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Abstract: Adverse environmental conditions due to climate change, combined with declining
soil fertility, threaten food security. Modern agriculture is facing a pressing situation where novel
strategies must be developed for sustainable food production and security. Biostimulants, conceptually
defined as non-nutrient substances or microorganisms with the ability to promote plant growth
and health, represent the potential to provide sustainable and economically favorable solutions
that could introduce novel approaches to improve agricultural practices and crop productivity.
Current knowledge and phenotypic observations suggest that biostimulants potentially function in
regulating and modifying physiological processes in plants to promote growth, alleviate stresses,
and improve quality and yield. However, to successfully develop novel biostimulant-based
formulations and programs, understanding biostimulant-plant interactions, at molecular, cellular and
physiological levels, is a prerequisite. Metabolomics, a multidisciplinary omics science, offers unique
opportunities to predictively decode the mode of action of biostimulants on crop plants, and identify
signatory markers of biostimulant action. Thus, this review intends to highlight the current scientific
efforts and knowledge gaps in biostimulant research and industry, in context of plant growth
promotion and stress responses. The review firstly revisits models that have been elucidated
to describe the molecular machinery employed by plants in coping with environmental stresses.
Furthermore, current definitions, claims and applications of plant biostimulants are pointed out,
also indicating the lack of biological basis to accurately postulate the mechanisms of action of plant
biostimulants. The review articulates briefly key aspects in the metabolomics workflow and the
(potential) applications of this multidisciplinary omics science in the biostimulant industry.

Keywords: abiotic stresses; biostimulants; food security; metabolomics; growth-promoting
rhizobacteria (PGPR); plant defenses

1. Introduction

Plants are continuously exposed to biotic (e.g., pest and pathogen attacks) and abiotic
stresses (e.g., drought, extreme temperatures and salinity), which lead to frequent adjustment
and remodeling of the plant defense machinery, as well as involving reconfiguration of the plant
metabolism [1,2]. Evolutionarily, plants have developed a multilayered and dynamic defense system
that renders them as adept as animals in responding effectively to ever-changing environments [3].
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Furthermore, plant defense strategies can be enhanced and sensitized using various approaches such
as biological and chemical priming. Defense priming is a phenomenon whereby the plant immune
system and abiotic defenses are preconditioned, resulting in faster, stronger and effective defense and
resistance mechanisms against subsequent biotic and abiotic stresses [4–6]. This immune-stimulation of
plants, which is postulated to be an adaptive and low-cost defensive measure, is a result of interactions
of plants with beneficial microbes, chemical compounds, insect herbivores or environmental cues [7,8].

There is emerging evidence of biostimulants as plant priming agents, as demonstrated by the
observed effectiveness of these formulations in promoting and sensitizing plant defenses and resistance
against different environmental stresses [9]. In the last decade, the field of plant biostimulants
has been steadily growing in the agricultural industry and has positioned itself as one of the
key emerging strategies for enhancing crop production and resilience to the changing climate.
Plant biostimulants have received considerable attention lately, and are increasingly being integrated
into agriculture and production systems as plant growth and yield regulators/promoters as well as
pre-stress conditioners [10]. However, the limited fundamental research into the modes of action of many
biostimulant products is among the knowledge gaps that require scientific attention. Elucidation of the
biological basis of biostimulant function, and a broad mechanism of action at a cellular and molecular
levels, is a prerequisite for the development of a scientifically-based biostimulant industry, leading to an
effective exploration and application of formulations in agriculture [9,10]. Few emerging studies have
shown the impeccable capabilities and potential of metabolomics approaches to reveal the mechanistic
insights describing biostimulant-plant interactions [11,12]. Furthermore, these studies have proven that
metabolomics studies can provide key fundamental knowledge and understanding required to explore
novel biostimulant-based strategies for improved crop health and resilience in a changing climate.

Metabolomics is classically defined as a comprehensive and holistic measurement of the entire
complement of small molecular weight molecules, namely metabolites (≤1500 Da in size), within a
biological system [13]. The metabolome, being the chemical space and language of metabolism,
carries imprints of genetic and environmental factors, and is expectedly more sensitive to perturbations
in both metabolic fluxes and enzyme activity than either the transcriptome or proteome [14,15].
Hence, the global quantitative measurements of the metabolome provide an exploration of small
cellular worlds, revealing hidden patterns and (predictively) reflecting functional signatures of
the biochemical landscape and cellular physiology of the system under consideration [13,16,17].
Applying this multidisciplinary omics science in the plant biostimulant field would thus generate
integrated knowledge that sheds light on modes and mechanisms of action of biostimulants at
cellular and molecular levels. Thus, this review provides an overview of plant defence strategies
against biotic and abiotic stresses, and reports on current definitions, claims and applications of plant
biostimulants, also pointing out the lack of biological basis to accurately postulate or articulate the
mechanisms of action of plant biostimulants. Furthermore, this review highlights some key aspects in
the metabolomics workflow and some recent advancements in the field; and lastly, we discuss the
applications of metabolomics in the investigation of biostimulant–plant interactions under adverse
environmental conditions.

2. Basic and Overlapping Framework of Plant Immunity and Defense against Biotic and Abiotic Stresses

In their natural habitats, plants coexist with highly dynamic microbial communities, some of
which are harmful to plant health. Furthermore, the environmental constraints such as drought,
salt and extreme temperatures negatively affect plant growth and development, both at the cellular
and organismal levels [18,19]. Thus, for optimal growth and development, plants must have a
protective immune and defense system that properly integrates both microbial signals and abiotic
factors at both local and systemic levels. Studies have revealed that, evolutionarily, plants have
developed constitutive, active, inducible and tightly regulated immune and defense systems that
mediate interactions with heterogeneous environments comprising both biotic and abiotic stresses.
The result of these dynamic and complex interactions is a determining factor for plant survival and
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fitness [20,21]. Several models have been proposed for describing plant immune responses to biotic
stresses, with a common denominator that the innate immune system is based on the surveillance
and perception of non-self, damaged-self and altered-self, broadly termed “danger” signals [22,23].
Generally, the first line of defense in plant response to biotic stresses involves preformed physical and
chemical barriers such as cutin and waxes (cuticles), cell walls, antimicrobial enzymes and secondary
metabolites to prevent or attenuate invasion of various pathogens [23,24]. In a case of a successful
pathogen entry or plant alteration and/or damage, the second line of defense is launched, triggered by
the recognition of danger signals through structurally diverse transmembrane or intracellular pattern
recognition receptors (PRRs). This recognition of danger signals activates several levels of induced
defense responses through a complex network of signal transduction and amplification, both locally at
the site of infection and systemically in distant tissues [22,25].

