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Abstract: The genus Haematobosca Bezzi, 1907 (Diptera: Muscidae) contains haematophagous flies of
veterinary importance. A new fly species of this genus was recognised from northern Thailand based
on morphological characters and described as Haematobosca aberrans Pont, Duvallet & Changbunjong,
2020. In the present study, the mitochondrial cytochrome c oxidase I (COI) gene was used to confirm
the morphological identification of H. aberrans. In addition, landmark-based geometric morphometrics
was used to determine sexual dimorphism. The molecular analysis was conducted with 10 COI
sequences. The results showed that all sequences were 100% identical. The sequence was not highly
similar to reference sequences from GenBank and did not match any identified species from Barcode of
Life Data Systems (BOLD). Phylogenetic analysis clearly differentiated this species from other species
within the subfamily Stomoxyinae. For geometric morphometric analysis, a total of 16 wing pictures
were analysed using the landmark-based approach. The results showed significant differences in wing
shape between males and females, with a cross-validated classification score of 100%. The allometric
analysis showed that wing shape has no correlation with size. Therefore, the COI gene is effective
in species identification of H. aberrans, and geometric morphometrics is also effective in determining
sexual dimorphism.

Keywords: cytochrome c oxidase I; geometric morphometrics; Haematobosca; sexual dimorphism;
Stomoxyinae; Thailand

1. Introduction

Haematobosca Bezzi, 1907 (Diptera: Muscidae) is a genus of haematophagous flies in the subfamily
Stomoxyinae. The genus comprises 15 species: 11 species in the Afrotropical region, one in the Palaearctic
region, two in the Holarctic region and one in the Oriental and Australasian regions [1–4]. All the species
in this genus are of considerable veterinary importance, affecting both domestic animals and wildlife [1,5].
The adult flies are medium-sized flies, 3.5 to 9.0 mm in length and yellow to black in colour. The arista
has dorsal and ventral hairs. The palpi are about as long as the proboscis and are grooved internally.
Anterior and posterior katepisternal setae (or sternopleural bristles) are present [1]. Recently, a new species
of Haematobosca was described from Thailand as Haematobosca aberrans Pont, Duvallet & Changbunjong,
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2020 [6]. It can be distinguished from other Haematobosca by the absence of the anterior katepisternal
seta [6]. However, one female that probably belongs to this species was previously recorded incorrectly
as Stygeromyia Austen, 1907 by Tumrasvin and Shinonaga (1978) [7].

The DNA-based identification system is a useful tool for species identification, biodiversity
monitoring and molecular phylogenetic investigation [8,9]. The mitochondrial cytochrome c oxidase
subunit I (COI) gene with a length of about 650 base pairs (bps) is commonly used as the DNA barcode
of animal species. The COI gene has been found to be effective for the identification of various insects
of medical and veterinary importance such as black flies [10,11], mosquitoes [12–15], sand flies [16–19]
and tabanids [20–23]. The efficiency of the COI gene for the identification of stomoxyine flies has been
demonstrated by Changbunjong et al. (2016) [24].

In parallel to DNA-based identification, geometric morphometrics is also increasingly applied to
distinguish morphologically similar species of insects of medical and veterinary importance [25–30].
This technique is a fast, low-cost and easy to use tool [25]. Geometric morphometric analysis can
be conducted using various methods such as landmark and outline-based methods, depending
on the characteristics and specifics of the specimens [25,31]. The landmark-based method uses
the coordinates of landmarks to analyse the variation in size and shape, while the outline-based method
uses the outline or contour data in the analysis [25,31]. Many studies have used geometric morphometric
methods for describing sexual dimorphism in the wing of various insects such as blow flies [28,32],
mosquitoes [33,34], moths [35,36], fruit flies [37] and stomoxyine flies [26]. Sexual dimorphism
in morphological characters is the most interesting source of phenotypic variation in various taxa
and has attracted considerable interest in evolutionary biology [37]. Therefore, in our study, the COI
gene was used as the molecular marker for the identification of H. aberrans, collected in northern
Thailand. In addition, geometric morphometric analysis was used to determine sexual dimorphism.

