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Analysis of Epileptic Seizures with Complex Network
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Epilepsy is a disease of abnormal neural activities involving large area of brain networks. Until now the nature of functional brain
network associated with epilepsy is still unclear. Recent researches indicate that the small world or scale-free attributes and the
occurrence of highly clustered connection patterns could represent a general organizational principle in the human brain functional
network. In this paper, we seek to find whether the small world or scale-free property of brain network is correlated with epilepsy
seizure formation. A mass neural model was adopted to generate multiple channel EEG recordings based on regular, small world,
random, and scale-free network models. Whether the connection patterns of cortical networks are directly associated with the
epileptic seizures was investigated. The results showed that small world and scale-free cortical networks are highly correlated with
the occurrence of epileptic seizures. In particular, the property of small world network is more significant during the epileptic
seizures.

1. Introduction

Epilepsy is a manifestation of abnormal electrical activity
in the central nervous system, caused by the imbalance
of excitatory and inhibitory synapses [1–3]. To study the
generationmechanism of epileptic seizures, the complex net-
work theories have been applied to investigate the structural
and functional organizations of underling brain connections
[4, 5]. In particular, small-world or scale-free networks are
theoretically believed to be associated with rapid information
propagation and low wiring cost in the brain [6] and allow
coexistence of functional segregation and information inte-
gration [7].

To explore the epileptiformbehaviors in terms of complex
network property in underlying neural networks, three types
of neuron models have been introduced: noisy and leaky
integrate-and-fire neurons, stochastic Hodgkin-Huxley cells,
and Poisson spike-train cell model neurons [4]. Changing
parameters such as the synaptic strength, number of synapses
per neuron, and proportion of local versus long-distance

connections will induce “normal,” “interictal,” and “ictal”
epilepsy behaviors. Simulations showed that small world
connectivity at the neuronal level plays an important role
in the behavior of the networks. For example, Tsodyks
found that the coherent activity in randomly connected
network with depressing synapses was similar to the bursting
[8]. Adding long-distance connections among integrate-and-
fire neurons will construct a small world network, which
would transit from sustained activity to synchronous bursts
of finite duration [9]. Beggs and Plenz replicated their
scale-free behavior in a multilayer, feedforward model [10].
They concluded that the most common events are small in
spatial scale and short in duration. In addition, networks
of oscillatory elements would synchronize when the net-
work contains enough long-distance connections of sufficient
synaptic strength [11]. Kötter and Sommer found that small
world properties of macaque cortex are associated with the
propagation of strychnine-induced epileptiform activity [12].

In this study, to investigate the small world or scale-
free network property of functional connectivity in the brain
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Figure 1: The scheme of multiple mass neural model. (a) One-population mass neural model. (b) The coupled multipopulation neural mass
model.
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Figure 2: (a)–(c) The random rewiring procedure of the network model from a regular network to a random network without altering the
number of nodes or edges. (d) A scale-free network.

during epileptic seizures, the neural network properties dur-
ing epileptic seizures were calculated by introducing a multi-
plemass neuralmodel. Simulated EEG signalswere generated
under the assumption of small world, scale-free, random, and
regular networking, and the relation between simulated EEG
signals and the network structure was discussed.The findings
supported that the small world and scale-free network can
strongly induce the epileptic discharges.

2. Methods

2.1. Mass Neural Model. Themass neural model was initially
proposed by Lopes da Silva et al. [13] and was later improved
and extended by Wending et al. [14, 15]. In the present study
we use Wending’s model, which is composed of a model
of one neural population and a model of multiple coupled
neural populations. The model is illustrated in Figure 1.

The population model (Figure 1(a)) contains two inter-
acting subsets: the first is composed of pyramidal cells,
which projects to and receives feedback (either excitatory or
inhibitory) from the second subset; the second is composed
of excitatory neurons and inhibitory neurons, which receives

excitatory inputs only [14]. The input 𝑝(𝑡) represents the
average density of afferent action potentials. Subset 1 is
characterized by two second-order dynamic linear transfer
functions, which transfers the average presynaptic pulse den-
sity of afferent action potentials (the input) into an average
postsynaptic membrane potential (the output). The impulse
responses of excitatory and inhibitory neurons are presented
by ℎ
𝑒
(𝑡) and ℎ

𝑖
(𝑡), respectively.When the neuron fires, a static

nonlinear asymmetric sigmoid function 𝑆(V) would send the
average postsynaptic potential to the average pulse density
of potentials. There is only one linear transfer function
from excitatory neuron in subset 2. Parameters C1–C4 are
constants representing average synaptic number. In normal
situation, excitatory and inhibitory neurons keep a balance.
The change of the ratio between excitatory and inhibitory
synaptic gains will trigger epileptic seizure and generate
sporadic spikes, rhythmic spikes, and so on. Figure 1(b) is
the multiple coupled neural network model [14], which is
composed of a few neural populations. The populations
correspond to different brain areas and their interactions are
links determined by the parameters𝐾𝑖𝑗. During the epileptic
seizure, the excitatory potentials propagate along axons from
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Figure 3: Simulated EEG signals of 32 coupled mass neural models (𝑛 = 32, 𝑘 = 5). (a) Regular network; (b) small world network; (c)
scale-free network; and (d) random network.

one population to another, leading to high voltage, exciting
states.

