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OSA is often associated with excessive daytime sleepi-
ness, impaired daytime function, metabolic dysfunction, 
and an increased risk of cardiovascular disease and mortal-
ity [2]. Several studies have shown significant correlations 
between OSA and metabolic abnormalities. These correla-
tions have been found to cause or worsen various metabolic 
disorders. Diabetes mellitus (DM) is a common metabolic 
disorder [3]. In recent years, both domestic and interna-
tional research has extensively investigated the mechanisms 
underlying the association between OSA and DM. Factors 
such as increased sympathetic nervous activity, intermittent 
hypoxia, hypothalamic-pituitary-adrenal axis dysfunction, 
systemic inflammation, and adipocytokines due to OSA 
contribute to heightened insulin resistance [4]. Addition-
ally, autonomic dysfunction in diabetic patients is linked 
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Obstructive sleep apnea (OSA) is a disorder that is char-
acterized by obstructive apneas and hypopneas due to 
repetitive collapse of the upper airway during sleep [1]. 
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Abstract
Background The pathophysiology of obstructive sleep apnea (OSA) and diabetes mellitus (DM) is still unknown, despite 
clinical reports linking the two conditions. After investigating potential roles for DM-related genes in the pathophysiology of 
OSA, our goal is to investigate the molecular significance of the condition. Machine learning is a useful approach to under-
standing complex gene expression data to find biomarkers for the diagnosis of OSA.
Methods Differentially expressed analysis for OSA and DM data sets obtained from GEO were carried out firstly. Then four 
machine algorithms were used to screen candidate biomarkers. The diagnostic model was constructed based on key genes, 
and the accuracy was verified by ROC curve, calibration curve and decision curve. Finally, the CIBERSORT algorithm was 
used to explore immune cell infiltration in OSA.
Results There were 32 important genes that were considered to be related both in OSA and DM datasets by differentially 
expressed analysis. Through enrichment analysis, the majority of these genes are enriched in immunological regulation, 
oxidative stress response, and nervous system control. When consensus characteristics from all four approaches were used 
to predict OSA diagnosis, STK17A was thought to have a high degree of accuracy. In addition, the diagnostic model dem-
onstrated strong performance and predictive value. Finally, we explored the immune cells signatures of OSA, and STK17A 
was strongly linked to invasive immune cells.
Conclusion STK17A has been discovered as a gene that can differentiate between individuals with OSA and DM based 
on four machine learning methods. In addition to offering possible treatment targets for DM-induced OSA, this diagnostic 
approach can identify high-risk DM patients who also have OSA.
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to increased central chemoreceptor sensitivity to CO2 and 
decreased peripheral chemoreceptor sensitivity to CO2 [5]. 
Only about 30% of these patients may exhibit OSA, but 
without periodic breathing or central sleep apnea. There-
fore, a more profound exploration of the pathophysiological 
mechanisms between OSA and DM is needed to guide clini-
cal management and treatment [6].

The International Diabetes Federation underscored the 
close relationship between obstructive sleep apnea (OSA) 
and diabetes mellitus (DM) in 2008. Studies have demon-
strated that 30% of OSA patients concurrently suffer from 
diabetes, and the prevalence of OSA among individuals 
with DM can reach up to 80% [7]. The combined damage 
to target organs from both conditions exacerbates treatment 
complexity, as monotherapy often fails to achieve satisfac-
tory therapeutic outcomes [8, 9]. In the last decade, it has 
been recognized that OSA is very common in patients with 
DM and that metabolic disorders such as insulin resistance, 
glucose tolerance abnormalities, and DMs are also common 
in patients with OSAs [10].The intermittent hypoxemia and 
repetitive awakenings of OSA trigger a series of pathophys-
iological events, including activation of the sympathetic 
nervous system, increase in oxidative stress, alterations of 
pro-adrenocorticotropic function, and inflammatory reason 
of adipocytokines [11].These pathophysiologic changes 
alter normal glucose homeostasis and may increase the 
risk of developing DM [12, 13]. Conversely, DM results 
in abnormalities in ventilation and upper airway neural 
control, and causes peripheral neuropathy, which acceler-
ates the progression of OSA [14]. Furthermore, OSA may 
be exacerbated by oxidative stress activation, inflammatory 
pathways, and aberrant autonomic nervous system activity, 
which are linked to DM [15].Consequently, the develop-
ment of a more thorough diagnostic approach is crucial for 
the early detection of DM illnesses linked to OSA patients.