2. Materials and Methods

2.1. Ethics Statement

Our protocol for specimen collection was approved by the Faculty of Veterinary Science, Mahidol
University Animal Care and Use Committee (Ref. MUVS-2018-10-58).

2.2. Specimen Collection and Identification

Specimens of Haematobosca aberrans were collected in the Mae Wang district, Chiang Mai Province
of northern Thailand (18◦38′35” N, 98◦31′27” E) in January 2019 using Nzi traps [38] (Figure 1).
All flies were collected inside a buffalo farm close to a forest area. They were euthanised in a
freezer (−10 ◦C) and placed in individual 1.5 mL microcentrifuge tubes. They were identified using
the description and taxonomic key in Pont et al. (2020) [6]. Specimens were stored at −20 ◦C for further
laboratory investigation.

2.3. Molecular Analysis

2.3.1. DNA Extraction and COI Amplification

Genomic DNA was extracted from the legs of individual specimens using DNeasy®

Blood & Tissue Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol.
PCR amplification of the COI gene with a 658 base pair (bp) fragment was performed using
a primer pair consisting of LepF1 (5′-ATTCAACCAATCATAAAGATATTGG-3′) and LepR1
(5′-TAAACTTCTGGATGTCCAAAAAATCA-3′) [39]. The PCR cycle was performed in a C1000TM

Thermal Cycler (Bio-Rad, Hercules, CA, USA) with a total reaction volume of 50 µL containing: 5 µL of
10× PCR buffer, 2.50 µL of 50 mM MgCl2, 36.01 µL of distilled water, 0.25 µL of 10 mM dNTPs, 0.24 µL
of 1.2 unit of platinum Taq polymerase (Invitrogen, Carlsbad, CA, USA), 0.50 µL of 10 mM forward
primer, 0.50 µL of 10 mM reverse primer, and 5 µL of DNA template. The PCR cycling conditions
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consisted of initial denaturation at 94 ◦C for 1 min; 5 cycles of 94 ◦C for 30 s, annealing at 45 ◦C for
40 s, and extension at 72 ◦C for 1 min; 30–35 cycles of 94 ◦C for 30 s, 55 ◦C for 40 s, and 72 ◦C for
1 min; final extension at 72 ◦C for 10 min; followed by indefinite hold at 4 ◦C. Amplified PCR products
were separated by gel electrophoresis on 2% agarose gel, with a GeneRuler™ 100 bp DNA ladder
(Thermo Scientific, Vilnius, Lithuania), which was used to estimate the size of DNA fragments on the gel.
The voucher specimens are deposited in the collection of the Faculty of Veterinary Science, Mahidol
University (VSMU), Thailand.
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Figure 1. Map showing the collection site of Haematobosca aberrans Pont, Duvallet & Changbunjong,
2020 in Thailand.

2.3.2. DNA Sequencing and Data Analysis

DNA sequencing of PCR products was performed using an ABI 3730 XL DNA analyzer at Bioneer
(Daejeon, Korea) with LepF1 and LepR1 primers. The COI sequences were edited and analysed
using MEGA 6.0 (Molecular Evolutionary Genetics Analysis) software [40]. Multiple alignments of all
nucleotide sequences were done using ClustalW, available within MEGA 6.0. All sequences obtained
in this study were 100% identical. A single representative sequence was deposited in GenBank under
the accession number MN883828. To confirm the species identification, the representative sequence
was blasted against the GenBank database using the nucleotide BLAST (available at https://blast.ncbi.
nlm.nih.gov/Blast.cgi) and compared with the Barcode of Life Data Systems (BOLD) using the BOLD
Identification System (IDS) (available at http://v4.boldsystems.org/index.php/IDS_OpenIdEngine).
A phylogenetic tree based on neighbour joining (NJ) was constructed with the Kimura two-parameter
(K2P) model and bootstrapping (1000 replicates) in MEGA 6.0. The sequences of stomoxyine flies
available in GenBank were included in the analysis (Table 1). Musca domestica Linnaeus, 1758 (Diptera:
Muscidae) KM571920 was selected as an outgroup.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://v4.boldsystems.org/index.php/IDS_OpenIdEngine
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Table 1. Stomoxyine flies from the GenBank database used for constructing the phylogenetic tree.

