.120 (0.006)
0.071 (0.004)
0.031 (0.003)

0.754 (0.006)
0.143 (0.005)
0.071 (0.004)
0.032 (0.003)

Table 23. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA 

AB 

AE

0.90
0.07
0.03

0.891 (0.0004)
0.075 (0.0003)
0.030 (0.0002)

0.892 (0.0010)
0.076 (0.0009)
0.030 (0.0006)

0.895 (0.0021)
0.076 (0.0019)
0.029 (0.0011)

BA 

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.031 (0.0004)
0.840 (0.0008)
0.092 (0.0006)
0.030 (0.0003)

0.032 (0.0011)
0.838 (0.0020)
0.096 (0.0015)
0.030 (0.0009)

0.031 (0.0024)
0.838 (0.0045)
0.103 (0.0034)
0.029 (0.0017)

C B 

C C 

C D 

C E

0.03
0.80
0.14
0.03

0.030 (0.0005)
0.804 (0.0011)
0.135 (0.0010)
0.031 (0.0003)

0.031 (0.0017)
0.796 (0.0033)
0.140 (0.0028)
0.033 (0.0011)

0.031 (0.0032)
0.796 (0.0063)
0.141 (0.0055)
0.033 (0.0031)

DC 

DD 

DE

0.03
0.75
0.22

0.031 (0.0007)
0.752 (0.0017)
0.217 (0.0016)

0.031 (0.0021)
0.756 (0.0043)
0.213 (0.0038)

0.030 (0.0049)
0.767 (0.0099)
0.203 (0.0084)

Table 24. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.905 (0.0017)
0.095 (0.0017)

0.905 (0.0020)
0.095 (0.0020)

0.906 (0.0024)
0.094 (0.0024)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.104 (0.0022)
0.806 (0.0028)
0.090 (0.0020)

0.100 (0.0026)
0.814 (0.0030)
0.086 (0.0024)

0.099 (0.0034)
0.823 (0.0035)
0.078 (0.0032)

p
C 2 

p
C 3 

p
C 4

0.10
0.80
0.10

0.099 (0.0020)
0.814 (0.0027)
0.087 (0.0018)

0.085 (0.0031)
0.840 (0.0036)
0.075 (0.0027)

0.074 (0.0047)
0.855 (0.0056)
0.071 (0.0050)

p
D3

p
D4

0.10
0.90

0.105 (0.0028)
0.895 (0.0028)

0.103 (0.0046)
0.897 (0.0046)

0.093 (0.0083)
0.907 (0.0083)

Table 25. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80
0.10
0.07
0.03

0.791 (0.006)
0.105 (0.005)
0.073 (0.004)
0.031 (0.002)

0.781 (0.006)
0.116 (0.005)
0.072 (0.004)
0.031 (0.002)

0.757 (0.006)
0.139 (0.005)
0.072 (0.004)
0.032 (0.003)

Table 26. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA 

AB 

AE

0.90
0.07
0.03

0.892 (0.0004)
0.074 (0.0003)
0.030 (0.0002)

0.892 (0.0010)
0.076 (0.0009)
0.032 (0.0005)

0.894 (0.0021)
0.077 (0.0017)
0.029 (0.0011)

BA 

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.032 (0.0004)
0.836 (0.0008)
0.096 (0.0005)
0.036 (0.0003)

0.032 (0.0012)
0.835 (0.0024)
0.100 (0.0019)
0.033 (0.0010)

0.032 (0.0027)
0.835 (0.0042)
0.106 (0.0030)
0.027 (0.0018)

C B 

C C 

C D 

C E

0.03
0.80
0.14
0.03

0.030 (0.0004)
0.805 (0.0010)
0.133 (0.0009)
0.032 (0.0003)

0.031 (0.0017)
0.800 (0.0035)
0.137 (0.0030)
0.032 (0.0012)

0.031 (0.0033)
0.796 (0.0064)
0.140 (0.0048)
0.033 (0.0030)

DC 

DD 

DE

0.03
0.75
0.22

0.031 (0.0008)
0.752 (0.0017)
0.217 (0.0015)

0.031 (0.0026)
0.756 (0.0053)
0.213 (0.0047)

0.031 (0.0057)
0.766 (0.0085)
0.203 (0.0074)
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Table 27. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.904 (0.0018)
0.096 (0.0018)

0.904 (0.0019)
0.096 (0.0019)

0.905 (0.0024)
0.095 (0.0024)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.104 (0.0021)
0.805 (0.0026)
0.091 (0.0020)

0.102 (0.0031)
0.809 (0.0034)
0.089 (0.0026)

0.103 (0.0044)
0.815 (0.0050)
0.082 (0.0032)

p
C 2 

p
C 3 

p
C 4

0.10
0.80
0.10

0.097 (0.0019)
0.813 (0.0023)
0.090 (0.0019)