With abundant resources, machine learning is a young 
subject that can handle massive, complicated, and varied 
amounts of data [16]. In recent studies, machine learn-
ing has provided significant insights into sleep research, 
neurophysiology, and the diagnosis and treatment of dis-
eases [17]. Our capacity to identify pertinent aspects from 
gene expression profiles in big, high-dimensional data has 
steadily improved. In this work, we gathered two OSA 
datasets and two DM datasets from the Gene Expression 
Omnibus (GEO) database, and we used a variety of inte-
grated bioinformatics methods to identify the key genes 
and putative processes of OSA-associated DM. Further-
more, we verified the pivotal gene’s expression pattern and 
used machine learning to create a diagnostic column-line 
graph model for OSA prediction based on the pivotal gene 
(STK17A) found in the OSA-associated pathogenic genes. 
In order to identify the relationship between the critical gene 

and the immunological environment, we lastly investigated 
the immune cellular signature of OSA.

Materials and methods

Microarray data

The two OSAs datasets GSE135917, GSE75097 and the 
DMs datasets GSE41762, GSE25724 were obtained from 
the NCBI Gene Expression Synthesis (GEO) database, 
which is available from https:/ /www.nc bi.nlm. nih.g ov/geo/.

Microarray data processing

After preparing the data for each disease, the Limma (A 
package used to identify differentially expressed genes) was 
used to correct, normalize, and log2 transform the original 
microarrays from the GSE135917 and GSE41762 datasets. 
And screened the differentially expressed genes in OSA and 
DM in the experimental group compared with the control 
group. In this analysis, the cutoff values for screening differ-
entially expressed genes were set at P < 0.05 and|log2 fold 
change (FC)| > 0.585.

Gene Ontology (GO) enrichment analysis of 
differential genes

Functional classification of genomic data, such as biological 
processes, cellular components, and molecular functions, 
can be obtained using the GO database. GO analysis is thus 
a method for defining the role of genes and proteins.

Gene set enrichment analysis (GSEA) enrichment 
analysis

GSEA approach uses a gene list sorted by phenotypic sig-
nificance to evaluate the trend of gene distribution in a pre-
set gene set. This helps clarify whether the genes in these 
groups show significant enrichment in biologically relevant 
processes.

Machine learning

Four machine learning techniques were employed to fur-
ther hone in on the possible genes connected to DM that 
OSA patients should consider. Because of its unrestricted 
variable conditions and exceptional accuracy, sensitivity, 
and specificity. Random Forest (RF) is a good choice for 
continuous variables and consistently produces reliable pre-
dictions. Support Vector Machine Recursive Feature Elimi-
nation (SVM-RFE) is based on the SVM maximum interval 
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principle. In the first iteration, all of the dataset’s feature sets 
are optimized for SVM model training, and after that, scores 
are calculated for each feature in descending order. The gra-
dient boosting technique is the foundation of the integrated 
learning model eXtremeGradient Boosting (XGB). By 
repeatedly training several weak classifiers and using gradi-
ent descent to optimize the loss function, it builds powerful 
splitters. XGB handles structured data and large-scale data-
sets with accuracy, efficiency, and good performance. Gen-
eralized linear modeling (GLM) is a popular nonparametric 
statistical technique for modeling discrete data. The link 
between continuous and categorical variables, as well as 
situations in which the dependent variable is a binary, mul-
tivariate, or counting variable, can all be handled by GLM.