Species Origin Accession Number Reference

Haematobia irritans irritans (Linnaeus, 1758) Japan AB479523 [41]
Haematobia irritans exigua de Meijere, 1906 Thailand KC960695 [24]
Haematobosca alcis (Snow, 1891) Canada HM389222, KR589429 [42,43]

USA KU496750 [44]
Haematobosca sanguinolenta (Austen, 1909) Thailand KC960696, KC960703 [24]

Vietnam AB479536 [41]
Haematobosca stimulans (Meigen, 1824) NA FJ025615 [45]
Haematostoma austeni Malloch, 1932 Thailand KC960710 [24]
Neivamyia flavicornis (Malloch, 1928) Brazil KP161712 [46]
Rhinomusca dutoiti Zumpt, 1950 South Africa KP161721 [46]
Stomoxys calcitrans (Linnaeus, 1758) Thailand KC960724 [24]
Stomoxys indicus Picard, 1908 Thailand KC960735 [24]
Stomoxys pullus Austen, 1909 Thailand KC960747 [24]
Stomoxys sitiens Rondani, 1873 Thailand KC960751 [24]
Stomoxys uruma Shinonaga & Kano, 1966 Thailand KC960753 [24]

NA, no available data.

2.4. Geometric Morphometric Analysis

2.4.1. Wing Preparation

The left wing of males and females of H. aberrans was dissected from the body and mounted with
Hoyer’s medium on microscope slides. All slides were photographed using a digital camera connected
to a stereomicroscope (Nikon AZ 100, Nikon Corp, Tokyo, Japan). A total of 16 wing pictures (9 males
and 7 females) were analysed using the landmark-based method.

2.4.2. Landmark-Based Method

The coordinates of ten wing landmarks (Figure 2) based on the study of Changbunjong et al. (2016) [26]
were digitised for geometric morphometric analysis. The wing size was estimated using the centroid
size (CS) derived from coordinates of all landmarks. The centroid size is defined as the square root of
the sum of the squared distances between the centre of the configuration of landmarks and each separate
landmark [47]; it was computed after Generalised Procrustes Analysis (GPA), also known as Procrustes
superimposition [48]. The centroid size difference was compared between sexes by non-parametric
tests based on 1000 permutations, with Bonferroni correction for a test of significance at p-value < 0.05.
The wing shape variables were computed as principal components of the partial warp (PW) scores or
relative warps (RWs); they were also computed after Generalised Procrustes Analysis. The Procrustes
superimposition provided configurations for visual comparison of the mean anatomical landmarks
between the sexes. The relative warps were used to explore the morphospace and used as an input for
the discriminant analysis (DA) or canonical variate analysis (CVA), which was illustrated by the factor map.
Mahalanobis distance between the sexes was calculated from DA analysis. The statistical significance of
shape differences between sexes was obtained by non-parametric analyses based on 1000 permutations,
with Bonferroni correction for a test of significance at p-value < 0.05. A cross-validated classification
was used to test the accuracy of classification between sexes based on Mahalanobis distances. The allometric
effect, the effect of size on shape variation, was performed by linear regression of the Procrustes shape
coordinates on centroid size and then estimated by the determination coefficient and statistical significance
of the model at p-value < 0.05.
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Figure 2. Ten landmarks digitised on wings of Haematobosca aberrans Pont, Duvallet & Changbunjong, 2020.

2.4.3. Morphometric Software

Geometric and multivariate analyses were performed using the CLIC package version 99 [25],
freely available at https://xyom-clic.eu.

3. Results

A total of 16 specimens of H. aberrans, comprising 9 males (56.25%) and 7 females (43.75%),
were collected in this study. For genetic analysis, only 10 specimens (5 males, 5 females) were used
in the current study. A standardised 658 bp fragment of the mitochondrial COI gene was successfully
amplified from all specimens. No stop codons, insertions or deletions were observed in these
sequences. All sequences were 100% identical. The sequence had high A + T content (69.3%),
with nucleotide composition of A = 30.2%, T = 39.1%, C = 14.4% and G = 16.3%. The sequence
showed 92.52% similarity to Neivamyia flavicornis (Malloch, 1928) in GenBank but did not match any
identified species in BOLD. The sequence of H. aberrans (MN883828) was used in the phylogenetic
analysis. The phylogenetic relationship of the COI sequence of H. aberrans and other related species
was established using an NJ tree (Figure 3). Haematobosca aberrans was clearly separated from other
species within the subfamily Stomoxyinae.

