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Simple Summary: Triple-negative breast cancer (TNBC) is the most refractory subtype of breast
cancer. Immune checkpoint inhibitor (ICI) therapy has made progress in TNBC treatment. PD-L1
expression is a useful biomarker of ICI therapy efficacy. However, tumor-immune microenvironment
(TIME) factors, such as immune cell compositions and tumor-infiltrating lymphocyte (TIL) status,
also influence tumor immunity. Therefore, it is necessary to seek biomarkers that are associated
with multiple aspects of TIME in TNBC. In this study, we developed an immune-related gene
prognostic index (IRGPI) with a substantial prognostic value for TNBC. Moreover, the results from
multiple cohorts reproducibly demonstrate that IRGPI is significantly associated with immune cell
compositions, the exclusion and dysfunction of TILs, as well as PD-1 and PD-L1 expression in TIME.
Therefore, IRGPI is a promising biomarker closely related to patient survival and TIME of TNBC and
may have a potential effect on the immunotherapy strategy of TNBC.

Abstract: Tumor-immune cell compositions and immune checkpoints comprehensively affect TNBC
outcomes. With the significantly improved survival rate of TNBC patients treated with ICI therapies,
a biomarker integrating multiple aspects of TIME may have prognostic value for improving the
efficacy of ICI therapy. Immune-related hub genes were identified with weighted gene co-expression
network analysis and differential gene expression assay using The Cancer Genome Atlas TNBC
data set (n = 115). IRGPI was constructed with Cox regression analysis. Immune cell compositions
and TIL status were analyzed with CIBERSORT and TIDE. The discovery was validated with the
Molecular Taxonomy of Breast Cancer International Consortium data set (n = 196) and a patient
cohort from our hospital. Tumor expression or serum concentrations of CCL5, CCL25, or PD-L1 were
determined with immunohistochemistry or ELISA. The constructed IRGPI was composed of CCL5
and CCL25 genes and was negatively associated with the patient’s survival. IRGPI also predicts the
compositions of M0 and M2 macrophages, memory B cells, CD8+ T cells, activated memory CD4
T cells, and the exclusion and dysfunction of TILs, as well as PD-1 and PD-L1 expression of TNBC.
IRGPI is a promising biomarker for predicting the prognosis and multiple immune characteristics
of TNBC.
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1. Introduction

Triple-negative breast cancer (TNBC) is one of the subtypes of breast cancer, which is
named because of the negative expression of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2). TNBC accounts for about
15–20% of breast cancer cases and is associated with a high risk of mortality in the past few
decades owing to its aggressiveness and the lack of effective targeted therapies [1–4].

The accumulated mutations during cancer development generated neoantigens, which
make the tumor immunogenic. Immune cells can recognize neoantigens and eliminate
cancer cells. However, the expression of programmed death-ligand 1 (PD-L1) in cancer
cells and programmed death 1 (PD1) PD-1 in immune cells, two immune checkpoint (IC)
molecules, allow cancer cells to escape the attack by immune cells, even though the immune
cells have already infiltrated the tumor tissue. Immune checkpoint inhibitors (ICIs) block
this immune checkpoint between cancer cells and immune cells so that the immune cells
can recognize and attack cancer cells again. ICI treatments, including therapies targeting
PD-1, PD-L1, and cytotoxic T lymphocyte-associated protein 4 (CTLA4), have significantly
benefited the survival of many types of tumor patients [5–10].

With high levels of tumor-infiltrating lymphocytes (TILs) and PD-L1 expression, TNBC
exhibits stronger immunogenicity than other subtypes of breast cancer and may be more
likely to benefit from immunotherapy [10–15]. Recently, clinical trials of Impassion 130 and
KEYNOTE-355 have shed a bright light on anti-PD-1/PD-L1 therapy for the treatment of
TNBC patients, and the improved survival rate has become the grandest achievement in
TNBC treatment in a decade [16,17].

Some breast cancer patients are not sensitive to PD-1/PD-L1 treatment [18]. In other
cancer types, several criteria are used to evaluate whether a patient would benefit from
anti-PD-1/PD-L1 therapy, including PD-L1 expression, tumor mutation burden (TMB), and
microsatellite instability (MSI), which detects mismatch repair defects [19,20]. However,
mismatch repair defects and high TMB occur at a low frequency in breast cancer [19,21],
leaving PD-L1 expression as the only biomarker in TNBC currently. However, PD-L1 as the
ICI treatment biomarker also has some limitations. For example, different PD-L1 detection
methods will affect the consistency of detection results [22], and some PD-L1-negative
patients also showed a response to ICI treatment [23]. Tumor-immune microenvironment
(TIME) has long been shown to have an impact on the survival of TNBC patients. The
composition of immune cells in the TIME of TNBC, as well as the status of TILs and
cancer cells, may all have an impact on the outcome of ICI therapy. Therefore, it is of great
interest to explore novel predictive indicators related to TIME to improve the efficacy of
immunotherapy in TNBC patients.