Construction of Nomograms and evaluation of 
diagnostic marker prediction models

Nomogram is an effective tool for integrating multiple indi-
cators to predict the occurrence and progression of diseases. 
It was constructed using the ‘RMS’ package based on the 
hub gene. Area curves under receiver operating character-
istic (ROC) were plotted to assess the performance of the 
hub gene and nomogram in the diagnosis of OSA. In addi-
tion, ROC curves were performed to determine whether 
decision-making based on nomograms favored the diagno-
sis of OSA. Finally, calibration curve and decision curve 
analysis (DCA) were employed to evaluate the efficiency of 
the nomogram’s prediction for DM related to OSA.

Immune infiltration analysis

The degree of immune cell infiltration in the OSA gene 
expression profile was evaluated using the CIBERSORT 
software. Wilcoxon test was used to compare the proportion 
of 22 kinds of immune cells between OSA and non-OSA 
groups, and P < 0.05 was statistically significant. Finally, 
a Spearman’s rank correlation coefficient analysis showed 
a statistically significant correlation between the expres-
sion of diagnostic biomarkers and the number of invading 
immune cells at P < 0.05.

Results

Identification of differential genes

In GSE135917,446 DEGs were screened from OSA samples 
and normal controls, of which 263 up-regulated genes and 
183 down-regulated genes were screened. Meanwhile, in 
the GSE41762 dataset, 2506 differentially expressed genes, 
including 1152 upregulated genes and 1354 downregulated 

genes, were obtained by analyzing DM samples and normal 
controls. Then, the overall distribution of the two data sets 
and the DEG are represented by principal component analy-
sis, volcano and heat maps (Fig. 1.A-F), respectively. There 
were 32 overlapping genes in the two data sets, includ-
ing 22 up-regulated genes and 10 down-regulated genes 
(Fig. 1.G-H).

Functional enrichment of OSA-related DM-related 
disease-causing genes

We used GO functional enrichment on the differential genes 
that the disease shares in order to gain a deeper understand-
ing of the roles and particular mechanisms of the causative 
genes. The majority of the disease-causing genes in OSA-
associated diabetes mellitus were shown to be enriched for 
negative regulation of neurogenesis and positive regulation 
of embryonic growth, according to an analysis of biological 
processes (BP) under the gene ontology (GO) term. When 
it comes to the cellular components (CC) that GO keywords 
examine, the majority of the causal genes are found in the 
exocytic and synaptic vesicle membranes. The most sig-
nificant item in the molecular function (MF) analysis was 
growth factor receptor binding (Fig. 2).

Screening pivotal genes with diagnostic value by 
machine learning

Four well-established machine learning models, namely 
Random Forest Model (RF), Support Vector Machine Model 
(SVM), Generalized Linear Model (GLM), and Extreme 
Gradient Boosting (XGB), were applied to the OSA and 
DM datasets. The aim was to identify disease genes related 
to OSA-associated DM disorders with high diagnostic 
potential. The feature genes of each model were ranked 
based on their root mean square error (RMSE) (Fig. 3.A, 
E), with the RF and SVM machine learning models gen-
erating relatively low residuals (Fig. 3.B-C). In addition, 
The discriminant performance of four machine learning 
algorithms on the test set (Fig. 3.D) was evaluated by cal-
culating the receiver operating characteristic (ROC) curve 
using five-fold cross-validation. According to these results, 
the 5 most important variables (STK17A, SNORD115_32, 
FGF9, CRLF3 and MMP7) were selected from the SVM 
model would be explored in greater depth in OSA dataset. 
The XGB model had the lowest residuals in the DM data 
set (Fig. 3.F-G), and the area under the ROC curve (AUC) 
of the four models was higher (Fig. 3.H).Thus, the first five 
characteristic genes with the lowest residuals (HDDC2, 
STK17A, LDAF1, PARP12 and NPR3) were identified as 
predictive genes.