For geometric morphometric analysis, a total of 16 wing pictures (9 males and 7 females) were
analysed using the landmark-based approach. The wing size (centroid size) variation between sexes
of H. aberrans is illustrated in Figure 4. The mean wing CS of males and females was 2.98 ± 0.13 mm
and 3.05 ± 0.22 mm, respectively. There was no statistically significant difference between the sexes.
The visual comparison of the mean anatomical landmark positions between the sexes showed most
visible landmark displacements in the upper and lower parts of the wing (landmarks 1, 7, 8, 9, 10)
(Figure 5). Morphospace based on wing shape variables from principal components and the factor map
of the discriminant factors showed a clear difference between the sexes (Figures 6 and 7). Based on
the Mahalanobis distance, the wing shape was significantly different between the sexes of H. aberrans
(Mahalanobis distance = 7.17). The accuracy score after a cross-validated classification test was 100%
in both males and females. The wing shape has no allometric effect. The determination coefficient
was 10% but was not statistically significant.

https://xyom-clic.eu
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northern Thailand and sequences obtained from GenBank. Only bootstrap values ≥50% are shown.
The scale bar represents 0.01% divergence.

Insects 2020, 11, x FOR PEER REVIEW 6 of 12 

 

 
Figure 3. Neighbour-joining (NJ) tree based on Kimura two-parameter (K2P) model for cytochrome c 
oxidase I (COI) sequence of Haematobosca aberrans Pont, Duvallet & Changbunjong, 2020 collected 
from northern Thailand and sequences obtained from GenBank. Only bootstrap values ≥50% are 
shown. The scale bar represents 0.01% divergence. 

 
Figure 4. Centroid size variation of the wings between sexes of Haematobosca aberrans Pont, Duvallet 
& Changbunjong, 2020, shown as quartile boxes. Each box shows the group median separating the 
25th and 75th quartiles. Vertical bars under the boxes represent the wing (units as mm). 

Figure 4. Centroid size variation of the wings between sexes of Haematobosca aberrans Pont,
Duvallet & Changbunjong, 2020, shown as quartile boxes. Each box shows the group median
separating the 25th and 75th quartiles. Vertical bars under the boxes represent the wing (units as mm).
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2020 based on wing shape variables. The horizontal axis is the first relative warp (RW1), and the vertical
axis is the second relative warp (RW2).
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4. Discussion

Our study has revealed updated data about stomoxyine flies in Thailand. The new species
Haematobosca aberrans was described recently in terms of its morphological characteristics [6]
and was found in the Chiang Mai Province of northern Thailand. However, this species was apparently
previously recorded in the Kanchanaburi Province of western Thailand but under the name
Stygeromyia sp. [7]. Buffaloes may be important hosts of this fly in the studied area. However,
buffaloes have also been reported to be hosts that can be attacked by the species H. stimulans [1], while
other hosts of Haematobosca spp. include cattle, horses, wildlife and humans [1–3,5,49]. In the present
study, the habitat of the buffalo farm consisted of a human settlement and of forest, which may provide
suitable breeding sites for these flies. In the genus Haematobosca, only H. sanguinolenta had been reported
in Thailand. This species was found in livestock farms, wildlife conservation areas and national
parks [5]. In our present study, we found that H. sanguinolenta and H. aberrans could be found together
in the same habitat of the livestock farm. These results suggest that livestock farms are sites with
the greatest diversity of stomoxyine species [5].

The results obtained from this study showed that the alignment of COI sequences of H. aberrans
was straightforward and these sequences lacking stop codons, insertions or deletions indicated that all
sequences were functional mitochondrial COI sequences. The nucleotide sequences showed a high A + T
content (69.3%), which is consistent with previous studies on stomoxyine flies (69%) [24]. One hundred
percent similarity could be detected between the different H. aberrans sequences in the present study.
This may be due to the low number of samples and/or to the fact that all the flies were collected
from the one population. Comparison between our sequence and reference sequences in GenBank
and BOLD databases can be used to confirm a new species of H. aberrans as previously described
by Pont et al. (2020) [4]. The phylogenetics based on the NJ tree indicated that the COI gene could
distinguish among stomoxyine species.

