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ABSTRACT
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in chronic kidney
disease (CKD) patients. QT interval prolongation is a congenital or acquired condition that is
associated with an increased risk of torsade de pointes (TdP), sudden cardiac death (SCD), and
all-cause mortality in the general population. The prevalence of acquired long QT syndrome
(aLQTS) is high, and various acquired conditions contribute to the prolonged QT interval in
patients with CKD. More notably, the prolonged QT interval in CKD is an independent risk factor
for SCD and all-cause mortality. In this review, we focus on the epidemiological characteristics,
risk factors, underlying mechanisms and treatments of aLQTS in CKD, promoting the manage-
ment of aLQTS in CKD patients.
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Introduction

The QT interval represents electrical depolarization and
repolarization of the ventricles. QT interval prolongation
is a congenital or acquired condition that is associated
with an increased risk of TdP and sudden cardiac death
(SCD) in the general population. The prevalence of
acquired long QT syndrome (aLQTS) is high and
increases with the decline in kidney function in CKD
patients [1–8]. The QTc interval increases by an average
of 2.9ms for each milligram increase in serum creatin-
ine [3]. The risk of QTc prolongation is 1.20 times, 2.47
times and 3.35 times higher in CKD4, CKD5 and hemo-
dialysis patients, respectively, than in CKD3 patients.
CKD can cause a series of poor conditions, such as
water-electrolyte disturbance, metabolism disorder, and
uremic toxin accumulation, which can cause direct or
indirect damage to the cardiovascular system. CKD is
also known to impair drug disposition of renal elimi-
nated QT-prolonged medications that may lead to unin-
tended toxicity despite dose adjustment according to
the glomerular filtration rate (GFR) [9]. Thus, various fac-
tors contribute to aLQTS in CKD. The prevalence of all-
cause and cardiovascular mortality is significantly
increased in CKD patients with aLQTS [2,4,5,10–14].

QTc interval and aLQTS

The QT interval normally varies with heart rate. In this
regard, many attempts (Bazett, Fridericia, Framingham
and Hodges) have been made to ‘correct’ the QT interval
to a value that might be expected if the heart rate is 60
beats per minute. The commonly used correction formu-
las are the Bazett, Fridericia, Framingham, Hodges, and
Rautaharju formulas. The comparison of the superiority
among different kinds of correction formulas showed that
the Fridericia and Framingham formulas had the best cor-
rection, but the Bazett formula was the worst [15]. How
long is too long for QTc? Interpretation of the ECG states
that a QTc �450ms (males) or �460ms (females) is con-
sidered a prolonged QT interval. A QTc interval �500ms
is associated with a significantly increased risk of life-
threatening cardiac events in adulthood [16]. QT interval
prolongation can lead to TdP, which can result in SCD.
For each 10ms increase in the QT interval, there is a
5–7% increase in the risk of developing TdP, and every
20ms increase in QT substantially increases the risk of
TdP [17]. The acquired pathologic conditions that lead to
QT prolongation and TdP are complex and diverse.
Whereas prescription drugs account for the majority of
cases of aLQTS, other causes include postmyocardial
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infarction QT prolongation, electrolyte disturbance, and
intracranial bleeding (Table 1) [18–22,36,38–43].

The prevalence and outcomes of LQTS in CKD
patients (Table 2)

Prolonged QTc is common in patients with CKD [22]. In
a study following 6565 participants for a median of
13.3 years, 22.1% (n¼ 1452) had CKD, and 14.5%
(n¼ 956) had prolonged QTc. Prolonged QTc was pre-
sent in 12.9% (n¼ 658) of subjects without CKD and in
20.5% (n¼ 298) of those with CKD (p< .0001) [12]. In a
population of 154 patients with different stages of CKD,
QTc interval prolongation was present in 63.6%. The

QTc interval was significantly prolonged across increas-
ing stages of CKD severity. Among patients with stage
2, 3, 4, and 5 CKD, the QTc interval was prolonged in
45%, 59%, 59.3%, and 74.6%, respectively, and the QTc
interval was severely prolonged in 15%, 13.6%, 22%,
and 23.5%, respectively [3]. In addition, hemodialysis
can affect the QT interval, which has been indicated by
numerous clinical studies [2,5–7,11,33,34].

