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Introduction

It is becoming increasingly evident that the 
peripheral immune system responds robustly 
to stroke, and that this response influences 
clinical outcome. For example, peripheral 
immune changes triggered by stroke are 
believed to contribute to the pathogenesis 
of adverse complications such as secondary 
tissue damage, hemorrhagic transformation, 
and post-stroke infection [1]. Thus, better 
characterization of the stroke-induced 
peripheral immune response could provide 
novel insights into stroke pathophysiology and 
open new avenues for immunotherapeutic 
intervention. 

Many studies which have investigated 
the peripheral immune response to stroke 
in humans have done so using the standard 
white blood cell differential collected as part of 

routine clinical evaluation; unfortunately, the 
clinical white blood cell differential provides 
quantification of a limited number of cell 
populations, often only total neutrophils, 
monocytes, and lymphocytes, and thus 
provides a relatively low-detail picture 
regarding peripheral immune status. Multi-
color flow cytometry experiments have been 
used to examine more discrete subpopulations 
of leukocytes, however they have often only 
focused on small numbers of cell types in a single 
analysis. Thus, more detailed characterization 
of the stroke-induced changes to the cellular 
complexion of the peripheral immune system 
could reveal nuanced alterations which are 
pathologically relevant. 

Several prior studies have performed 
genome-wide transcriptomic profiling of 
peripheral whole blood with the goal of 
identifying clinically-useful stroke biomarkers 

[2–6]. Recent work by our group suggests 
that similar to other conditions [7], several 
of the gene expression changes observed 
between stroke patients and controls in 
these investigations were likely artifacts of 
underlying changes in leukocyte counts, and 
not true changes in transcription at the cellular 
level [8,9]. Transcriptomic deconvolution is a 
process which leverages such phenomena to 
informatically infer the cellular composition 
of complex biological samples based on 
aggregate gene expression through the 
analysis of cell-specific transcripts [10]. In this 
study, in an attempt to better characterize the 
stroke-induced peripheral immune response, 
we employed a deconvolution approach to 
infer the counts of nine major circulating 
leukocyte populations at multiple timepoints 
following stroke onset using publicly available 
human whole blood gene expression data.
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Methods

Microarray data processing
Raw microarray data generated from the 
peripheral whole blood of 23 controls, as well as 
23 ischemic stroke patients at 3, 5, and 24 hours 
post-symptom onset, were downloaded as .CEL 
files from the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus 
(GEO) via accession number GSE58294. 
Probe annotations were updated via the 
‘annotate’ package for R (R project for 
Statistical Computing). Raw perfect match 
probe intensities were background corrected, 
quantile normalized, and summarized at the set 
level via robust multi-array averaging using the 
rma() function of the ‘affy’ package. Data were 
further summarized at the gene level via max 
intensity using the collapserows() function of 
the ‘WGCNA’ package.

Deconvolution
Estimated counts of B-cells, CD4+ T-cells, CD8+ 
T-cells, gamma delta (γδ) T-cells, natural killer 
(NK) cells, monocytes, neutrophils, eosinophils, 
and dendritic cells were generated from 
normalized expression data using a list of 226 
cell-specific genes (Figure 1) aggregated from 
a compendium of immune cell microarray 
data compiled by Newman et al. [11]. 
Weighted correlation network analysis was 
used to produce a relative count for each cell 
population based on the expression levels of 
its associated genes using the collapserows() 
function of the ‘WGCNA’ package according 
to the method described by Miller et al. [12]. 
Relative counts of each cell population were 
arbitrarily scaled from zero to one using unity-
based normalization. 

Demographic information
Clinical and demographic information 
associated with samples was aggregated from 
the descriptors reported in Stamnova et al. [13]. 

Statistics
All statistics were performed using R 3.3. 
Fisher’s exact test was used for comparison 
of dichotomous variables. T-test or one-
way ANOVA was used for comparisons of 
continuous variables where appropriate. The 

null hypothesis was rejected when p<0.05. 