1 3

Page 3 of 10 74



Sleep and Breathing (2025) 29:74

Fig. 2 Functional enrichment analysis of differentially expressed genes. (A) GO Circle. (B) GO Bar chart

 

Fig. 1 Identification of differentially expressed genes. (A-F) Princi-
pal component analysis, Volcano maps and Heatmaps showed differ-
entially expressed genes in GSE135917. (D-F) Principal component 

analysis, Volcano maps and heat maps showed differentially expressed 
genes in GSE41762. (G) 10 down-regulated overlapping genes. (H) 22 
up-regulated overlapping genes
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To ensure its validity, more testing with a larger, indepen-
dent cohort is necessary. After overlaying the five candidate 
genes from SVM and the five potential genes from XGB, 
STK17A was the only overlapping gene in both subgroups 
(Fig. 4.C).

We next used the dataset to evaluate the five-gene SVM 
and XGB diagnostic models. The ROC curves demonstrated 
the five-gene diagnostic model’s good performance, with 
an AUC value of 1 in GSE25724 (Fig. 4.A) and 0.917 in 
GSE75097 (Fig. 4.B).This shows that our five-gene-based 
prediction model is workable even if the dataset’s small 
sample size results in a poor general prediction performance. 

Fig. 4 Validation of machine learning models and the acquisition of core genes. (A) Analysis of diagnostic models based on 5 genes in GSE75097. 
(B) Analysis of diagnostic models based on 5 genes in GSE25724. (C) Venn diagram shows the numbers of overlapping genes

 

Fig. 3 Machine learning model construction. Important features in the 
OSA dataset for the RF, SVM, GLM, and XGB machine models. (B) 
The OSA dataset’s inverse cumulative distribution of residuals. (C) 
The OSA dataset’s cumulative residual distribution. (D) Analysis of 
the OSA dataset’s receiver operator characteristic (ROC). Important 

features in the DM dataset’s RF, SVM, GLM, and XGB machine mod-
els (E). (F) The residuals’ inverse cumulative distribution in the DM 
dataset. (G) The DM dataset’s cumulative residual distribution. (H) 
DM dataset receiver operator characteristic (ROC) analysis
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control groups based on the CIBERSORT algorithm. The 
OSA group had greater proportions of memory B cells, CD8 
T cells, M0-type macrophages, and mast cells.On the other 
hand, the OSA group exhibited negative correlations with 
activated B cells, plasma cells, CD4 memory T cells, regu-
latory T cells, activated NK cells, monocytes, and M2-type 
macrophages (Fig. 6.C).Correlation analysis showed that 
STK17A, along with neutrophils and plasma cells, were 
associated with OSA immune cell accumulation (Fig. 6.D).
The expression level of the selected feature is shown in the 
figure (Fig. 6.E-F), STK17A expressed higher both in OSA 
and DM.

Discussion

OSA is a prevalent clinical illness that is often misdiag-
nosed, yet it is becoming a severe public health concern 
[18].It seems that diabetes mellitus (DM) is a separate risk 
factor for the development and course of OSA. As computa-
tional biology and high-throughput sequencing technologies 
have advanced, numerous studies have suggested predicting 
gene expression profiles based on different machine learn-
ing techniques. Since any machine algorithm we select 

Construction of a diagnostic model for OSA-related 
DM

In order to have a better performance in diagnosis and pre-
diction, we constructed a nomogram based on the central 
gene STK17A by analyzing it through logistic regression 
(Fig. 5.A).The calibration graph shows that the predictive 
power of the nomogram diagnostic model was close to that 
of the ideal model (Fig. 5.B).In addition, the DCA analy-
sis shows that the decision-making based on Nomo graph 
model may be beneficial to the diagnosis of OSA-related 
DM (Fig. 5.C). 