The prevalence of all-cause and cardiovascular mortal-
ity was significantly increased in CKD patients with aLQTS.
Hag et al. observed 280 patients who had been referred
for kidney transplant, and 47% died before kidney trans-
plant during the 40-month follow-up period. Patients with
a prolonged QTc (39%) had 1-, 3-, and 5-year death rates

Table 1. Risk factors for long QT syndrome.
Risk factors for long QT syndrome References Results

Age [18,19] Longer QTc was associated with increasing age.
Female gender [19] Female is a risk factor for QTc prolongation.
Smoking [18] Smoking is a risk factor for QTc prolongation.
Body mass index [18] High body mass index is associated with

prolonged QT interval.
Electrolyte disturbances
Hypokalemia [18,19] Hypokalemia is a risk factor for QT prolongation.
Hypocalcemia [18] Calcium treatment in patients with hypocalcemia

can significantly short the repolarization
interval and reduce the number of ventricular
premature complexes.

Hypochloremia [20] Hypochloremia is related with QT prolongation.
Hyponatremia [20] Hyponatremia is related with QT prolongation.

Drugs [21–26] The risk of drug-induced QTc interval
prolongation varies by drug and presence of
risk factors

Comorbidities
Cardiomyopathy; [18,19] Cardiomyopathy is a risk factor for QT

prolongation.
Congestive heart failure; [27,28] Patients with severe systolic HF had statistically

significant prolongation of the QTc interval.
The prevalence of LQTS was 63% in patients
with HF against 4.4% in normal populations

Left ventricular hypertrophy; [29,30] Myocardial hypertrophy induced by hypertension
can result in ‘reduced repolarization reserve’,
and thus a latent acquired LQTS

Diabetes; [31,32] The LQTS shows high prevalence in diabetic
patients and it could forecast cardiovascular
and all-cause death

Chronic kidney disease; [22,33,34] QT interval prolongation is prevalent in CKD and
hemodialysis patients

Liver failure; [20] Liver cirrhosis is a risk factor for QT
prolongation. QT prolongation is parallel with
the severity of liver dysfunction.

Autonomic dysfunction; [35] Cardiovascular autonomic neuropathy was
associated with prolongation of QT interval

Cerebrovascular accident [36] Electrocardiograph abnormalities are common in
intracerebral hemorrhage The most frequent
was ST depression, followed by left
ventricular hypertrophy, QTc prolongation,
and T wave inversion.

Depression [29] Depression is associated with QT prolongation.
Pulmonary disorders [29,37] Pulmonary disorders is associated with QT

prolongation.
Thyroid disturbances [34] High free thyroxine levels are associated with

QTc prolongation in male.

CKD: chronic kidney disease; LQTS: long QT syndrome.
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Table 2. The prevalence and outcomes of long QT syndrome in CKD patients.
First author and year Patients and follow-up Results

Nappi et al. [4] 23 ESRD patients were treated with different Caþþ

concentrations dialysate.
The QTc interval were measured before and after the three

sessions.
QTc increased after dialysis, which related with low Caþþ

concentrations dialysate (1.25mmol/L).
Beaubien et al. [14] 147 patients on maintenance HD (N¼ 49) or peritoneal

(N¼ 98) dialysis.
5–9 years of follow-up.

A prolonged QTdc (>74ms) was detected in 46.9% and 52% of HD
and peritoneal dialysis patients, respectively.

QTdc was associated with the presence of diabetes mellitus, mean
QT interval, corrected calcium levels.

QTdc was an independent predictor of total (RR ¼ 1.53) and CV
mortality (RR ¼ 1.57).

Maule et al. [33] 69 ERSD patients and 12 subjects with normal
renal function.

Compared to controls, ESRD patients showed a longer QTc
(p ¼ .016).

After the HD session, QTc increased in 56% and decreased in 43%
of the patients.

Familoni et al. [2] 42 patients on hemodialysis and 45 control subjects. The prevalence of prolonged QTc was higher in dialysis patients
compared with control subjects (p < .05).

The maximum QTc was longer than 440ms in 71.4% of patients
post-dialysis.

The in-hospital mortality was not statistically different between the
prolonged QTc group (73.3%) and normal group (66.7%) in
hemodialysis patients.

Kestenbaum et al. [13] 3238 participants with and without CKD.
9.2 years of follow-up.

Participants with CKD had longer QTc intervals compared with
those without CKD.

Each 5% increase in QTI was associated with a 42% (95% CI
1.23–1.65), 22% (95% CI 1.07–1.40) and 10% (95% CI 0.98–1.22)
greater risk of HF, CHD and mortality, respectively.

Patane et al. [1] Study present a case of torsade de pointes in an 82-year-
old Italian woman with chronic renal failure.

It reported that (QTc interval prolongation and torsade de pointes
are associated with ESRD and that they can be a cause of SCD
in ESRD.