2.2. Complex Network. Recently, complex network has been
drawing attention in fields from physical, biological systems
to social constructions [16, 17]. A network is composed of
many nodes and links (or edges) linking the nodes. This
is mathematically described as a graph. The complexity of
a network depends not only on the number of the nodes
and links, but also on the interaction dynamics of nodes.
Clustering strength among neighboring nodes and their path
length are two important indices to indicate the nature of a
complex network, in the form of regular network to random
network. The network which lies between regular and ran-
dom networks is called small world network, in which most
of the nodes are connected to their nearest neighbors, and

a few of nodes are linked over a long range. A typical example
is the social network.Themanifestation in society follows the
“six degrees of separation” concept [18].The property of small
world network was naturally described in [19]. Additionally,
a more special network is defined as a scale-free network.
Scale-free networks’ structure and dynamics are independent
of the number of nodes; the connection degree distribution
in the scale-free network follows the Yule-Simon distribution
(a power-law relationship) [16, 20, 21]. In brief, four typical
networks are plotted in Figure 2.

3. Results

A coupled mass neural model was applied to explore the
relation between the behavior (discharge) and structure of
networks. The coupled model has two parameters: the nodes
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Figure 4: The different epileptic form discharges at the scale-free network (𝑛 = 32, 𝑘 = 5). CN is the connection number between the node
and other nodes.

(𝑛) and the connectivity (𝑘). Here the connectivity denotes
the number of links (or edges) a node contacts other nodes
in the network. And two tests were conducted. In the first
test, the parameters of model are fixed, the simulated EEG
discharges (including the epileptic seizures) were obtained
by adjusting the connection in the network, introducing
regular, small world, free-scale, or random network types,
and then the relationship between the epileptic discharges
and the structure of network was analyzed. In the second
test one of 32 nodes (a mass model) was adjusted to generate
a spontaneous epileptic discharge. Then the relationship
between the propagation of epileptic discharge and structure
of network was investigated.

Given the network parameters 𝑛 = 32, 𝑘 = 5, the model
parameters were set as 𝐴 = 3.55mV, 𝐵 = 22mV, 𝐾𝑖𝑗 = 100,
and 𝑖, 𝑗 = 1, 2, . . . , 32. Other parameters were set according
to [22]. The EEG signals in the differently coupled networks
are generated, as shown in Figure 3. Only channels 1, 10, 20,
and 30 are plotted to save place. Figure 3 shows that the
intensity of simulated epileptic discharges was stronger when
the coupled network was regular and “small world.”

Furthermore, a scale-free network was studied. The
degree distribution in the scale-free network follows a power-
law behavior: 𝑝(𝑘) ∼ 𝑘−𝛾, usually 2 ≤ 𝛾 ≤ 3 [16].
Simulated EEG recordings of a node that exhibit epileptic
seizure pattern are shown in Figure 4. CN = 5, 7, 10, and 15
are referred to as the connection number between this node
and other nodes. The simulated EEG recordings of this node
changed with the CN before seizure (0–5 s). However, the
epileptiform discharge at the seizure stage did not follow any

principles. This suggests that the scale-free networks have
more complicated dynamics.

To investigate the effect of network connection to epilep-
tic discharge propagation, we took the second test. One mass
neural model (node) was adjusted to generate an epileptic
discharge. Then the discharge of nodes (simulated EEG
signals)was observed by changing the connection of network.
Given the model parameters: 𝐴 = 8mV, 𝐵 = 22mV, and
𝐾
𝑖𝑗

= 400 and the network parameters 𝑛 = 32, 𝑘 =
5, the number of nodes that have an epileptic discharge
was accounted for on the regular, small world, scale-free, or
randomnetworks, as shown in Figure 5(a). Particularly, as for
the scale-free network, other parameters are maintained, just
changing the connectivity 𝑘 to 5, 10, 15, and 17, the number
of nodes that had an epileptic discharge is accounted for and
shown in Figure 5(b). Figure 5(a) shows that the small world
and scale-free networks were the strongest to support the
epileptic discharge propagation at the connectivity of 5 and 8.
In the scale-free network, the epileptic discharge propagation
increased linearly with the connectivity 𝑘 (Figure 5(b)).

4. Conclusion

There are few studies concerning the mechanism of epileptic
seizures on the complex network level. In this paper, a
multiple mass neural model was used to construct different
networks, including regular, random, small world, and scale-
free networks. The simulation results showed that small
world network and scale-free network are strongly correlated
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Figure 5:The effect of the network connection to the epileptic discharge propagation. (a) Given the network parameters (𝑛 = 32, 𝑘 = 5 or 8),
the propagation intensity of epileptic discharges on the regular, small world, scale-free, and random network. (b) The propagation intensity
of epileptic discharges on the scale-free network of 32 nodes with the connectivity𝐾 = 5, 10, 15, and 17 or 8, 12, 16, and 20.

with the propagation of epileptic discharges. The findings
suggested that the small world functional connectivity may
have an intrinsic correlation with the synchronization of
local neural networks, which act as a possible mechanism of
epileptic seizure.
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