Characterization of core genes

We used GSEA enrichment analysis to look into the 
STK17A expression trend in the pathway (Fig. 6.A-B).The 
findings suggested that the coagulation cascades, comple-
ment system, and NcRNA metabolic pathway might be 
significant factors in the onset of OSA. Furthermore, we 
conducted a thorough analysis of the immune cell infiltra-
tion features between the OSA group and the healthy con-
trol group. The proportions of 22 immune cell types were 
shown to differ significantly between the OSA and normal 

Fig. 5 Construction and validation of nomograms. (A) Nomogram used to predict the risk of OSA. (B) Calibration curve. (C) DCA
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aerobic glycolysis in neurons also maintains axon elonga-
tion and synaptogenesis. The study of lncRNAs in OSA is 
currently in the initial and preliminary initiation stages, and 
more research is needed. It has been shown that lncRNAs 
are closely associated with abnormal blood glucose levels 
and insulin resistance in diabetic patients and are thought 
to be important players in the development of diabetes 
and diabetic complications [23]. MicroRNA (Mirna) is an 
important regulatory molecule of cell function, which can 
decrease gene expression. According to a study by San-
tamaria-Martos et al., patients with OSA have a dysregu-
lated miRNA profile in comparison to individuals without 
OSA [24], which highlights the significance of mirnas and 
their regulatory mechanisms. Changes in their expression 
could cause important genes and pathways to become dys-
regulated, which would accelerate the onset and course of 
OSA. MiRNAs are also key in the progression of DM and 
its associated complications [25], which mainly lead to pan-
creatic β-cell damage and insulin resistance. From this, we 
hypothesize that negative regulation of the nervous system 
affects the central control of respiratory and upper airway 
neurological reflexes, which promotes sleep apnea and also 
contributes to the development and progression of DM.

Chronic intermittent hypoxemia increases oxidative 
stress by enhancing relative oxygen production and oxida-
tive/antioxidative imbalance in OSA patients [26].Oxidative 

could be biased, in this study we combined gene expression 
profiles and used a consensus machine learning algorithm to 
include the genes found by the more accurate algorithm in 
the following stage of the investigation. We then conducted 
external data validation to evaluate the diagnostic model’s 
viability in various centers. These findings imply that genes 
chosen using a variety of combinatorial techniques provide 
insights on disease modifiers and diagnostic traits.

We first screened for differential genes co-expressed by 
both and identified 32 hub genes, for which we performed 
a series of bioinformatics analyses in order to clarify the 
roles of these differential genes in OSA and DM.GO enrich-
ment analysis showed that these DEGs were significantly 
enriched in, among other things, neurological regulation. 
Recently novel DNA and RNA chemical modifications 
have been found to be involved in the regulation of the 
mammalian central nervous system [19], such as miRNAs 
that promote neural progenitor cell proliferation by target-
ing phosphatases and tensin homologs [20], and lncRNA 
depletion leading to a decrease in newborn neurons [21].
Mammalian neurons are strictly dependent on glucose as 
the main energy source, and energy metabolism is tightly 
regulated during neuronal differentiation and degeneration. 
Therefore, mitochondria play a key role in cytoskeletal 
remodeling, axon growth, dendritic and synaptic activity 
during neurodevelopment and adult neurogenesis [22], and 

Fig. 6 GSEA and immune infiltration analysis. (A-B) GSEA enrich-
ment analysis mediated by STK17A. (C) Violin plots show differ-
ences in the infiltration of 22 types of immune cells between OSA and 

healthy controls. (D) Correlation analysis between STK17A and 22 
kinds of immune cells. (E) The expression levels of STK17A in OSA. 
(F) The expression levels of STK17A in DM
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the proportion of CD4 T-cell infiltration was slightly lower. 
The primary function of CD4 + T cells is to enhance and 
amplify the immune response by secreting lymphokines. In 
contrast, CD8 + T cells suppress the functions of T lympho-
cytes and B lymphocytes, thereby dampening the immune 
response to maintain immune balance [33]. Some studies 
have shown that in patients with OSA, there is a signifi-
cant increase in peripheral blood CD8 + cells and a decrease 
in CD4 + cells and the CD4+/CD8 + ratio. However, other 
research indicates an increase in both CD4 + and CD8 + cell 
counts in OSA patients, suggesting variability in findings. 
Nevertheless, it is undeniable that the immune function in 
OSA patients is impaired [34]. Immune cell infiltration in 
OSA is strongly linked to the hub gene STK17A, suggesting 
that potential biomarkers may interact with immunological 
pathways to exacerbate OSA. Thus, a thorough grasp of the 
immunological pathways linked to OSA is crucial for the 
creation of novel prognostic or diagnostic biomarkers as 
well as therapeutic targets for the condition. Meanwhile, we 
found that the expression of STK17A was increased in both 
OSA and DM, suggesting that STK17A may play a role in 
promoting disease progression, and may become a molecu-
lar marker for the treatment of OSA and DM by inhibiting 
the expression of STK17A. Interestingly, previous studies 
have identified that targeting and regulating STK17A can 
inhibit the proliferation, invasion, and migration of cervical 
cancer cells [35]. Based on these findings, STK17A’s thera-
peutic potential may make it a viable drug target for treating 
OSA and DM. It is hypothesized that intervention targeting 
STK17A could affect disease onset and progression in OSA 
and DM patients, ultimately improving their prognosis.