Hage et al. [10] 280 ESRD patients evaluated for transplantation.
40 ± 28 months of follow-up.

39% of patients exhibited a prolonged QTc (460ms).
Patients with a prolonged QTc (39%) had 1-, 3-, and 5-year death-

rates of 12%, 36%, and 47%, respectively, vs 8%, 24%, and 36%
for those with normal QTc (p ¼ .03).

The prolonged QTc was an independent predictor of mortality in
ESRD patients (HR: 1.008)

Genovesi et al. [7] 122 patients undergoing HD were studied.
3.9 years of follow-up.

44 patients (36.0%) had a prolonged QTc.
51 patients died (41.8%), of whom 12 died for SCD.
In multivariate analysis, prolonged QTc (HR ¼ 2.16) were

independently associated with total mortality and SCD.
Khosoosi et al. [5] 58 patients with chronic renal disease on chronic HD. The

QTc was assessed 30minutes before and after HD.
The mean of corrected QTc intervals increased significantly from

423.45 ± 24.10 to 454.41 ± 30.25ms (p < .05).
The changes in serum potassium and calcium levels were related

with QT interval prolongation.
Flueckiger et al. [11] 930 adult ESRD patients evaluated for renal

transplantation.
3.1 years of follow-up.

456 patients (49%) had a prolonged QTc.
108 (11.6%) patients died.
Patients with 2 or more ECG interval prolongations had a 2.5-fold

increased likelihood of dying vs. patients with no ECG interval
prolongations (HR 2.53).

Sherif et al. [3] 154 CKD patients without structural heart disease or
medications that are known to prolong QT interval.

QTc interval prolongation was present in 63.6%
of the cases (63% of females and 64% of males), and severely

prolonged (>500ms) in 19.5% (19.4% of females and 19.6% of
males).

QTc interval was significantly prolonged across increasing stages of
CKD severity (p < .006).

Malik et al. [12] Study followed 6565 participants with and without CKD.
13.3 years of follow-up.

CKD group had prolonged QTc than those without CKD
(20.5%vs12.9%, p < .0001).

Both prolonged QTc and CKD are independently associated with
increased risk of mortality.

When combined, risk of mortality is higher in those with CKD by
eGFR with prolonged QTc than normal QTc (HR 2.6) and (HR 3.1)
vs (HR 1.4) and (HR 1.7) for all-cause and CV mortality.

Liu et al. [8] The prevalence of aLQTS was evaluated in 804
CKD patients.

The prevalence of aLQTS is much higher and increases with the
decline of kidney function in hospitalized CKD patients, which is
related to older age, impaired kidney function, hemodialysis,
serum potassium and low LVEF.

LQTS: acquired long QT syndrome; CHD: coronary heart disease; CKD: chronic kidney disease; CV: cardiovascular; ECG: electrocardiograph; eGFR: estimated
glomerular filtration rate; ESRD: end-stage renal disease; HD: hemodialysis; HF: heart failure; HR: hazard ratio; LVEF: left ventricular ejection fraction; QTc:
corrected QT; QTd: QT dispersion; QTdc: corrected QT dispersion; QTI: QT prolongation index; SCD: sudden cardiac death.
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of 12%, 36%, and 47%, respectively, vs 8%, 24%, and 36%
for those with normal QTc, respectively (HR ¼ 1.008, 95%
CI: 1.001–1.014, p¼ .016) [10]. Gen et al. observed 122
patients undergoing hemodialysis and prolonged basal
QTc was present in 44 patients (36%). The prolonged QTc
(HR ¼ 2.16, 95% CI: 1.20–3.91, p¼ .011) interval was an
independent predictor of mortality in ESRD regardless of
age, sex, diabetes, left ventricular hypertrophy (LVH), left
ventricular ejection fraction or the presence of coronary
artery disease on angiography [7].