0.084 (0.0033)
0.838 (0.0038)
0.078 (0.0029)

0.073 (0.0047)
0.854 (0.0054)
0.073 (0.0046)

p
D3

p
D4

0.10
0.90

0.101 (0.0023)
0.899 (0.0023)

0.099 (0.0049)
0.901 (0.0049)

0.090 (0.0072)
0.910 (0.0072)

Simulation Results: Scheme 3

Table 28. The average computation time (seconds)

Missing 
Mechanism

30 Day 90 Day 180 Day

MAR 9359 2682 1560

MNAR1 8631 3574 2125

MNAR2 9864 2703 1592

 

Table 29. Parameter estimates with MAR missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial 
Prob.

A

B

C

D

0.80
0.10
0.07
0.03

0.799 (0.006)
0.102 (0.006)
0.069 (0.004)
0.030 (0.002)

0.794 (0.006)
0.108 (0.005)
0.068 (0.004)
0.030 (0.002)

0.773 (0.007)
0.128 (0.006)
0.068 (0.004)
0.031 (0.002)

Table 30. Parameter estimates with MAR missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA 

AB 

AE

0.90
0.07
0.03

0.895 (0.0003)
0.071 (0.0003)
0.031 (0.0002)

0.895 (0.0011)
0.073 (0.0009)
0.032 (0.0005)

0.895 (0.0022)
0.075 (0.0018)
0.030 (0.0010)

BA 

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.030 (0.0004)
0.840 (0.0007)
0.093 (0.0005)
0.037 (0.0003)

0.030 (0.0014)
0.835 (0.0022)
0.101 (0.0016)
0.029 (0.0010)

0.029 (0.0029)
0.833 (0.0044)
0.109 (0.0031)
0.029 (0.0019)

C B 

C C 

C D 

C E

0.03
0.80
0.14
0.03

0.029 (0.0005)
0.799 (0.0010)
0.140 (0.0009)
0.032 (0.0004)

0.027 (0.0018)
0.793 (0.0039)
0.145 (0.0031)
0.034 (0.0013)

0.026 (0.0030)
0.795 (0.0066)
0.144 (0.0054)
0.035 (0.0031)

DC 

DD 

DE

0.03
0.75
0.22

0.029 (0.0007)
0.758 (0.0017)
0.213 (0.0016)

0.029 (0.0023)
0.762 (0.0047)
0.209 (0.0040)

0.026 (0.0048)
0.773 (0.0090)
0.201 (0.0080)

Table 31. Parameter estimates with MAR missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.906 (0.0019)
0.094 (0.0019)

0.914 (0.0019)
0.086 (0.0019)

0.925 (0.0025)
0.075 (0.0025)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.104 (0.0023)
0.830 (0.0026)
0.066 (0.0018)

0.112 (0.0032)
0.849 (0.0036)
0.039 (0.0022)

0.126 (0.0047)
0.847 (0.0048)
0.027 (0.0023)

p
C 2 

p
C 3 

p
C 4

0.10
0.80
0.10

0.139 (0.0024)
0.800 (0.0028)
0.061 (0.0018)

0.191 (0.0048)
0.766 (0.0046)
0.043 (0.0024)

0.203 (0.0069)
0.755 (0.0073)
0.042 (0.0040)

p
D3

p
D4

0.10
0.90

0.149 (0.0029)
0.851 (0.0029)

0.172 (0.0054)
0.828 (0.0054)

0.160 (0.0115)
0.840 (0.0115)
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Table 32. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80
0.10
0.07
0.03

0.788 (0.007)
0.109 (0.005)
0.073 (0.003)
0.030 (0.003)

0.778 (0.007)
0.120 (0.006)
0.071 (0.004)
0.031 (0.002)

0.754 (0.007)
0.143 (0.006)
0.071 (0.004)
0.032 (0.003)

Table 33. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA 

AB 

AE

0.90
0.07
0.03

0.891 (0.0004)
0.075 (0.0004)
0.034 (0.0002)

0.892 (0.0012)
0.076 (0.0010)
0.032 (0.0005)

0.894 (0.0019)
0.077 (0.0018)
0.029 (0.0011)

BA 

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.031 (0.0004)
0.841 (0.0007)
0.092 (0.0005)
0.036 (0.0003)

0.031 (0.0013)
0.838 (0.0022)
0.097 (0.0015)
0.034 (0.0010)

0.031 (0.0025)
0.838 (0.0039)
0.102 (0.0030)
0.029 (0.0018)

C B 

C C 

C D 

C E

0.03
0.80
0.14
0.03

0.031 (0.0005)
0.802 (0.0010)
0.136 (0.0009)
0.031 (0.0003)