There is a correlation between the morphological characters already described [6] and the molecular
results presented in our study. H. aberrans could be separated from other species by morphological
characters. However, H. aberrans and N. flavicornis were clustered together in the phylogenetic
tree but they received low bootstrap support. Based on the morphological characters, H. aberrans
and N. flavicornis are easily distinguished by their strap-like palpi, which are not grooved internally
in N. flavicornis but are more dilated terminally and grooved internally in H. aberrans. In addition,
the anterior katepisternal seta is absent in H. aberrans but present in N. flavicornis [1,3]. Within the genus
Haematobosca, the main morphological character distinguishing H. aberrans from other species is
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the absence of the anterior katepisternal seta [6]. According to the key by Zumpt (1973) [1], the species
H. aberrans resembles species of the genus Stygeromyia Austen, 1907 because the anterior katepisternal
seta is absent. However, H. aberrans has long hairs on the upper and lower sides of the arista, as in other
species of Haematobosca, and this differs from Stygeromyia where there are long hairs only on the upper
side. In addition, the meron and prosternum are bare in H. aberrans and other Haematobosca but
are setulose in Stygeromyia [6]. So far as the genetics are concerned, there is little information on
Haematobosca and other stomoxyine species, especially Stygeromyia spp., in the GenBank database that
is available for comparison with our new sequences.

The geometric morphometric study was carried out to compare the wing size and wing shape
between sexes of H. aberrans. Landmark-based geometric morphometrics has been mostly used
in sexual dimorphism studies [32,33,36]. In the present study, we revealed a sexual dimorphism
in wing shape, indicating that the phenotypic expression of wing shape is a sex-specific difference.
This is consistent with a previous report on stomoxyine flies: Stomoxys indicus, S. pullus and S. uruma [26].
The sexual dimorphism of wing shape has been reported in other insect vectors such as mosquitoes of
the genus Aedes (Ae. aegypti (Linnaeus, 1762), Ae. albopictus (Skuse, 1894)), Anopheles (An. albitarsis
Lynch Arribalzaga, 1878, An. cruzii Dyar & Knab, 1908, An. homunculus Komp, 1937, An. strodei Root,
1926, An. triannulatus Komp, 1937), Culex (Cx. quinquefasciatus Say, 1823, Cx. nigripalpus Theobald,
1901) and Ochlerotatus (Oc. scapularis (Rondani, 1848)) [34]. Furthermore, sexual dimorphism of
both wing size and wing shape has also been found in some mosquito species: Mansonia bonneae
Edwards, 1930 and M. dives (Schiner, 1868) [33]. The sexual size dimorphism may be mainly
affected by environmental factors such as food quantity/quality or temperature [50], while sexual shape
dimorphism is often a passive consequence of sexual size dimorphism (allometry) [33]. The sexual shape
dimorphism in our study is not correlated with size (non-allometric effect). However, non-allometric
effects were probably playing a role in the sexual shape dimorphism of H. aberrans. According to
Gidaszewski et al. (2009) [37], flight behaviour and mating systems may be related to variations
in wing shape.

5. Conclusions

This study has provided genetic and phenotypic information on H. aberrans in Thailand. The COI
gene can be used to differentiate Haematobosca spp. and other related species within the subfamily
Stomoxyinae. It has also confirmed that H. aberrans is distinct and different from the other known species.
Landmark-based geometric morphometrics is an effective way of separating between the sexes of
this species. The sexual shape and size dimorphism could be a basis for further studies on the influence
of sex-specific divergence in response to environmental conditions and the species identification of
Haematobosca spp. Due to the small number of specimens in this study, further studies including
more specimens are recommended to increase the reliability of wing shape for sexual discrimination.
Also, behavioral and ecological studies are required to confirm the existence of sexual dimorphism.
Additionally, a more comprehensive phylogeny with various gene markers, different populations of
the same species, further species from each genus, and other related species will provide additional
information on genetic relationships within the Stomoxyinae.
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