Causes and mechanisms of QT interval
prolongation in CKD

Diabetes mellitus
Diabetes accounts for 30–50% of all cases of CKD and
affects 285 million (6.4%) adults worldwide [44]. The
aLQTS shows a high prevalence in diabetic patients,
and it can predict cardiovascular and all-cause death
[31,32,34]. The prevalence of aLQTs in diabetic patients
is variable from 19% to 44% in different studies. Again
both of these studies are overestimating the prevalence
of QT prolongation by taking definition as >440ms,
whereas actual definition is >460ms in females and
>450ms in males [31,32]. The QTc is approximately
11ms longer in diabetes patients with nephropathy
than in those without. Prolonged QTc is a significant
marker for the progression of albuminuria in people
with diabetic nephropathy. Compared with normoalbu-
minuria, QTc in patients with microalbuminuria or mac-
roalbuminuria was significantly longer, and QTc was
prolonged as urinary albumin excretion increased (nor-
moalbuminuria vs microalbuminuria 425 ± 19ms vs
435 ± 23ms, p¼ .01; normoalbuminuria vs macroalbu-
minuria 425 ± 19ms vs 442 ± 24ms, p¼ .0005) [45]. In
diabetes, metabolic abnormalities such as hypergly-
cemia, hyperinsulinemia, hyperlipidemia, and decreased
GLP-1 levels can cause activation of the renin-angioten-
sin system, cardiac autonomic neuropathy, and altera-
tions in calcium homeostasis, leading to myocardial
hypertrophy and fibrosis [46]. Abnormalities in metabol-
ism can increase oxidative stress. Oxidative stress is the
major metabolic mechanism involved in hERG Kþ dys-
function, and it can cause a prolonged diabetic QTc
interval and action potential duration (APD) [37,46]. In
the setting of insulin resistance, a prolonged QTc inter-
val may be related to the defective inactivation of ICaL
caused by the decreased protein expression of Cav1.2
and calmodulin [47]. Acute application of insulin con-
centration-dependently suppressed IKs currents and led
to prolongation of the ventricular APD, which was
reflected as QT prolongation on ECG [48].

Hypertension
There is a bidirectional relationship between hyperten-
sion and CKD. Hypertension can occur as the result of
CKD, and it is also an important risk factor for CKD pro-
gression. Myocardial hypertrophy induced by hyperten-
sion can result in reduced repolarization reserve. The
prevalence of myocardial hypertrophy is between 16%
and 31% in CKD [29]. Adeseye et al. assessed 210 sub-
jects, of which 140 were new-onset hypertension
patients and 70 constituted the control group. The pro-
portion of QT prolongation was 52.14% in the hyper-
tension group and 21.43% in the control group
(p< .05). The definition of prolong QT interval is
>460ms in female and >450ms in males. However,
this study uniformly defined QT prolongation for men
and women was 440ms, which undoubtedly overesti-
mated the number of patients with prolonged QT inter-
val in hypertensive [30]. The definition of QT
prolongation is different in different studies, so the esti-
mated prevalence of QT prolongation in hypertension
is also different. But it is undeniable that hypertension
is a significant risk factor for prolonged QT [49–52]. The
prolongation of QT interval in hypertension is affected
by various factors such as cardiomyocyte hypertrophy,
changes in the autonomic nervous system and acute
alterations in blood pressure (BP) [50,52,53]. QT interval
was prolonged in hypertensive subjects with LVH,
which may be explained by the heterogeneity of ven-
tricular repolarization in greater ventricular mass [51].
The prolonged QT interval also existed in patients with-
out LVH. Someone thought the QT prolongation was
related to increased left ventricular mass (LVM) which
existed prior to the development of LVH. However, it is
still unclear when hypertension lead to LVM and QT
prolongation begin to manifest [50,51]. The downregu-
lation of several K channels responsible for repolariza-
tion could contribute to the prolongation of APD in
cardiac hypertrophy [54]. The changes of the autonomic
nervous system and acute alterations in BP were associ-
ated with the QT prolongation in hypertension.
However, the mechanism needs further study [50,52].

Heart failure
The prevalence of LQTS in patients with heart failure is
60–70.2% [27,28]. Abnormalities of left ventricular func-
tion are common in people with CKD, and the inci-
dence increases with the decline in kidney function
[55]. Heart failure (HF) in people with CKD is mainly
caused by pressure load, volume load and CKD-related
nonhemodynamic factors. Nonhemodynamic factors
associated with CKD include hyperkalemia, neuroendo-
crine disorders, and accumulation of toxic metabolites

RENAL FAILURE 57



[56]. The potential for dysfunctional IKr and IKs [57] and
the decay of ICa-L in HF prolong the plateau of APD. In
addition, the Naþ/Ca2þ exchanger (NCX) also plays a
prominent role in modulating the APD in myocytes in
failing hearts [58]. Late INa is an integral part of the
sodium current, which persists long after the fast-inacti-
vating component and could contribute to the pro-
longation of the APD [59]. Late INa is significantly
increased in myocardial cells from failing human hearts
and selected inhibition of late INa is effective in shorten-
ing the QT interval and reducing ventricular arrhythmo-
genic activity [60]. The dysfunction of these ion
channels may also explain why people with HF are
more susceptible to drug-induced LQTS than normal
individuals. For example, the incidence of TdP caused
by ibutilide was between 5.9% and 11.4% in patients
with left ventricular dysfunction and between 1.7% and
4.1% in normal individuals [61].