The first layer of these inducible defenses is put in motion through the perception of
microbe/pathogen-associated molecular patterns (M/PAMPs) or damage-associated molecular patterns
(DAMPs) and termed M/PAMP-triggered immunity (M/PTI). The latter involves a series of complex
cellular and molecular reprogramming events that are translated into distinct biochemical and
physiological phenomena, such as activation of a signaling network involving phytohormones and
other signaling molecules, stomatal closure to stop pathogen penetration, production of reactive oxygen
species (ROS) and nitric oxide (NO), callose deposition and the de novo biosynthesis of antimicrobial
metabolites due to reconfiguring of cellular metabolism [21,26]. However, due to the coevolution
of plant-pathogen interactions, specialized pathogens have developed means to suppress M/PTI,
through a repertoire of effector molecules that are translocated into the plant cell where they can alter
cellular metabolism and homeostasis to promote disease. This state is known as effector-triggered
susceptibility (ETS). On the other hand, plants have evolved mechanisms to perceive these effectors
through intracellular receptors known as resistance (R) proteins. The recognition of these effectors
activates the second layer of defense known as effector-triggered immunity (ETI). One of the descriptive
markers of ETI events is the hypersensitive response (HR), which is an induced localized programmed
cell death, to limit the spread of pathogen infection [21,23,26].

Studies have shown that there is an interplay (or overlap) between M/PTI and ETI, which is
explained by the convergence between signaling and downstream biochemical events induced by both
layers of defenses. This highly regulated coordination of M/PTI- and ETI-related defenses defines
the basal defensive metabolism and subsequent physiological state of the plant against pathogen
attack [22,27]. Furthermore, locally induced defense responses can trigger a defensive state in distant
parts of the plant, a phenomenon known as systemic acquired resistance (SAR). The latter confers
long-lasting protection against a range of pathogens in the systemic healthy tissue of plants undergoing
a localized pathogen infection. Another form of an induced resistance mechanism is induced systemic
resistance (ISR). The latter results from the interactions of plants and beneficial microbes, such as plant
growth-promoting rhizobacteria and fungi [28,29]. Elaborated details of cellular and molecular events
underlying these layers and models of plant immune responses to biotic stresses are beyond the scope
of this review but can be found in the literature cited herein.

Plants are not only exposed to harmful microorganisms but also to harsh environmental conditions
such as drought, salinity, extreme temperatures and nutrient deficiency, which adversely affect plant
growth and productivity [30,31]. Some of the general defense responses include a highly-regulated
cascade of signal transduction events, activation of defense-related genes, the accumulation of ROS and
antioxidant mechanisms, production of defense-related metabolites and subsequent physiological and
morphological changes [32]. Furthermore, one of the primary events in the plant responses to abiotic
stresses involves a highly regulated and coordinated web of plant hormones such as abscisic acid
(ABA), auxins (indole acetic acid, IAA), ethylene (ET), cytokinins (CK), gibberellins (GA), salicylic acid
(SA), jasmonic acid (JA) and brassinosteroids (BRs). These phytohormones often act as primary
signaling molecules that trigger complex signaling cascades, subsequently leading to stimulation of
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the expression of stress-related genes and induction of physiological and morphological changes,
which eventually lead to abiotic stress tolerance or resistance (Figure 1) [33–35].
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H = hormone, MYB = myeloblastosis, NAC = non-amyloid-β component, PAL = phenylalanine 
ammonia-lyase, DREB2A = dehydration-responsive element-binding protein 2A, LEA3 = late 
embryogenesis abundant 3. 

Some of the common physiological responses to major abiotic stresses include a reduction in 
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Figure 1. A descriptive model showing some general molecular events in a plant responding to
abiotic stresses. Upon the perception of stress signals via evolutionarily developed rapid-sensing
mechanisms, the systematic signal transduction/pathways such as ROS, Ca2+ and phytohormone signals
are activated, leading to regulation of stress-responsive genes as facilitated by transcription factors.
The stress-related genes are (de)activated to orchestrate the induction of stress adaptation/resistance
cellular mechanisms such as antioxidant mechanisms, osmotic adjustment and secondary metabolism
adjustment, as well as morphological responses such as root and shoot development, leaf area
and fruit size. The blue dotted lines indicate the influence of the stress responses to sensors,
signals and signal transductions. Abbreviations: Ca2+ = calcium ion, Ca2+/CaM = calcium calmodulin,
ROS = reactive oxygen species, MAP kinases = mitogen-activated protein kinase, H = hormone,
MYB = myeloblastosis, NAC = non-amyloid-β component, PAL = phenylalanine ammonia-lyase,
DREB2A = dehydration-responsive element-binding protein 2A, LEA3 = late embryogenesis abundant 3.

Some of the common physiological responses to major abiotic stresses include a reduction in both
transpiration and photosynthesis rates, a decrease in stomatal conductance and in leaf water content
and a reduced relative growth rate [36,37]. For instance, responding to drought stress, molecular and
cellular events deployed by the plant are translated into a reconfiguration of plant cellular metabolism,
similar to defense responses to biotic stress. The latter leads to physiological modulation for plant
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survival. Some of the reported defense-related morpho-physiological changes due to drought stress
are root swelling to promote nutrient uptake, leaf stomatal closure and leaf rolling to prevent water loss
via transpiration, decreased chlorophyll content, leaf abscission and decrease in leaf area contributing
to the reallocation of nutrients stored in older and diseased leaves to new leaves or the shoot [32,38].

Growth arrest is also one of the primary effects of drought stress. The inhibition of shoot growth
is known to minimize the metabolic demands under water stress, thus increasing the biosynthesis
and assimilation of metabolites such as osmolytes. The latter, also known as osmoprotectants, are low
molecular weight, soluble compounds that play fundamental roles in osmotic adjustment, consequently
conferring protection against cell drying-out. Osmoprotectants efficiently maintain osmotic balance,
and stabilize membranes and macromolecules under water stress conditions. These include betaines,
amino acids, polyols and non-reducing sugars (e.g., glycine betaine, proline and inositol) [39].
Root growth arrest maintains the function of root meristem and promotes rapid growth once the
stress has been alleviated [40]. The inhibition of lateral root growth was also observed as an adaptive
mechanism that promotes primary root elongation to reach the water from lower layers in the
soil [41]. The other key cellular event that is observed under both biotic and abiotic stresses is the
perturbations in the highly-regulated ROS homeostasis, causing an over-accumulation of ROS such
as singlet oxygen (1O2), superoxide anion radical (O2

•−), hydroxyl radical (•OH) and hydrogen
peroxide (H2O2). The accumulation of these species results from the imbalance between the ROS
production and the effectiveness of ROS scavenging systems, subsequently causing an oxidative
burst and adversely affecting the plant metabolism by damaging cellular components such as DNA,
proteins and lipids [42–44]. ROS generation can be detrimental as well as advantageous; it can also
serve as a biological marker during abiotic stress conditions and can induce stress-signaling pathways
to inhibit further damages [43,45]. To effectively manage and alleviate the oxidative stress, plants utilize
ROS scavenging systems comprising (i) the enzymatic antioxidant system and (ii) a non-enzymatic
antioxidant mechanism also known as the “low molecular weight” antioxidant system [45,46].