Our study also has some shortcomings. The expression 
level of STK17A may need further verification by protein 
blotting or immunohistochemistry. And due to the limitation 
of sample capacity, the column-line diagram model may 
need further examination before clinical application.

Conclusion

In summary, our study identifies STK17A as a crucial 
diagnostic biomarker for the shared molecular pathways 
between OSA and DM. The genes involved are linked to 
oxidative stress and neuroregulation, suggesting potential 
therapeutic targets. Immune cell analysis reveals STK17A’s 
complex role in both conditions. These insights enhance our 
understanding of the diseases and offer valuable directions 
for future research and clinical use.
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stress permeates the development of diabetes and its com-
plications. Hyperglycemia can carry out free radical pro-
duction via multiple pathways, and oxidative stress also 
promotes decreased pancreatic β-cell function and insulin 
resistance. STK17A (serine/threonine kinase 17 A) involved 
in the positive regulation of DNA damage response and 
apoptotic processes [27]and the regulation of reactive oxy-
gen species (ROS) metabolic processes. Excessive accumu-
lation of reactive oxygen species can lead to elevated levels 
of oxidative stress and altered oxidative modifications of 
specific DNA/proteins and lipid metabolites, which in turn 
cause cellular damage to promote disease progression. In 
our study, we found that this gene is common to both OSA 
and DM, and we suggested that the mechanism by which 
DM affects OSA may be related to the oxidative stress pro-
cess. We then constructed a column-line graph model for 
OSA diagnosis using STK17A.It was found that the model 
has exceptional predictive power. Patients can benefit from 
the nomogram at high risk thresholds of 0 to 1.

By analyzing the GSEA of STK17A, we found that it is 
closely related in ncrna metabolic process, complement and 
coagulation cascades and other pathways.

Non-coding RNA molecules known as transfer RNAs 
(tRNAs) are necessary for the function for protein synthe-
sis. They undergo significant modification to enhance their 
folding, stability, and function after transcription. TRNA 
modifications protect or induce the cleavage of tRNAs into 
repressive small ncRNAs [28].Non-coding RNAs (ncRNAs) 
comprise long non-coding RNAs (lncRNAs) and small non-
coding RNAs (miRNAs), both of which are involved in reg-
ulation and are a component of the epigenome [29].This is 
consistent with our study described above, demonstrating 
that STK17A influences development in OSA-related DM 
disease.

Complement and coagulation cascades pathway plays a 
crucial role in the maintenance of immune health. There is 
a higher level of complement C3 in the peripheral blood of 
OSA, which indicates the presence of tissue damage and 
inflammatory responses in patients [30], whereas comple-
ment C3 is the most important component of the comple-
ment system and an intermediate link in the activation 
pathway, the final lysis of the membrane-forming complex 
[31]occurs through cytolysis. Studies have shown that 
elevated C3 in patients with OSA may be associated with 
glucose metabolism [32].This further illustrates the crucial 
role that the immune system plays in the development and 
progression of DM and OSA.

To better understand the relationship between immune 
function and the disease, we conducted a comprehensive 
examination of immune cell infiltration in OSA. In our 
study, the proportion of CD8 T-cell infiltration was signifi-
cantly higher in the OSA group than in the control group, and 
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