0.030 (0.0017)
0.799 (0.0030)
0.138 (0.0026)
0.033 (0.0013)

0.030 (0.0035)
0.797 (0.0061)
0.140 (0.0051)
0.033 (0.0032)

DC 

DD 

DE

0.03
0.75
0.22

0.031 (0.0007)
0.755 (0.0015)
0.214 (0.0014)

0.031 (0.0023)
0.756 (0.0049)
0.213 (0.0040)

0.030 (0.0050)
0.768 (0.0085)
0.202 (0.0076)

Table 34. Parameter estimates with MNAR1 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.905 (0.0017)
0.095 (0.0017)

0.905 (0.0021)
0.095 (0.0021)

0.906 (0.0025)
0.094 (0.0025)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.104 (0.0020)
0.807 (0.0026)
0.089 (0.0019)

0.101 (0.0030)
0.814 (0.0037)
0.085 (0.0026)

0.098 (0.0042)
0.823 (0.0042)
0.078 (0.0033)

p
C 2 

p
C 3 

p
C 4

0.10
0.80
0.10

0.099 (0.0019)
0.814 (0.0022)
0.087 (0.0018)

0.085 (0.0030)
0.840 (0.0035)
0.075 (0.0029)

0.075 (0.0043)
0.856 (0.0054)
0.069 (0.0042)

p
D3

p
D4

0.10
0.90

0.105 (0.0027)
0.895 (0.0027)

0.103 (0.0043)
0.897 (0.0043)

0.095 (0.0087)
0.905 (0.0087)

Table 35. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Initial Prob.

A

B

C

D

0.80
0.10
0.07
0.03

0.791 (0.006)
0.106 (0.005)
0.073 (0.003)
0.030 (0.002)

0.781 (0.007)
0.115 (0.006)
0.072 (0.004)
0.032 (0.003)

0.757 (0.006)
0.139 (0.005)
0.071 (0.004)
0.033 (0.003)

Table 36. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

Transition 
Prob.

AA 

AB 

AE

0.90
0.07
0.03

0.892 (0.0004)
0.074 (0.0003)
0.030 (0.0002)

0.892 (0.0010)
0.076 (0.0009)
0.032 (0.0005)

0.895 (0.0021)
0.076 (0.0020)
0.029 (0.0011)

BA 

BB 

BC 

BE

0.03
0.85
0.09
0.03

0.032 (0.0004)
0.837 (0.0007)
0.096 (0.0005)
0.035 (0.0003)

0.032 (0.0012)
0.835 (0.0024)
0.100 (0.0017)
0.033 (0.0008)

0.032 (0.0027)
0.835 (0.0044)
0.105 (0.0032)
0.028 (0.0016)

CB CC CD 

C E

0.03
0.80
0.14
0.03

0.030 (0.0005)
0.805 (0.0011)
0.134 (0.0010)
0.031 (0.0004)

0.031 (0.0015)
0.799 (0.0029)
0.137 (0.0026)
0.032 (0.0012)

0.031 (0.0038)
0.796 (0.0063)
0.140 (0.0053)
0.033 (0.0025)

DC 

DD 

DE

0.03
0.75
0.22

0.030 (0.0007)
0.752 (0.0016)
0.218 (0.0013)

0.030 (0.0026)
0.756 (0.0047)
0.214 (0.0045)

0.031 (0.0054)
0.766 (0.0093)
0.203 (0.0077)

Table 37. Parameter estimates with MNAR2 missing 
mechanism

True value (̂ESD) (̂ESD) (̂ESD)

30 Days 90 Days 180 Days

State-dep. 
Prob.

p
A1

p
A2

0.90
0.10

0.904 (0.0017)
0.096 (0.0017)

0.904 (0.0018)
0.096 (0.0018)

0.906 (0.0025)
0.094 (0.0025)

p
B1 

p
B2 

p
B3

0.10
0.80
0.10

0.104 (0.0026)
0.805 (0.0027)
0.091 (0.0019)

0.101 (0.0033)
0.810 (0.0039)
0.088 (0.0029)

0.102 (0.0042)
0.816 (0.0045)
0.082 (0.0035)

p
C 2 

p
C 3 

p
C 4

0.10
0.80
0.10

0.097 (0.0021)
0.813 (0.0025)
0.090 (0.0020)

0.083 (0.0028)
0.838 (0.0039)
0.079 (0.0030)

0.073 (0.0052)
0.854 (0.0061)
0.073 (0.0048)

p
D3

p
D4

0.10
0.90

0.101 (0.0023)
0.899 (0.0023)

0.099 (0.0051)
0.901 (0.0051)

0.090 (0.0082)
0.910 (0.0082)
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