Uremic toxins
Uremic retention compounds with harmful biological or
biochemical activity are defined as ‘uremic toxins’, which
include urea, creatinine, phosphorus, parathyroid hor-
mone (PTH), fibroblastic growth factor-23 (FGF23),
indoxyl sulfate (IS) and homocysteine [62]. Multiple linear
regression analysis revealed that serum uric acid was sig-
nificantly associated with both HR and QTc (p ¼ .0061, a
¼ .01) [63]. High concentrations of uric acid can increase
inflammatory responses and oxidative stress, which can
affect myocardial electrophysiological properties and
increase the incidence of arrhythmic events [64].
Hyperphosphatemia is associated with cardiac fibrosis
and myocardial hypertrophy, which can prolong the QT
interval. The average differences in QT interval duration
in adjusted models comparing the highest vs. the lowest
quartiles of serum phosphorus were 3.9ms (95% CI
2.0ms to 5.9ms; p for trend <.001) in NHANES III study.
In ARIC, the average differences in QT interval duration
in adjusted models comparing the highest versus the
lowest quartiles of total phosphorus were 2.3ms (95% CI
1.3ms to 3.3ms; p for trend <.001) [65].
Hyperphosphatemia can stimulate PTH release. Palmeri
et al. showed that PTH could prolong phase 2 of the
APD, independent of serum calcium levels, both in ani-
mals and in patients with coronary artery disease [66].
Evidence from basic research has shown that PTH con-
tributes to four major cardiovascular effects: contractile
disturbance, cardiomyocyte hypertrophy, cardiac intersti-
tial fibrosis and the vasodilatory effect [62]. Patch-clamp
studies in animal models have demonstrated a modulat-
ing effect of PTH on cardiac repolarization through
changes in both serum and intracellular calcium

concentrations [67]. Low serum klotho levels and high
FGF23 levels resulting from high phosphate loading
accelerate the progression of LVH, cardiac fibrosis, car-
diac mechanical dysfunction and cardiac arrhythmias
[62,68,69]. IS can downregulate KI channel activity and
increase the APD, further prolonging the QT interval
[70,71]. The concentration of serum homocysteine grad-
ually accumulates with the decline in renal function in
patients with CKD [72]. Plasma levels of homocysteine
and 12-lead ECGs were assessed in a population-based
study of 7002 participants (3260 males and 3742
females) 35 years of age and older. They found the mean
homocysteine levels among participants who had QTc >
440ms were higher than those who had QTc � 440ms
(p¼ .031). However, this study showed that the pro-
longed QT was related to both high and low homocyst-
eine levels [73]. Hyperhomocysteinemia can affect the
synchronization of myocardial contraction, reflected by
the prolongation of the QRS and QT interval on electro-
cardiogram. Cardiac remodeling induced by matrix met-
alloproteinase-2 and matrix metalloproteinase-9 and
decreased expression of connexin 40, 43, and 45 appear
to play a role in the pathomechanism of QT prolonga-
tion in hyperhomocysteinemia [74]. The relationship
between homocysteine and QT interval needs fur-
ther studies.

Electrolyte disorder and hemodialysis
Hemodialysis is a therapeutic procedure that uses the
extracorporeal circulation of blood to ameliorate the
azotemia, fluid, electrolyte, and acid–base abnormalities
that are characteristic of uremic syndrome. In dialysis
patients, a number of small studies using ambulatory
electrocardiography showed that the QT interval was
increased in the hemodialysis population compared
with that in healthy controls during dialysis [2,5–7,11].
Electrolyte disorder, hypoperfusion and rapid changes
in intra- and extracellular electrolytes during dialysis,
particularly changes in potassium, magnesium and cal-
cium, might account for the QT prolongation [2,4,5].

Hypokalemia is a risk factor for a prolonged QT inter-
val, and its prevalence in CKD is 12%–18% [75,76]. Low
potassium can be caused by low dietary potassium
intake, malnutrition, chronic diarrhea, or the use of pre-
scription drugs [77]. Furthermore, with the use of a low
potassium dialysate, Kþ is removed mainly from the
extracellular space and only slightly from the intracellu-
lar space; thus, the extracellular potassium level
decreases too abruptly, and the intracellular/extracellu-
lar potassium ratio increases rapidly [78].

