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A B S T R A C T   

In this study, we report the draft genome sequence of Bradyrhizobium sp. strain Oc8, a rhizobium isolated from 
Crotalaria ochroleuca,efficient in C. ochroleuca, C. juncea, C. spectabilis, and Cajanus cajan. The whole genome of 
the strain Oc8 contains 46 scaffolds, 8,283,342 bp, and 63.27% of GC content. Bradyrhizobium sp. Oc8 is an 
effective nitrogen-fixing bacterium with potential use as an inoculant for legumes used as cover crops and green 
manures.   

Rhizobia are Gram-negative bacteria belonging to alpha and beta- 
proteobacteria that establish nitrogen-fixing symbiosis with legumes. 
This association makes legumes self-sufficient in nitrogen (N) and 
important in ecological and economic terms (Lorite et al., 2018). The use 
of legumes as cover crops offers advantages for the environment and 
agriculture since they contribute N to the ecosystem through biological 
fixation (Berriel et al., 2020), increasing soil productivity and the yield 
of the subsequent cash crops (Mahama et al., 2016). Crotalaria ochro-
leuca, C. juncea, C. spectabilis and Cajanus cajan, used as cover crops 
associated with specific rhizobia have a potential to fix N (Oliveira et al., 
2007; Pereira et al., 2016; Berriel et al., 2020). These tropical forage 
legumes are nodulated by a relatively large group of rhizobia (Jorrin 
et al., 2021), and so their agronomic evaluation should include the 
rhizobia present in the soil. 

In this study, we report the draft genome of Bradyrhizobium sp. Oc8 
strain, isolated from a nodule of C. ochroleuca grown in soil of Uruguay 
(34.6 S, 55.6 W). Rhizobia isolation was carried out using the nodule 
squash technique (Gaunt et al., 2004) after surface sterilization ac-
cording to Batista et al. (2015). A drop of the resulting suspension was 
subsequently spread onto YEM agar medium (Vincent, 1970) and 
incubated at 28 ◦C for 4–5 days. Strain Oc8 was obtained by picking a 
single colony from the agar plate. The isolated strain was checked for its 

ability to nodulate its host plant C. ochroleuca, C. juncea, C. spectabilis 
and C. cajan as described by Batista et al. (2015). 

Oc8 strain was grown in a liquid YEM medium with 180 rpm orbital 
shaking for 24 h at 27 ◦C. Subsequently, genomic DNA was extracted 
using QIAamp DNA Micro Kit (QIAGEN, Germany). Whole-genome 
sequencing (Novaseq-Illumina, paired-end, PE, 2 × 151 bp) was per-
formed at Macrogen (Korea). Sequencing quality was visually inspected 
using FastQC (Andrews, 2010) and Trimmomatic (v0.36) (Bolger et al., 
2014) was used to discard/trim low-quality reads, keeping 94.35% of 
the initial PE (i.e., 10,379,129 PE reads). Unicycler (v0.4.7) was used for 
de novo contig assembly (Wick et al., 2017) yielding 63 contigs. After 
that, SSPACE (v2.1) was used for scaffolding (Boetzer et al., 2011). 
Assembly statistics, for both contig and scaffold level assemblies, were 
obtained using QUAST (v5.0.20) (Gurevich et al., 2013). While scaf-
folding generated a significant fragmentation reduction, it had no 
impact on main assembly metrics as the largest contig length, N50 or 
L50. Thus, the generated draft genome comprises 46 scaffolds, covering 
8283,342 bp (largest contig: 1882,916 bp; N50: 537,804 bp; L50: 5; N’s 
per 100,000 bp: 1.03). The GC content was estimated at 63.27%. Blastn 
(v2.5.0, Altschul et al., 1990) was locally run, with the NCBI RefSeq 
virus database (v5), in order to check for potential viral (phage) 
contamination. In addition, PlasmidFinder (v2.0.1, default parameters, 
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Carattoli et al., 2014) and plasmidSPAdes (v3.13.1, Bankevich et al., 
2012) were used to discard plasmid contamination. 