The enzymatic antioxidant system is made up of interrelated antioxidant enzymes including
superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase
(GPX), peroxidase (POX) and glutathione reduction (GR) [47,48]. On the other hand, the non-enzymatic
antioxidant machinery is made-up of low molecular weight compounds such as phenolic compounds,
amino acids, carotenoids, glutathione (GSH), ascorbic acid and α-tocopherol, which serve important
roles in the detoxification of ROS. Apart from their antioxidant properties, these low molecular weight
compounds can also function as osmoprotectants under abiotic stress, particularly under drought
stress [49–51]. Furthermore, the antioxidant machinery (non-enzymatic and enzymatic) functions
synergistically for stress alleviation or to enhance the plant tolerance to abiotic stress conditions
(Figure 2) [46,52]. For instance, the ascorbate-glutathione cycle (also known as the Halliwell-Asada
pathway) functions alongside enzymes such as CAT, GR and APX in the high capacity redox-homeostatic
H2O2-scavenging pathways [53]. In this cycle, APX catalyzes the reduction of H2O2 to water, utilizing
ascorbate (ASC). This reaction then yields monodehydroascorbate (MDHA), which is fated to dismutate
to ASC and dehydroascorbate (DHA) or be reduced to NADP+ via monodehydroascorbate reductase
(MDHAR). Furthermore, dehydroascorbate reductase (DHAR) reduces DHA to ASC using GSH as the
reducing substrate. This reaction yields oxidized glutathione (GSSG), which is then converted back to
the reduced state (GSH) by NADPH via the action of GR. ASC and GSH take part in the cyclic transfer
of reducing equivalents without being consumed in the reactions, thus allowing the scavenging of
H2O2, with NADPH as the reducing equivalent donor (Figure 2) [54].
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Figure 2. The intricate web of the highly-regulated oxidant-antioxidant system. Hydroxyl radical
(•OH) and superoxide anion radical (•O2

−) are generated via the Fenton reaction (in red). •O2
− is

produced by Mehler reaction (in dark green) and singlet oxygen (1O2) from water molecules
(in neon green). The initial step in the ROS scavenging is the conversion of •O2

− into hydrogen
peroxide (H2O2) by superoxide dismutase SOD (in yellow), followed by the detoxification of
H2O2 by GPX (in turquoise), CAT (in grey), APX (in orange) and POX (in pink). H2O2 is also
scavenged through the ascorbate-glutathione cycle (in orange) which uses ASC and GSH as the cyclic
transfer of reducing equivalents and NADPH as reducing power. The removal of •OH by GSH
(in blue) forms GSSG which is regenerated to GSH via the GR-mediated reaction. The enzymatic
pathways are depicted by bold lines and non-enzymatic pathways are indicated by dotted lines.
Abbreviations: GPX = glutathione peroxidase, APX = ascorbate peroxidase, GR = glutathione reductase,
ASC = ascorbate, MDHAR = monodehydroascorbate reductase, MDHA = monodehydroascorbate,
AH2 = oxidizable substrate, DHA = dehydroascorbate, DHAR = dehydroascorbate reductase,
POX = non-specific peroxidase, GSH = reduced glutathione, GSSG = oxidized glutathione.
Adapted from [54].

Recent studies have begun to reveal molecular intersections and biochemical networks between
biotic and abiotic stress responses, as well as overlapping regulatory mechanisms in combined stress
responses [20,55,56]. A detailed account of plant responses to combined abiotic and biotic stresses
is beyond the scope of this review, but the reader is referred to the literature cited herein for more
details. However, this observation (i.e., combination of stresses) points to the reality of plants in their
natural environments, where the plants interact with both abiotic and biotic stresses, individually
or simultaneously, and in the presence of microbial communities (composed of bacteria, fungi and
oomycetes) that inhabit the host plant, soil and surroundings, often in symbiotic relationships [57,58].
Some of these beneficial microorganisms found in the rhizosphere have been shown to induce systemic
defense and tolerance mechanisms or precondition the plant protective responses against a range of
environmental stresses.

Priming against Abiotic Stresses

Plant priming is a natural phenomenon, described as potentiating the protective and defensive
responsiveness of plants upon the perception of some signals from the environment. Studies have
demonstrated that plant priming—the preconditioning of plant defense mechanisms by beneficial
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microbes or agrochemicals—results in a faster, stronger and effective defense and resistance response
to environmental stresses [59,60]. Mechanistically, priming can be described as a systematic multistage
process consisting of three main stages, namely: (i) the priming phase, (ii) the post-challenge primed
state and (iii) the transgenerational primed state. Some of the essential metabolic events observed during
the priming phase include the biosynthesis or increase in the levels of amino acids, hormone conjugates
and sugars, and these metabolic changes are collectively referred to as the “priming fingerprint” in
the priming phenomenology [4,15]. These molecular and cellular changes are stored in the form of
“metabolic memory”, “molecular memory”, “stress memory” or “primed memory”’, which can be
described as “sensitization” or “immunization” strategies of plant defense systems. Upon a subsequent
(or secondary) challenge—the post-challenge primed state—the “primed” plant effectively launches
rapid and stronger defense responses [61,62]. The metabolic reprogramming observed during this
phase mainly involves changes in secondary metabolite levels—i.e., defense-related compounds such
as phenylpropanoids, terpenoids, volatiles, glucosinolates and tryptophan-related metabolites [4,63].

Emerging studies have demonstrated that various priming agents/stimuli can be applied to
sensitize the plant defense system against abiotic stresses. For instance, parental drought priming has
been shown to enhance drought tolerance in wheat offspring via increased accumulation of proline
and glycine betaine [64]. Relatedly, silicon (Si)-based biostimulants have been shown to prime wheat
seedlings against salt stress by reducing the accumulation of sodium ions, thus improving salt stress
tolerance [65]. In another study by Zhang [66], drought priming was also shown to potentiate the
defense response against heat stress in tall fescue (Festuca arundinacea) via lipidome reconfiguration.
Furthermore, Shehu et al. [67] reviewed the priming effects of β-aminobutyric acid (BABA) against
abiotic stresses such as salt stress, drought, nutrient stress and heavy metal stress; some of the
general physiological, biochemical and molecular alterations potentiated by BABA included improved
stomatal regulation and photosynthesis, water use efficiency, cell membrane remodeling, enhanced
ROS detoxification and stress-related gene expression. The molecular and cellular events underlying
the priming phenomenon may differ and/or overlap depending on the priming stimuli and the
secondary stress [68]. Despite the exponentially increasing efforts to elucidate the metabolic changes
that define the priming events in time and space, there is still much to uncover in order to understand
this potentiation of plant protective defenses. The comprehensive molecular and biochemical networks
involved in the establishment of priming stages are still far from being fully characterized. Regardless
of the shortcomings and limitations as stated above, defense priming is undoubtedly one of the
key adaptive strategies employed by nature. Thus, this preconditioning of plant defense systems is
considered a prospective and complementary alternative means that offers new avenues for plant
resistance against environmental stresses.