Validation of results
Findings were subsequently confirmed via 
deconvolution of a second publically available 
microarray dataset generated from an 
independent population of 24 controls and 
39 ischemic stroke patients (GEO accession 
number GSE16561) [14].

Results

Clinical and demographic 
characteristics
Stroke samples originated from patients 
which were significantly older than control 
counterparts, but were well matched in 
terms of sex and ethnicity. In terms of risk 
factors for cardiovascular disease, groups 
were well matched with regards to rates of 
hypertension and diabetes, however control 
subjects displayed a significantly higher 
prevalence of dyslipidemia relative to stroke 
patients. All stroke patients had received 
thrombolytic intervention via recombinant 
tissue plasminogen activator (rtPA) following 3 
hour blood collection (Table 1).

Inferred leukocyte counts
Inferred counts of lymphoid populations 
including B-cells, CD4+ T-cells, CD8+ T-cells, 
γδ T-cell and NK-cells were all significantly 
reduced in stroke samples relative to controls 
(Figure 2A-E); this effect was most pronounced 
in samples collected at 5 and 24 hours following 
onset of symptoms. With regards to myeloid 
populations, inferred counts of neutrophils and 
monocytes were significantly higher in stroke 
samples in comparison to controls (Figure 
2F-G), however, inferred counts of dendritic 
cells and eosinophils were significantly lower 
(Figure 2H-1). Once again, these differences 
were most pronounced at 3 and 5 hours post-
onset. An identical overall pattern of changes 
was observed in a second microarray dataset 
generated from an independent patient 
population (Supplemental Figure 1). 

Discussion

Better characterization of the peripheral 

immune response to stroke could provide 
novel insights into stroke pathophysiology and 
identify new targets for immunotherapeutic 
intervention. In this study, we employed a 
transcriptomic deconvolution approach to infer 
the relative counts of nine major circulating 
leukocyte populations in blood samples 
collected at multiple timepoints over the first 
24 hours following stroke onset. With respect 
to several cell types, our results confirmed the 
findings of prior cytometric studies, however, 
our analysis also revealed changes in other 
leukocyte populations that have yet to be 
widely reported on in human stroke.

Our observations suggest that the 
circulating counts of lymphoid cell populations 
are ubiquitously suppressed in response to 
stroke. This is consistent with prior cytometric 
investigations which have reported stroke-
induced decreases in total lymphocyte counts 
[15–18], as well as reductions in counts of more 
discrete lymphoid subpopulations such as 
B-cells, CD4+ T-cells, CD8+ T-cells, and NK-cells 
[15,16,18]. To our knowledge, only three other 
human studies have reported on circulating γδ 
T-cell counts in stroke; one reporting that γδ 
T-cell counts are elevated [19], one reporting 
that they are unaffected [20], and one reporting 
that they are decreased [21]. Our results provide 
additional evidence suggesting that stroke 
triggers an acute decrease in circulating γδ 
T-cell numbers similar to that which is observed 
in other lymphoid populations. 

Our results are also consistent with those of 
several prior cytometry-based investigations 
reporting that counts of the two most abundant 
peripheral blood myeloid cell populations, 
neutrophils and monocytes, become robustly 
elevated in response to stroke [15,17,22,23]. 
However, our findings also suggest that two 
lesser-studied myeloid populations, dendritic 
cells and eosinophils, are significantly reduced. 
With respect to dendritic cells, our observations 
are consistent with those reported in the 
limited number of prior cytometric studies 
performed in humans [24]. With respect to 
eosinophils, this current study is one of the 
first case-control analyses to report evidence 
of an acute reduction in eosinophil counts in 
response to stroke; our observations align well 
with two recent associative studies reporting 
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Figure 1. Cell-specific genes used for deconvolution.  226 cell-specific genes used for the deconvolution of whole blood microarray data along with their predominant 
leukocyte population of expression. 
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Table 1. Clinical and demographic characteristics.  