Hypomagnesaemia is common in CKD patients and is
linked to the increased risk of development of coronary
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artery disease as well as the major cardiovascular risk fac-
tors such as dyslipidemia, endothelial dysfunction, meta-
bolic syndrome, atherosclerosis, diabetes, hypertension
and elevated fasting insulin levels, suggestive of insulin
resistance [79]. Magnesium is a cofactor for sodium-
potassium ATPase activity. By facilitating the influx of
potassium into cells, magnesium stabilizes the mem-
brane potential. Hypomagnesemia impairs the function
of the sodium–potassium ATPase pump, leading to
reduced intramyocyte potassium concentrations [80].
However, a recent review article showed that hypomag-
nesemia is not a risk factor for prolong QT interval [81].
MgSO4 can prevents the recurrence of TdP without
changing the QT interval. The mechanism of action of
MgSO4 is not well understood.

Calcium is crucial for the entirety of the APD. The
inward calcium current is a depolarizing current that pro-
longs the ventricular APD, and it can influence calcium
channels and electrogenic exchangers in myocardial cells
[65]. CKD can destroy the balance of calcium in vivo and
can cause a variety of changes in Ca2þ regulatory mecha-
nisms. Prevalence of hypocalcemia in CKD patients is
high and is strongly correlated with prolong QTc [81].
Calcium treatment in patients with hypocalcemia can sig-
nificantly shorten the repolarization interval and reduce
the number of ventricular premature complexes [82].

Hypertension is highly prevalent and difficult to con-
trol in patients with long-term dialysis. Although 89%
of these patients undergo treatment, only 38% have
adequate control of their hypertension [83]. The ultrafil-
tration was associate with the change of QT interval
before and after HD [71]. However, rapid fluid clearance
during hemodialysis may result in a sharp decrease in
circulating volume, leading to hypotension, tissue ische-
mia, cardiac remodeling and arrhythmia [84]. A system-
atic literature showed the prevalence of intradialytic
hypotension was 10.1% and 11.6% for the European
Best Practice Guideline (EBPG) definition and the Nadir
<90 definition, respectively [85]. The intradialytic hypo-
tension was an independent risk factor for cardiovascu-
lar morbidity and mortality in hemodialysis patients
[86]. Transient myocardial ischemia caused by intradia-
lytic hypotension can result in myocardial stunning [87].
Furthermore, circulating endotoxin was found to be
grossly elevated in stage 3–5 CKD patients, with a fur-
ther increase in endotoxemia in the HD population,
also correlating with the increased severity of myocar-
dial stunning (R¼ 0.44, p¼ .035) [88]. Calcium overload
and reactive oxygen species (ROS) generation were two
main mechanisms of myocardial stunning [87]. ROS has
significant relationship with myocardial fibrosis [89].
Nowadays, myocardial native T1 times on cardiac MRI

have been shown to be a surrogate marker of myocar-
dial fibrosis [90]. Elaine et al. found QTc was positively
correlated with septal T1 in ESRD patients on hemodi-
alysis (Spearman’s R¼ 0.376, p¼ .045) [91].

Autonomic dysfunction
Cardiovascular autonomic neuropathy (CAN) affects
both the heart rate and ventricular repolarization. A
decrease in heart rate variability and an increase in QTc
are the initial signs of CAN. Cardiac sympathetic over-
drive decreases vagal control in CKD. The association
between CAN and GFR is curvilinear [92]. Autonomic
neuropathy is associated with prolonged QT in dia-
betes, which may be due to the uneven sympathetic
innervation of the heart, leading to uneven duration of
ventricular depolarization and repolarization. However,
there was no significant relationship between auto-
nomic neuropathy and QT prolongation in ESRD
[33,35]. The presence of other factors that prolong QT
in patients with ESRD may affect the contribution of
autonomic neuropathy to QT prolongation. Meanwhile,
the effect of autonomic neuropathy on QT prolongation
in patients with early stage of CKD has not
been studied.

Drugs
CKD patients are often prescribed many medications
with the potential of prolonging the QT interval [93].
Drug pharmacokinetics are complex in patients with
CKD. Renal excretion of many commonly used medica-
tions is decreased in CKD which makes these medica-
tions to cause much more QT interval prolongation
[21]. Kidney transplantation can correct electrolyte
abnormalities, reverse myocardial remodeling and
improve autonomic nerve function, which may be
related to QT interval shortening in CKD patients
[94,95]. However, the QT interval was measured only
after two weeks, and the effect of immunosuppressive
drugs on the QT interval was not assessed [96]. In one
study, QT interval prolongation was caused by immuno-
suppressive drugs (tacrolimus, cyclosporine A, everoli-
mus and azathioprine) in the long-term follow-up of
kidney transplant patients [23]. We summarize the
drugs known to cause TdP that require dose adjust-
ment in patients with chronic kidney disease (Table 3)
[21,22,24–26,97–99].