3. Biostimulants as Agronomic Tools to Promote Plant Growth and Counteract Abiotic Stresses

In the last decade, there has been exponentially-growing attention to plant biostimulants as a
potential solution to mitigate the negative impacts of the changing climate on agriculture, and becoming
one of the pillars of a new agricultural revolution for sustainable food production. Even though the
concept of biostimulants surfaced in 1933, only in more recent years has attention and studies from
different fields emerged to define, describe and understand plant biostimulants, as well as their modes
of action [10,69]. Historically, the definition of “biostimulants” has evolved and been reformulated over
the years, although it has often been poorly described due to a lack of a scientifically-based theoretical
foundation for the conceptualization and characterization of these materials that show potential in
improving plant health and development. The recent review by Yakhin et al. [10] provides a detailed
account and a chronological evolution of the concept of the term biostimulant. Currently, a biostimulant
is conceptually defined as any substance or microorganism that is not a nutrient, pesticide or any of the
soil improvers, but has the ability to promote the health and growth of a plant through the induction
of natural biological processes [10,70,71].
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3.1. The (Lack of) Science of Biostimulants

Most plant biostimulant products currently on the market are based on claims and descriptions of
the observed effects. However, such descriptions or characterization do not demonstrate if a product is
indeed a bona fide biostimulant, guaranteeing a specific level of efficacy and effectiveness under all
conditions [10,71]. Hence, there is a growing need for a sound scientific foundation to pave a theoretical
framework that would contribute to the formulation of biostimulant products, with scientifically-based
descriptions and credibility. Although there is currently no worldwide regulatory system and
harmonized legislative framework for the biostimulant industry, there is a momentum in fundamental
scientific research, beyond agronomic traits assessment, to informatively generate knowledge and
understanding of plant biostimulants, their biological and chemical characteristics and decoding the
complex plant-biostimulant interactions. Such insights provide a relatively standardized foundation
for guidelines for biostimulant products and have been influential in the development of a European
Union regulation and legislation system for biostimulants [10,70].

Furthermore, recent scientific meetings in the field of biostimulants have greatly contributed
to the conceptual and methodological development, as well as promotion of scientific principles
in biostimulant theory and applications. The recent review paper by Ricci et al. [71] highlights the
ongoing efforts to advance the scientifically-based biostimulant industry and describes the type of
informational data that are prerequisite to support a biostimulant claim. Credible published literature
that is of great quality, detailing the mechanisms of action employed by a biostimulant and the use
of experimental data obtained from either a greenhouse/controlled environment or field trials can be
used to support a claim. However, there are strict guidelines governing the nature of the experimental
data that can be admissible as evidence. For instance, for a field trial, the following details must be
provided: (i) the specific objectives of the trial, the expected effects of the biostimulant, as well as
the application rate and method; (ii) site specifications (i.e., location address and climatic conditions)
and type of crop and cultivar; (iii) statistical analysis and trial design—i.e., adequate amount of
control groups is required to accurately attribute all the observed distinct features to the treatment
applied; and (iv) the trial conditions (i.e., row spacing, type of soil, etc.). The Natural Sciences
Information Centre’s Biostimulants online (https://biostimulants.online/) is the largest database of
published experimental data on plant biostimulants, which relies on accurate, detailed information
from the authors. Additionally, for more details on the global perspective on the biostimulant field,
the reader is encouraged to refer to the recent review paper by Yakhin et al. [10].

Plant biostimulants are particularly useful in organic farming, where these substances can aid
in overcoming nutrient limitations by improving nutrient availability, uptake and assimilation [72].
However, the best results can be expected when biostimulants are added to well-managed soils in
addition to chemical fertilizers. While a vast number of commercial plant biostimulants are available
on the market, there is still an element of unpredictability with regard to the effect it might have on a
crop, as this varies based on the soil, environmental factors, application rate and time, species and
even cultivar [73]. This points to the knowledge gaps in understanding the mechanisms of plant
biostimulants at cellular and molecular levels. Some results of plant trials using commercial plant
biostimulants are summarized in review papers [73,74]. However, it suffices here to highlight some of
the key mechanisms employed by different classes of biostimulants in plant-biostimulant interactions.

3.2. The (Bio)Chemical Mechanisms Mediated by Different Classes of Biostimulants

Plant biostimulants can be classified into two main groups: (i) microbial biostimulants such as
plant growth-promoting rhizobacteria (PGPR) and fungi; (ii) non-microbial biostimulants such as
seaweed extracts, humic substances, protein hydrolysates (PH), chitosan and other biopolymers [70,75].
Observed and elucidated effects of biostimulants include increasing the rate at which the plant absorbs
and assimilates the nutrients and improving the quality traits of crop plants [70,74]. Furthermore,
studies have shown that the application of biostimulants can enhance the plant immune system,
leading to resistance against pathogenic diseases and tolerance against abiotic stresses [75–77].

https://biostimulants.online/
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Microorganisms have a role to play in stress tolerance. An important consideration in the
development of microbial inoculants is the commercial formulation—i.e., the microorganisms should be
able to survive in the formulation [78]. Bacteria, belonging to several genera (Rhizobium, Bradyrhizobium,
Azotobacter, Azospirillum, Pseudomonas and Bacillus) and with the potential to act as biostimulants have
been isolated from saline, alkaline, acidic and arid soils. Members of these genera have developed
strategies to adapt under adverse conditions which include alterations to the composition of the cell
wall (exopolysaccharide production which forms a protective biofilm on the root surface) and the
ability to accumulate high concentrations of solutes, thus allowing for enhanced water retention and
increased tolerance to ionic and osmotic stress. PGPR-inoculated soils can ameliorate plant abiotic
stress responses [75]. Growth enhancement is usually associated with high levels of IAA, commonly
associated with salt stress alleviation [79], as well as exopolysaccharide production that may help in
maintaining a film of hydration around the roots. The protective effects of biostimulants on plants that
are exposed to environmental stresses such as water deficit, soil salinization and sub-optimal growth
temperatures are of vital importance for the survival of crops. This tolerance can also be brought about
by microbes within and around the plants that facilitate adaptation to abiotic stress.

A substantial amount of seaweed is also used as a nutrient supplement and plant biostimulant;
by 2006 it was estimated at 15 million ton per annum according to a report by FAO (2006). These are
applied as soil conditioners or as plant stimulators as a foliar spray to enhance plant growth as well as
freezing, drought and salt tolerance, photosynthetic activity and resistance to fungi, bacteria and virus,
thus improving the productivity of many crops [80]. The biostimulant effects have been attributed
to the presence of plant growth hormones (e.g., cytokinins) and low molecular weight compounds
present in seaweed extracts [81]. Furthermore, the study by Bradáčová et al. [82] revealed that the
application of seaweed extract-based biostimulants containing zinc and manganese to maize crops
can improve the cold resistance/tolerance via enhanced ROS scavenging systems. In another study by
Desoky et al. [83], biostimulants derived from ASC and Moringa oleifera leaf extract (MLE) were shown
to improve salt stress amelioration in pea plants by increasing antioxidant enzymes (CAT, POX and
SOD), sugar and proline.