  Cardiovascular Disease (n=23) Ischemic Stroke (n=23) p 

aAge mean±SD 57.9 ± 3.3 71.7 ± 7.9 <0.001* 

bFemale n(%) 11 (47.8) 11 (47.8) 1.000 

bNon-caucasian n(%) 4 (17.4) 8 (34.8) 0.314 

bDyslipidemia n(%) 16 (69.6) 6 (26.1) 0.007* 

bHypertension n(%) 16 (69.6) 16 (69.6) 1.000 

bDiabetes n(%) 5 (21.7) 4 (17.4) 1.000 

aBaseline NIHSS mean±SD 0.0 ± 0.0 15.4 ± 7.4 <0.001* 

brtPA n(%) 0 (0.0) 23 (100.0) <0.001* 
aCompared via two-sample two-tailed t-test; bCompared via Fisher’s exact test; *Statistically significant

Figure 2. Inferred counts of circulating leukocyte populations.   (A-I) Estimated relative counts of B-cells, CD4+ T-cells, CD8+ T-cells, γδ T-cells, NK-cells, monocytes, neu-
trophils, eosinophils, and dendritic cells in blood sampled from controls and stroke patients at 3, 5, and 24 hours post symptom onset. Counts were statistically compared 
between stroke and control samples across time points using one-way ANOVA with subsequent planned comparisons via Bonferoni-corrected two-sample two-tailed t-test. 
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that post-stroke circulating eosinophil counts 
are negatively correlated with stroke severity 
and risk of mortality [25,26], suggesting 
that the pathophysiological relevance of 
a stroke-induced reduction in peripheral 
blood eosinophil counts warrants further 
investigation. 

It should be stated that this study is not 
without limitations; most notable in this regard 
is the fact that we did not directly measure 
leukocyte counts, and instead informatically 
inferred them using gene expression data. While 
transcriptional deconvolution approaches have 
been shown to accurately enumerate cell counts 
in numerous benchmarking studies [10–12], 
the fact that they rely on reference expression 
signatures generated from isolated healthy cells 
has the potential to introduce confounds.  The 
handling and manipulation of reference cells 
during isolation could potentially alter gene 
expression and introduce artifacts. Furthermore, 
because reference signatures are generated 
from the cells of healthy donors, disease-specific 
differential regulation of reference signature 
genes could reduce the accuracy of analyses. 
However, the aforementioned limitations are 
most likely to introduce confounds when trying 
to discriminate between highly similar cell 
populations or in disease states which introduce 
dramatic alterations in transcription; the cell 
types which were enumerated in our analysis 
are relatively distinct at the molecular level, 

and the magnitude of transcriptional changes 
observed in stroke at the level of whole blood 
are of a relatively small [2,4,6]. Furthermore, 
the fact that our findings align well with those 
of previous cytometry-based investigations 
suggests that our deconvolution analysis was 
well implemented. Nonetheless, our findings, 
in particular those regarding stroke-induced 
changes in eosinophil counts, should be 
confirmed in future work using direct cytometric 
analysis. 

It is also important to note that because 
samples originated from patients who received 
thrombolytic treatment following the initial 
3 hour blood collection, it is possible that 
some of the differences in inferred leukocyte 
counts observed between stroke patients 
and controls at the 5 and 24 hour timepoints 
were driven by effects of rtPA. However, we 
find this scenario unlikely due to the fact we 
observed a similar pattern of changes in a 
second dataset originating from blood samples 
which were collected prior to administration of 
thrombolytics. 

Collectively, our results offer a comprehensive 
picture of the early stroke-induced changes to 
the complexion of the circulating leukocyte 
pool. Our findings confirm the results of prior 
cytometric investigations, and additionally, 
provide some of the first human evidence that 
stroke triggers an acute decrease in circulating 
eosinophil counts.
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