Management of aLQTS in CKD

The elimination of QT prolonging risk factors is the
cornerstone of aLQTS management. However, the risk
factors for QT prolongation are sometimes difficult to
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avoid, in which case regular ECG monitoring and neces-
sary interventions are important, especially in patients
who have had TdP. Interventions with aLQTS with TdP
include maintenance of high normal serum potassium
levels, intravenous magnesium, isoproterenol infusion,
and temporary transvenous ventricular pacing. It is
worth noting that different interventions are needed
depending on the presence of TdP.

QT prolongation without TdP
Typically, the development of severe QT prolongation
or TdP requires several precipitating factors to occur in
combination to overcome a ‘repolarization reserve’ gen-
erated by the presence of multiple cardiac channels.
Patients with QT prolongation in the absence of

Table 3. Drugs known to cause torsade de pointes that
require dose adjustment in patients with chronic kid-
ney disease.
Drugs References

Antiarrhythmics: Amiodarone; Disopyramide;
Dofetilide; Ibutilide; Procainamide; Quinidine;
Sotalol; Flecainide

[21,22,97]

Antibiotics: Chloroquine; Ciprofloxacin;
Clarithromycin Erythromycin; Halofantrine;
Pentamidine; Sparfloxacin; Antipsychotics;
Chlorpromazine; Fluconazole; Levofloxacin

[21,22,24,25,97]

Haloperidol: Mesoridazinea; Pimozide; Thioridazine [21,22,97]
Antinauseants: Domperidone; Droperidol [21,22]
Antineoplastic: Arsenic trioxide; Vandetanib; Eribulin [26,98,97]
Gastric promotility: Cisapridea [21,22,97]
Opiates: Methadone; Levomethadyl [22,97]
Antihistamines: Terfenadinea; Astemizolea [21,97]
Immunosuppressive drugs: Tacrolimus;

Cyclosporine A; Everolimus; Azathioprine
[93]

CKD: chronic kidney disease; TdP: torsades de pointes.

Table 4. Treatment of torsades de pointe.
Treatments Characteristics Mechanism

Magnesium sulfate Magnesium sulfate is currently recommended as immediate
first line treatment for TdP.

In the treatment of TdP, 2 g of magnesium sulfate in adults
(25–50mg/kg up to 2 g in children) is given over
60 seconds. This dose may be repeated in 5–15minutes
for refractory dysrhythmias. Continuous infusion of up to
3–10mg/min in adults may also be started for persistently
refractory dysrhythmias

The most prominent adverse effect is flushing, but nausea
and vomiting, hypotension and drowsiness can occur with
higher doses.

Magnesium may reduce EAD by inhibiting the late calcium
influx via L-type calcium channels that are associated with
delayed ventricular repolarization.

Magnesium stabilize the membrane potential by facilitating
potassium influx, correcting dispersed repolarization
without shortening the action potential duration.

Potassium Potassium was always be considered, although there is little
evidence to support this practice.

Repletion of potassium to levels of 4.5–5mmol/L.

The potassium is an important adjunct to intravenous
magnesium for the short-term prevention of torsade
de pointes.

Isoproterenol Case reports suggest benefit.
For refractory TdP, initial dosing of isoproterenol is

0.5–1.0lg/min in an adult and 0.1lg/(kg min) in a child.
Upper limit of dosing is 20lg/min in an adult and 1.5lg/
(kg min) in a child.

Isoproterenol may be fatal if given to patients with a
ventricular tachycardia that is not TdP.

Isoproterenol shortens the QT interval and effective refractory
period. Suppress EAD and TdP by enhancing outward Kþ

currents, accelerating heart rate and repolarization, and
shortening the action potential duration.

Lidocaine Case reports suggest benefit. Lidocaine is Class Ib antiarrhythmic drug.
Lidocaine may enhance outward Kþ currents to short the QT

interval.
Lidocaine may also partially result from the inhibition of

conduction of EAD from the Purkinje network to
the myocardium.

Phenytoin Case reports suggest benefit. Phenytoin is Class Ib antiarrhythmic drug.
The phenytoin include the decrease in ventricular

automaticity especially in Purkinje fibers and a central
antiarrhythmic effect through decrease in sympathetic
discharge and increase in the atrioventricular conduction
velocity in addition to blocking calcium-dependent
depolarization in the plateau phase of action potential
favoring repolarization of Purkinje fibers and preventing
EAD and inhibiting EAD conduction from the Purkinje
network to the surrounding myocardium.