Humic substances were traditionally considered to be polymers, but that has recently been
challenged. The alternative is that humic substances are supramolecular associations of heterogeneous,
relatively small molecules [84]. Humic substances positively affect plant growth by forming soluble
complexes with micronutrients which reduces leaching thereof, thus making them more available to
the plant [85]. It has furthermore been reported that intact micronutrient cation-fulvic acid complexes
were taken up by the plant due to the low molecular size of the latter [86]. With regard to abiotic
stress, humic acid and phosphorus applied to bell peppers resulted in plants with reduced Na content
and elevated N, P, K, Ca, Fe, Mg, S, Mn and Cu ions in roots and shoots [87]. Humic acid extracted
from vermicompost also exhibited benefits to rice in activating anti-oxidative enzymatic function and
increased ROS scavenging enzymes [88]. These enzymes are required to inactivate toxic free oxygen
radicals produced in plants under drought and saline stress. It should be noted that the application rate
is of vital importance; in a hydroponic study inhibition of shoot growth of maize was observed [89].

PH impact plant nutrition by forming complexes and chelates between soil micronutrients
such as Zn, Fe, Cu and Mn, thereby aiding in nutrient availability and uptake in the roots [70,90].
Hydrolysates show antioxidant and free radical scavenging properties, in addition to their chelating
abilities [91]. PH work by improving microbial biomass and activity as well as soil respiration,
since microorganisms can utilize amino acids and peptides as sources of C and N [92]. Maize plants
under salt stress treated with hydrolysate-based biostimulants containing triacontanol and
indole-3-acetic acid had higher flavonoid, proline and K content over untreated controls [93].
Similarly, with lettuce under salt stress, plant-derived protein hydrolysates improved the fresh
yield, dry biomass and root dry weight as well as increased concentrations of osmolytes, glucosinolates
and the composition of sterols and terpenes [94]. Glycine betaine is known to accumulate in plants in
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response to abiotic stresses [95]. Glycine betaine and proline have been shown to increase tolerance for
environmental stresses such as freezing, salinity, drought and oxidative stress [70].

Silicon similarly acts by minimizing metal and metalloid toxicities through the complexation
or co-precipitation of toxic metals and metalloids in soil and plant tissue, as well as stimulation of
antioxidant systems in plants [96]. These authors also highlighted the important function of silicate in
enhancing rigidity, strengthening and elasticity of cell wall. In a study where a commercial biostimulant
comprising amino acids, proteins, vitamins and betaines was applied to tomato plants under drought
stress, drought responsive genes were enhanced. Furthermore, plants had a higher fresh weight and
relative water content [97]. Chitosan possesses antioxidant properties by means of the hydroxylated
amino groups on the oligomers, making these compounds effective scavengers of hydroxyl radicals and
anion superoxide [98]. Chitinases are also considered important in plant resistance to several abiotic
stresses. For example, chitosan treatments had a significant effect on the yield of drought-stressed
plants compared to a control. This effect was greatest when chitosan was applied before the onset of
stressful conditions [99]. This observation was corroborated by researchers investigating the improved
osmotic potential tolerance in safflower plants [100]. It was furthermore found that this only holds true
at low concentrations, since it is hypothesized that high concentrations cause an absorptive obstruction
due to the stickiness of chitosan. The cationic properties of chitosan make it suitable as a carrier for
other essential elements (Cu, Fe, Zn, etc.). Certain horticultural and agricultural crops have been
genetically engineered to express foreign chitinases to provide resistance to pathogens and abiotic
stress [101]. More examples of the functional and mechanistic roles of biostimulants are provided
in Table 1.

These previous studies have demonstrated that the application of biostimulants promotes plant
growth and development and can alleviate abiotic stresses, enhancing plant responses via different
biological and physiological processes that include ROS scavenging mechanisms, membrane stability,
osmoprotection, stomatal regulation and xylem hydraulic conductance, root zone water and nutrient
availability, metal chelation and changes in hormonal levels [75]. However, fundamental research that
provides an integrated view of cellular and molecular mechanisms underlying biostimulant–plant
interactions is still enigmatic. Further research on the components and effects of biostimulants on the
plant genome and cellular metabolism is required to elucidate the mechanisms of action involved
in growth responses and stress mitigation. Decoding the mechanisms of action of biostimulants at
cellular and molecular levels is a prerequisite for the development of a scientifically-based biostimulant
industry, thereby leading to an effective exploration and application of biostimulants in agriculture for
improved and sustainable food security.
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Table 1. The effects of biostimulants on crop productions. The table provides some examples whereby cellular and physiological mechanisms underlying the
effects of the selected biostimulants under various stresses were demonstrated as well as their agricultural/horticultural functions and the expected economic and
environmental benefits (adapted from du Jardin [70]).

Main Biostimulant Classes Cellular Mechanism (i.e., Interaction with
Cellular Components and Processes)

Physiological Function (i.e., Action
on Whole-Plant Processes)

Agricultural/Horticultural Function (i.e., Output
Traits Relevant for Crop Performance)

Humic substances

Activate plasma membrane proton-pumping
ATPases, promote cell wall loosening and cell
elongation in maize roots [102]. Increases
antioxidation capacity under several abiotic
stresses, upregulates the biosynthesis of
defense-related secondary metabolites [103].

Increased linear growth of roots, root
biomass [103].

Increased root foraging capacity, enhanced
nutrient use efficiency [103,104].

Seaweed extracts
Stimulates expression of genes encoding
transporters of micronutrients (e.g., Cu, Fe, Zn) in
Brassica napus [105].

Increased tissue concentrations and
root to shoot transport of
micronutrients

Improved mineral composition of plant tissues

Protein hydrolysates
Stimulation of phenylalanine ammonia-lyase
(PAL) enzyme and gene expression, and
production of flavonoids under salt stress [93].

Protection by flavonoids against UV
and oxidative damage [106]. Increased crop tolerance to abiotic (e.g., salt) stress

Chitosan

Induce the accumulation of reactive oxygen
species (ROS) and phenolic compounds. enhances
the ROS scavenging system, regulates the stomatal
conductance [107].

Increased all vegetative growth and
yield [108].

Protection against brown rot, delayed fruit
softening and senescence [109].

Microorganisms (e.g., PGPR)
Azospirillum brasilense releases auxins and
activates auxin signaling pathways involved in
root morphogenesis wheat [110].