Benchmarking Universal Single-Copy Orthologs (BUSCO, v5.1.2) 
was used to assess the completeness of the assembly (dataset: bacter-
ia_odb10) (Simão et al., 2015). Of 124 BUSCOs, 123 were complete 
(123/124, 99.2%), while one was fragmented (shorter than expected). 
From the 123 complete BUSCOs 121 were single-copy and two were 
duplicated. Finally, prokka (v1.12) was used for genome annotation 
(Seemann, 2014), obtaining 7776 predicted coding sequencing (CDS), 3 
rRNA and 52 tRNA. Genome annotation was also carried out through 
Rapid Annotation Using Subsystem Technology (RAST) server (v2.0) 
(Overbeek et al., 2013). The most abundant subsystem was Amino acids 
and derivatives, followed by Carbohydrates. CDS related to N meta-
bolism stood out among genes of agricultural importance (Fig. 1). A 
complete view of the genome was generated using the CGView Server 
(Fig. 2) (Petkau et al., 2010). 

The 16S rRNA gene sequence was extracted from Oc8 genome using 
RNAmmer (Lagesen and Hallin, 2007) and it was BLASTed (Camacho 
et al., 2009) against the 16S rRNA gene sequence of each of the currently 
type strains available in Type Genome Server (TYGS) database 
(Meier-Kolthoff and Göker, 2019). Additionally, an extended 16S rRNA 
gene analysis, performed to detect not yet genome-sequenced type 
strains relevant to the study, was performed via the Genome-to-Genome 
Distance Calculator (GGDC) web server (Meier-Kolthoff et al., 2013). 
For maximum likelihood (ML) tree inference, rapid bootstrapping in 
conjunction with the autoMRE bootstopping criterion (Pattengale et al., 
2010) and subsequent search for the best tree was used. For maximum 
parsimony (MP) tree inference 1000 bootstrapping replicates were used 
in conjunction with tree-bisection-and-reconnection branch swapping 
and ten random sequence addition replicates. Since 16S rRNA gene se-
quences are conserved in Bradyrhizobium (Willems et al., 2001), phylo-
genetic analysis based on two housekeeping genes, recA and ftsA 

Fig. 1. Bacterial genome representation showing subsystem category distribution of coding sequences (CDS) from strain Oc8, generated through RASTtk pipeline. 
The number of CDS in the subsystem is shown in brackets. 
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(encoding for an actin-like protein involved in prokaryotic cell division) 
were also conducted, as recommended by Ormeño-Orrillo and Martinez 
(2019) and Kalita and Malek (2019), respectively. The recA and ftsA 
sequences obtained from the genome were compared with recA and ftsA 
sequences available in GenBank. Alignment and MP trees were con-
structed with the MEGA 7 software (Kumar et al., 2016). 

The extended 16S rRNA gene-based analysis indicated that the 
isolate is a Bradyrhizobium sp. (Fig. 3.). The ML bootstrapping converged 
after 950 replicates; the average support was 53.70%. MP analysis 
yielded the best score of 185 (consistency index 0.56, retention index 
0.84) and 50 best trees. The MP bootstrapping average support was 
49.35%. Gene comparisons of recA and ftsA sequences of Oc8 versus 

publicly available sequences showed lower than 94% and 96.67% of 
identity percentages, respectively, either with B. guangzhouense, B. 
guangdongense, B. diazoefficiens, and several others Bradyrhizobium sp. 
According to Ormeño-Orrillo and Martinez (2019), nucleotide identities 
of 98.2% for recA could be used as cutoff values to discriminate between 
described bradyrhizobial species. Kalita and Malek (2019) reported that 
the ftsA sequence similarity range from 80 to 97.4% between Bradyrhi-
zobium species (Fig. 4). Based on those reports, the strain Oc8 of Bra-
dyrhizobium does not show a close genetic relationship with any 
Bradyrhizobium species. 

Although our results showed that the phylogenies of ftsA and recA 
were congruent with a possible new species of Bradyrhizobium, 

Fig. 2. Circular bacterial genome containing coding sequences (CDS), tRNAs, rRNAs, and GC content skew. The map was generated using the CGView Server beta 
online software. 
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additional analysis should be performed to verify the taxonomic affili-
ation of strain Oc8. Next, we will determine measures of nucleotide-level 
genomic similarity, multilocus phylogenetic analysis, and character-
ization of biochemical and metabolic attributes. 

Data availability 

The draft genome sequences have been deposited in GenBank under 
the BioProject accession number PRJNA752993. The version described 
in this paper is the first version. 
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Fig. 3. ML tree inferred from sequences alignments of 16S rRNA sequences under the GTR+GAMMA model and rooted by midpoint-rooting performed via the GGDC 
web server (Meier-Kolthoff et al., 2013). The branches are scaled in terms of the expected number of substitutions per site. The numbers above the branches are 
support values when larger than 60% from ML (blue) and MP (red) bootstrapping. 
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