Atropine Case reports suggest benefit.
Atropine may induce paradoxical bradycardia, increasing the

risk of TdP.

Atropine is expected to increase the heart rate, thereby
shortening the QTc interval and suppressing
the arrhythmia.

Mexiletine Case reports suggest benefit.
Mexiletine may be an effective treatment approach to

terminate refractory TdP from several acquired causes
of LQTS.

Mexiletine is Class Ib antiarrhythmic drug.
Mexiletine is also a potent blocker of INa-L, which is effective

in abbreviating repolarization, decreasing dispersion of
repolarization, suppressing EAD, and preventing TdP.

Transvenous pacing Case reports suggest benefit.
Refractory TdP may be amenable to cardiac pacing.

A ventricular rate of 90–110 bpm is sufficient to eliminate
ventricular ectopy, and some patients may require heart
rates as high as 140.

EAD: early after depolarization; LQTS: long QT syndrome; TdP: torsades de pointes.
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observed TdP episodes should undergo continuous
ECG monitoring. The frequency of QT monitoring
depends on the clinical situation and the extent of QT
prolongation. The necessary interventions need to be
performed immediately when accompanied by ECG
signs of impending TdP, such as QTc prolongation
>500ms, QT-U prolongation and distortion after a
pause, onset of ventricular ectopy and couplets, macro-
scopic T-wave alternans (TWA), or episodes of poly-
morphic ventricular tachycardia that are initiated with a
short-long-short R-R cycle sequence [100]. Appropriate
interventions include removal of risk factors and cor-
recting the electrolyte abnormalities [101]. Magnesium
administration does not shorten the QT interval, and
the administration of intravenous magnesium to
patients with QT prolongation in the absence of TdP is
probably unnecessary [102].

QT prolongation with TdP
Most TdP can terminate spontaneously. However, for
patients with TdP that does not terminate spontan-
eously or that degenerates into ventricular fibrillation,
immediate direct-current cardioversion should be per-
formed [103]. The treatments, such as removal of the
offending causes, the maintenance of a high-normal

serum potassium level and the use of intravenous mag-
nesium, anti-arrhythmic drugs or cardiac pacing are
beneficial for terminating TdP (Table 4) [103–110].

Mexiletine has a significant therapeutic effect on refrac-
tory TdP and that it can shorten the QT interval of the
basic ECG. The enhanced late sodium channel currents
(INa-L) can potentially cause pro-arrhythmic phenotypes
[111]. Enhanced INa-L can be observed in acquired condi-
tions, such as hypertrophic cardiomyopathy, heart failure
and drug-induced arrhythmias [112,113]. Mexiletine, a
Vaughan-Williams class Ib antiarrhythmic agent, can
shorten the APD by selectively suppressing INa-L without
affecting QRS duration [59]. We once reported that 12
patients with refractory TdP secondary to aLQTS were
treated with oral mexiletine, 150–450mg/day orally. In
these patients, mexiletine could terminate the acute TdP
and shorten the QTc interval (Figure 1) [109].

Summary

CKD is a growing public health problem. QT interval
prolongation is responsible for CVD, especially SCD,
which is a major cause of death in the CKD population.
Numerous factors such as diabetes mellitus, hyperten-
sion, heart failure, electrolyte disorder, uremic toxins,

Figure 1. Electrocardiogram (ECG) strips of four patients with long QT premexiletine, followed by torsade de pointes (TdP) and
postmexiletine ECG strips. In patient A, the postmexiletine ECG was recorded 24 h after the first dose and after a total administra-
tion of 400mg. In patient B, the post-mexiletine ECG was recorded 15 h after the first dose and after a total administration of
300mg. In patient C, the postmexiletine ECG was recorded 25 h after the first dose and after a total administration of 600mg of
mexiletine. In patient D, the postmexiletine ECG was recorded 23 h after the first dose and after a total administration of 600mg.
Note that all four episodes of TdP occurred following a long-short interval. (With permission from Xiaolin Xue [109]).
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hemodialysis and drugs can influence the repolarization
of cardiac cells in CKD. However, there is still a lack of
how to improve the dilemma of QT prolongation in
patients with kidney disease. Especially like a wide var-
iety of uremic toxins, their effects on myocardial
depolarization and repolarization are not well under-
stood. The traditional treatment of aLQTS patients with
TdP includes removal of the offending causes, the
maintenance of a high-normal serum potassium level
and the use of drugs. The management of aLQTS in
CKD patients still needs further exploration.
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