Increased lateral root density and
surface of root hairs

Increased root foraging capacity, enhanced
nutrient use efficiency

Fungi
Enhance phosphate (P) availability under nutrient
deficiency via excretion of P-solubilizing
substances [72]

Increased root growth and activity Increased nutrient availability in the soil
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4. Omics Sciences to Study Plant Biology in Abiotic Stress Conditions

The application of omics approaches such as genomics, transcriptomics, proteomics and
metabolomics (Figure 3) have proven to be instrumental in the investigation and identification
of the key multilayered biochemical events and mechanisms underpinning the effects of biostimulant
formulations on plants’ physiology. For instance, a previous transcriptomics study reported that the
use of a novel technology, next generation sequencing (NGS), allowed the monitoring of the impact of
biostimulants on the transcriptome of plants, thus revealing the molecular mechanisms of action by
which the biostimulant enhanced growth promotion in corn and soybean. The mechanisms of action
elucidated in corn included the upregulation of nitrogen and phosphate assimilation and metabolism,
maltose biosynthesis, sugar transport and phloem loading and hormone (cytokinin) metabolism,
whereas in soybean, growth enhancing metabolic processes that were upregulated included nitrogen
metabolism, sulfate reduction, metal and ion transport and amino acid biosynthesis [111].
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Figure 3. Summary of the omics disciplines comprising systems biology. The figure illustrates
the flow of biological information from gene to metabolome, highlighting the interconnection of
gene and chemical spaces of a biological system. In a stressful event, gene expression is altered,
and chemical spaces are reprogrammed to maintain cellular and molecular life-defining equilibria.
At the metabolome level, changes in the levels of primary and secondary metabolites play an important
role in the readjustment of cellular metabolism towards adaptation to various environmental conditions.

As exemplified above, transcriptomics studies can contribute to the ongoing scientific efforts
to provide fundamental research insights that describe the mechanisms and modes of action of
biostimulants. However, these studies present challenges such as the fact that an increase in the
levels of mRNA does not always correlate with protein levels and not all the translated proteins
are enzymatically active. Furthermore, the outcome of the transcriptome and proteome profiling
can be limited by the identification of mRNA and proteins which depends on organism-specific
genome information. Thus, due to these limitations, changes in the transcriptome or proteome level
do not necessarily correspond to the alteration in biochemical phenotypes and may not accurately
reflect the biochemical status of the plant in response to abiotic stresses and biostimulants [112].
Thus, an integration of upper omics levels in the systems biology, with metabolomics studies (Figure 3),
can provide a holistic and comprehensive understanding of the molecular mechanisms of actions
mediated by biostimulants to mitigate abiotic stresses.
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4.1. Metabolomics in Plant Biostimulant Studies

Metabolomics, a holistic qualitative and quantitative study of the entire complement of metabolites
within a biological system, has disruptively positioned itself as one of the central pillars in systems
biology and increased in popularity and applicability across a vast array of fundamental as well as
translational research domains [13,113]. This distinct position of metabolomics among the modern
omics disciplines in the systems biology approach arises from the fact that the metabolome is the
cornerstone of life, composed of metabolites which are the final recipients in the flow of biological
processes. Furthermore, the analysis of the metabolome can reflect on both transcriptional and
post-transcriptional regulation of gene expression, thus being the closest omics approach to the
phenotype characterization [8,14].

4.1.1. An Overview of the Metabolomics Workflow

As a fast-growing fundamental omics discipline with many advantages, researchers have also
identified various shortcomings that limit the extraction of the essential biological information from
metabolomics studies. Thus, numerous efforts aimed at maximizing metabolomics outputs are
being made, from the very initial step, “study design” to the last step “biological interpretation”.
Prior to the beginning of any metabolomics study, it is imperative to formulate a clear, concise and
specific biological question/hypothesis that will guide the design of an experimental procedure,
which is equipped to adequately yield maximum useful information. Failure to formulate a clear
biological question/hypothesis can lead to misinterpretation or multiple possible interpretation of the
metabolomics results, thus failing to provide insights or accurately answer any question at all in regard
to the biological system under consideration [114]. An ideal experimental design should consist of the
smallest number of experiments that can yield the maximum amount of data and achieve accuracy
and precision, whilst addressing sample size effect (treatment groups and control groups), as well as
taking into account the confounding variables and factors [115]. Recent reviews by Ivanisevic and
Want [116] and Rodrigues et al. [115] provide some useful guidelines that should be considered at the
experimental drawing board; thus, readers are referred to these citations for detailed descriptions.

Moreover, one is required to carefully choose a metabolomics approach suitable to address the
biological question at hand. Metabolomics approaches can be untargeted and targeted (Figure 4).
Untargeted metabolomics aims to unbiasedly measure all detectable metabolites, thus providing
a comprehensive global analysis of the metabolome [116,117]. The targeted approach allows the
quantification of a pre-defined small specific group of metabolites. Moreover, untargeted approaches
are applied in hypothesis-generating studies, while targeted approaches are usually applied to
further confirm, elaborate and interpret the novel findings of hypothesis-generating studies [118,119].
Arguably, metabolomics is the most challenging and demanding of the omics fields due to the ontological
complexity of the metabolome—the “moliverse” of cellular worlds (Figures 3 and 4). This observation
points to the challenges found at different levels of the workflow pipeline, limiting the biological
insights generated from a metabolomics study (Figure 4). These bottlenecks include metabolome
coverage (affected by both the metabolite extraction method and analytical tools), extraction of useful
information from raw data and data interpretation and integration of orthogonal biological information
from other omics fields.

Several reviews have presented and discussed the metabolomics workflow in general, and/or
aspects of metabolomics studies [13,120]. It suffices here to mention that the general plant
metabolomics workflow comprises multiple steps, of which the main stages include (i) study design,
(ii) sample preparation, (iii) data acquisition, (iv) data processing and (v) statistical analysis and
interpretation (Figure 4). As a multidisciplinary omics science, a metabolomics study is a team
effort, implying a spectrum of expertise including analytical chemistry, chemometrics, data science
and field-specific biology [16,121]. An appropriate study design, incorporating feedback from the
entire team, is essential in obtaining high quality data. Addressing a specific biological question
(regardless of whether the study is an inductive or deductive one) typically impacts sample
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preparation, analytical methods and statistical analysis along with a biological interpretation of
the “finished product” [120]. Pre-analytical steps in a metabolomics workflow include generation
of the samples (Figure 4), and their preparation for analysis. The latter includes plant material
harvesting/collection, metabolite extraction and any other processing for analysis. Considering the
sensitivity of the metabolome, uniform and consistent sample handling is essential to minimize
experimental error. Additionally, to maintain the stability of metabolites and to avoid degradation
(or any unwanted enzymatic reactions), quenching metabolism via the use of liquid nitrogen
is recommended to arrest the metabolism (during harvesting and metabolite extraction) [115].
Any processing of biological samples provides a window for the introduction of biologically irrelevant
variations, thus considered one of the primary sources of bias in the metabolomics data. Randomization
during sample preparation and the analytical process is also important to minimize systematic
bias [115,120] and effective quality control and quality assurance measures should be put in place to
provide evidence of experimental rigor [122,123]. For validation and credibility of plant metabolomics
studies, strict measures such as following the Metabolomics Standard Initiative (MSI) has been set
in place, proposing the minimum requirements at different aspects of metabolomics workflow and
domains [124].
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key components in the multistep mass spectrometry-based (plant) metabolomics workflow
pipeline, which include study design (untargeted/targeted), sample preparation, data acquisition,
mining and interpreting metabolomics data. Abbreviations: DIA = data independent acquisition,
DDA = data dependent acquisition, ML = machine learning.
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Moreover, the plant metabolome is very complex and diverse, consisting of metabolites of
heterogeneous nature with respect to varying physical and chemical properties such as size, polarity,
chemical stability, volatility, solubility and quantity, thus rendering the analysis of the entire metabolome
close to impossible [13,125]. Therefore, for the untargeted metabolomics approach, the choice of
the metabolite extraction method is crucial to obtain maximum metabolome coverage [115,126–128].
Over the years, the thumb rule, “like dissolve like” extraction techniques have been among the general
methods employed in metabolomics investigations. These techniques involve the use of various organic
solvents, whereby polar solvents are used to extract polar metabolites, and nonpolar solvents are
used to target the nonpolar constituents from the plant matrices [129,130]. Generally, most researchers
prefer to use a medium where solvents such as 80% methanol are used to target a wider range,
mid-polar to non-polar metabolites. However, this kind of approach still does not reflect a true
representation of the entire plant metabolome. Thus, methods such as parallel/direct and sequential
extraction approaches have been explored to enhance the metabolome coverage. Parallel extraction
techniques involve the extraction of metabolites using various extraction methods such as solid phase
extractions, solvent precipitation and liquid-liquid extraction, of which the extracts from each method
are analyzed (e.g., on LC-MS) separately. The combination of these extraction techniques has been
shown to increase the metabolome coverage and has been selected to be orthogonal; however, it is not
a practical solution since it is laborious and increases the analytical time. Sequential extraction, on the
other hand, has been reported to enhance the metabolome coverage at a minimal expense [131]. In this
approach, extracts from each extraction method (done in a serial manner) are pooled together before
the analysis, thus minimizing the data acquisition time [132].

The analytical step in the metabolomics workflow is the acquisition of data using analytical
techniques such as chromatography-mass spectrometry (GC-MS, LC-MS), nuclear magnetic resonance
(NMR) spectroscopy, capillary electrophoresis (CE), direct infusion-MS (DIMS), Fourier-transform
infrared (FT-IR) and Raman spectroscopy, with each offering differential levels of selectivity, sensitivity,
speed, accuracy and precision, respectively [118,128]. The choice of the analytical platform may depend
on availability of the analytical systems, the biological question to be investigated as well as the nature
of the extracted metabolites. To date, there is still no single available analytical technique that is capable
of analyzing the whole metabolome [119,133]. A review of orthogonal MS methods for expanding
coverage of the metabolome can be found in [134]. Continuous technological advancements in analytical
instrumentations are worth appreciating, offering opportunities in detecting more metabolites. MS and
NMR are the main analytical platforms in metabolomics. Of recent, MS has been the most preferred data
acquisition tool, and approximately 70% of metabolomics papers published in the 2018, reported data
acquired through MS-based technologies. MS-based metabolomics has gained such momentum
due to several advantages of MS technologies, such as excellent sensitivity, extensive metabolome
coverage, numerous software resources availability, small instrument footprint, relatively inexpensive
instrumentation and maintenance [135].

Although the popularity of MS-based metabolomics seems to overshadow the application of NMR
techniques in the metabolomics field, NMR still holds a tremendous promise, as it offers some unique
advantages. These include robust instrumentation, precise structural elucidation, easily automated
workflow, excellent reproducibility and non-destructive sample preparation. The revolutionary
advancements (including the software and hardware) that can be/has been implemented to increase
the application and relevance of NMR-based metabolomics are explicitly discussed in the short
review by Wishart [135]. The post-analytical step in a metabolomics workflow comprises data
mining and interpretation. This multistage step entails data processing, ML and statistical modeling,
metabolite annotation and identification, and biological interpretation [13,121].

4.1.2. Application of Metabolomics in the Plant-Biostimulant-Abiotic Stress Interaction Studies

The application of metabolomics in plant sciences spans a wide range of domains, including elucidation
of metabolic pathways, plant breeding, silent phenotypic mutations, linking genotypes to phenotypes,
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biotic and abiotic stresses and defense priming [68,125,136]. However, metabolomics applications
in the field of plant biostimulants are still very limited. In the last section of this review,
we highlight some reports on metabolomics applied in plant biostimulant studies, summarized
in Table 2. Currently, there are very few emerging metabolomics studies on the bipartite interaction
(biostimulant-plant) and even fewer on the tripartite interaction (biostimulant-plant-abiotic stress).
For example, in the metabolomic study by Lucini et al. [94], a protein hydrolysate-based biostimulant
alleviated saline stress by increasing the levels of defense-related metabolites (terpenes, amino acids,
carbohydrates and sterols) in lettuce. In another study by Arroussi et al. [137], a seaweed extract-based
biostimulant (Dunaliella salina exopolysaccharides) was applied to tomato plants to investigate its
role in the amelioration of saline stress. Using metabolomics, it was confirmed that D. salina
contains bioactive compounds known as sulfated exopolysaccharides which upregulated the levels of
proline, phenolics, osmoprotectants compounds and the activity of antioxidant enzymes, thus leading
to salt stress alleviation. Furthermore, the untargeted metabolomics analysis revealed that the
enhanced drought tolerance mediated by plant-derived PH in tomato is characterized by key
metabolic changes in phytohormones (i.e., accumulation of salicylates and decreased content of
cytokinins), in hydroxycinnamic acid amides and lipids such as terpenes, membrane lipids and sterols.
Moreover, the observed metabolic reprogramming induced by PH-based biostimulants improved
stomatal conductance and redox balancing machinery [11].
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Table 2. Some applications of metabolomics in elucidating mechanisms and modes of action of plant biostimulants.

Study Biostimulant Effects Plant Mechanism of Action—Metabolic Changes References

Capsicum chinensis L. growth and
nutraceutical properties are enhanced by
biostimulants in a long-term period:
Chemical and metabolomic approaches

Plant-based biostimulants: one
derived from AH and RG Growth promotion Pepper − Production of secondary metabolites, such

as phenols.
[138]

The effect of a plant-derived biostimulant
on metabolic profiling and crop
performance of lettuce grown under saline
conditions

Plant-derived protein hydrolysates Growth promotion and
resistance to salt stress Lettuce

− Improved plant nitrogen metabolism
− Oxidative stress mitigation via the increase

in osmolytes, changes in sterols,
glucosinolates and terpenes composition

[94]

Dunaliella salina exopolysaccharides:
a promising biostimulant for salt stress
tolerance in tomato (Solanum lycopersicum)

Microalgal exopolysaccharides Resistance to salt stress Tomato

− Activation of jasmonic pathway
− Accumulation of VLCFAs to strengthens

the plant’s cuticles
− Inactivation of SA pathway
− Increase in phytosterols to regulate

membrane fluidity
− Induction of ROS scavenging enzymes and

other antioxidant molecules

[137]

Effects of humic substances and
indole-3-acetic acidon Arabidopsis sugar
and amino acid metabolic profile

Humic substances Growth promotion Arabidopsis

− Possible increased activity of glycolysis
− Reduced free amino acids, suggesting

increased protein and/or secondary
metabolites production

[139]

A vegetal biopolymer-basedbiostimulant
promoted root growth in melon while
triggeringbrassinosteroids and
stress-related compounds

Vegetal
biopolymer-basedbiostimulant Growth promotion Melon

− Changes of brassinosteroid content was
linked to increased root development, as
well as the modulation of
photosynthetic activity

− Interference with hormonal crosstalk
in leaves

[140]

Understanding the biostimulant action of
vegetal-derived protein hydrolysates by
high-throughput plant phenotyping and
metabolomics: A Case Study on Tomato

Vegetal-derived protein
hydrolysates Growth promotion Tomato

− Multilayer regulation of ethylene and
polyamines metabolism

− ROS-mediated signaling pathways
[141]

A combined phenotypic and metabolomic
approach for elucidating the biostimulant
action of a plant-derived protein
hydrolysate on tomato grown under
limited water availability

Plant-derived protein hydrolysate Resistance against
drought Tomato

− Phytohormonal changes (reduced
cytokinins and increased salicylates)

− Changes in lipids and terpenes
− Oxidative stress mitigation via

hydroxycinnamic amides, carotenoids,
prenyl quinones, and reduced biosynthesis
of tetrapyrrole coproporphyrins.

[11]
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Table 2. Cont.

Study Biostimulant Effects Plant Mechanism of Action—Metabolic Changes References

Metabolomic analysis of the effects of a
commercial complex biostimulant on
pepper crops

Commercial biostimulant, Actium Growth promotion Pepper

− Increased phenylalanine and total
monosaccharides, suggesting a further
stage in ripening.

− Increase in carotenoids concomitant with
an increase in some
digalactosyl diacylglycerols

[142]

Effect of microalgae polysaccharides on
biochemical and metabolomics pathways
related to plant defense in Solanum
lycopersicum

Microalgae polysaccharides Plant defense Tomato
− Lipid remodeling
− Increased lipids such as VLCFAs

associated with thickened cuticular wax
[143]

Biostimulants from food processing
by-products: agronomic, quality and
metabolic impacts on organic tomato
(Solanum lycopersicum L.)

Biostimulants from food processing
by-products Growth promotion Tomato − Increase in citric acid content and the

decrease in β-glucose content
[144]

Inoculation of Rhizoglomus irregulare or
Trichoderma atroviride differentially
modulates metabolite profiling of wheat
root exudates

T. atroviride and R. irregulare Growth promotion Wheat

− Differential changes in lipids, phenolic
compounds, terpenoids, siderophores,
chelating acids, derivatives of amino acids
and phytohormones

[145]

Vegetal-derived biostimulant enhances
adventitious rooting in cuttings of basil,
tomato, and Chrysanthemum via
brassinosteroid-mediated processes

Vegetal-derived biostimulant Growth promotion Basil, Tomato, and
Chrysanthemum

− Biostimulant-derived BRs and auxin were
suggested to modulate endogenous
BR pool,

− Induces morphological and metabolic
changes during adventitious rooting of
cuttings in plants

[146]

A biostimulant obtained from the seaweed
Ascophyllum nodosum protects Arabidopsis
thaliana from severe oxidative stress

Seaweed extracts Oxidative stress Arabidopsis

− Accumulation of maltose and fumarate
and malate

− Reduction in lipids such as TAGs which
induces cell death and
chloroplast degradation

[147]

Abbreviations: SA = salicylic acid, ROS = reactive oxygen species, VLCFAs = very-long-chain fatty acids, BRs = brassinosteroids, AH = alfalfa plants, RG = red grape, TAGs = triacylglycerols.
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Recent applications of metabolomics in studying biostimulant-plant interactions (Table 2)
demonstrate the potential of metabolomics as an indispensable (multidisciplinary) tool to investigate
the effects of biostimulants on the regulation of plant metabolic networks under abiotic stresses and
biostimulant-induced remodeling of complex genetic plants’ traits, providing useful insights for plant
breeding and novel agricultural strategies, for sustainable crop production. As mentioned in Section 3,
most biostimulant products currently on the market are based on claims derived from phenotypic
evaluations. Such descriptions do not demonstrate if a formulation is indeed a bona fide biostimulant,
guaranteeing a specific level of efficacy and effectiveness under all conditions. Hence, fundamental
insights and an understanding at both cellular and molecular levels of modes of action of a biostimulant
product is a sine qua non foundation to pave a theoretical framework for the sustainable formulation
of biostimulant products.

Thus, as reviewed herein, the current knowledge gaps and major bottlenecks in the biostimulant
industry include (i) the lack of a universal definition that conceptually captures all essential aspects
of biostimulants, (ii) a poor characterization of active components and synergies in the biostimulant
composition and (iii) undefined mechanisms and modes of action of biostimulant products, at cellular
and molecular levels. Such limitations hinder not only the designing of novel formulations and
biostimulant-based agricultural strategies but also the establishment of a standardized legislative
framework and regulatory system for the biostimulant industry. Metabolomics, a multidisciplinary
omics science, offers unique opportunities to predictively decode the mechanisms and modes of
action of biostimulants on crop plants, and elucidating signatory markers and metabolic profiles that
define the biostimulant action (Table 2). Application of metabolomics in the biostimulant research
can provide a molecular deconvolution of biostimulant-induced remodeling of the plant metabolism
towards improved plant health, growth and increased yield. Such fundamental and indispensable
knowledgebase would improve our understanding of biostimulants, also providing a roadmap for
translational applications—designing of novel formulations and devising biostimulant-based precision
agricultural programs and modules—for sustainable food security.

5. Concluding Remarks

This review provides a general overview of the current knowledge regarding plant defense
mechanisms, the definition and the application of biostimulants in agriculture, and lastly, gives a
review of the application of metabolomics approaches used to study the interactions between plants,
biostimulants and abiotic stresses. Plant growth and resistance against abiotic stresses have long
been the quest of crop breeders; thus, in recent years, various methods such as genetic engineering,
traditional and modern breeding techniques have been developed and applied to support this endeavor.
Furthermore, agronomic management strategies, such as frequent irrigation and grafting, have also
been devised and implemented to assist plants in coping with adverse environmental constraints.
However, these approaches and agricultural programs have limitations, and some of the agricultural
practices carry high environmental costs. Thus, a new revolution such as the use of biostimulants is
inevitably needed; the global food and nutrition security need imperatively more and new science to
sustain a growing global population and a changing climate. However, there are still many grey areas
that need to be defined to holistically understand the complexity of the plant–biostimulant–abiotic stress
relationship. As such, metabolomics studies can contribute towards the continuing efforts in identifying
and defining the multifaceted biochemical and molecular processes induced by biostimulants in crop
plants, improving growth and enhancing plant immunity.
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