Chemokines are a family of small, secreted proteins that bind to their G protein-
coupled heptahelical receptors on the cell surface. The primary role of chemokines is
to stimulate inflammatory cell migration, thus involving immune and inflammatory re-
sponses. According to the n-terminus of chemokines, they are divided into four subfamilies:
CC, CXC, CX3C, and XC [24,25]. As the largest subfamily, CC chemokines have been re-
ported as crucial players of TIME and immune response, as well as tumor growth and
progression [26–28].

In this study, we constructed a prognostic signature composed of the CC chemokines
to predict TNBC prognosis and immune characteristics. We focused on all immune-related
genes in the transcriptome data of TNBC and screened immune-related hub genes related
to patient prognosis by weighted gene co-expression network analysis (WGCNA). An
immune-related gene prognostic index (IRGPI) was constructed, and its prognostic value
was confirmed with multiple cohorts. Its relationships with the profiles of tumor-immune
cells, the status of TILs and PD1/PD-L1 immune checkpoints were further characterized.
The results show that IRGPI was a promising marker for predicting the prognosis and
TIME status in TNBC.
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2. Materials and Methods
2.1. Patients and Data Sets

RNA-seq data (Level 3) of breast cancer patients were obtained from the TCGA
database. Triple-negative breast cancer (TNBC) data were extracted based on estrogen
receptor (ER), progesterone receptor (PR), and proto-oncogene HER-2 status, and only
patients with overall survival (OS) > 30 days were selected. The RNA-seq data included
115 cancer samples and 13 adjacent normal tissue samples. Clinical information (including
survival time and status, age, TNM, and stage) of patients with TNBC was obtained from
UCSC Xena (http://xena.ucsc.edu/, accessed on 11 January 2021). We also downloaded
the immune-related genes from the ImmPort database (https://www.immport.org/home,
accessed on 11 January 2021) and the InnateDB (https://www.innatedbdb.com, accessed
on 11 January 2021) database.

The gene expression and clinical data of the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) data set were downloaded from the cbioportal
website, and 196 TNBC patients with OS > 30 days were selected for the model validation.

2.2. WGCNA

Weighted gene co-expression network analysis (WGCNA) is a powerful tool for
finding clusters (modules) of highly interconnected genes [29]. WGCNA was performed
to identify co-expression modules of immune-related genes obtained from ImmPort and
InnateDB. First, the co-expression similarity matrix was constructed by calculating the
Pearson correlation coefficient between two genes. Next, using the scale-free topology
criterion R2 = 0.9, a soft threshold of β = 4 was picked and used to calculate the signed
adjacency matrix from the similarity matrix. With the dendrogram cut height for module
merging set to 0.25, we identified 7 modules. Each color module represented a collection of
genes that are highly correlated to each other among the patients, except the gray module.
Genes not to cluster with any modules were assigned into the grey module. A topological
overlap matrix (TOM) was used to visualize the gene–gene connectivity.

The genes in each module (except the gray module) were subject to Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses with the cluster-
Profiler package of R to identify significantly enriched pathways. CC chemokines play
an important role in inflammatory response and immunity [27]. The modules containing
CC chemokine family members were the modules we were interested in (blue and brown
modules) and were selected and used for the subsequent analyses. In the blue and brown
modules, the edges between two genes with a weight >0.2 were used to construct the
networks of genes in the modules.

2.3. Identification of Differentially Expressed Genes

Based on the RNA-seq data of TCGA TNBC samples (115 tumors vs. 13 normal samples),
differentially expressed genes (DEGs) (adjusted p-value < 0.05, |log2(Fold Change)| > 1) were
identified using the edgeR package of R. Next, the DEGs in the blue and brown modules
were identified as immune-related DEGs for subsequent analysis.

2.4. Construction and Validation of the Immune-Related Gene Prognostic Index (IRGPI)

First, univariate Cox regression analysis was used to determine associations between
immune-related DEGs and overall survival in TNBC patients, and genes with p values < 0.05
were defined as survival-related genes. Then, the survival-related genes were used to
construct an IRGPI model using the multivariate Cox regression (R “survival” package)
and stepwise regression analysis (R “stats” package). The coefficients of the final optimal
regression model were calculated by the stepwise regression analysis. We then calculated
prognostic indexes for all the cancer samples by the formula IRGPI = expression level of
gene1* coef1 + expression level of gene2* coef2 + . . . + expression level of geneN* coefN.
TCGA patients were divided into an IRGPI-high group and an IRGPI-low group according
to the median IRGPI score. KM survival curves were used to evaluate the IRGPI model with

http://xena.ucsc.edu/
https://www.immport.org/home
https://www.innatedbdb.com
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the log-rank test in the TCGA cohort, which was further validated with the METABRIC
cohort. The prognostic model of survival was further evaluated by calculating the AUC
values (the areas under the ROC curves) at 1, 3, 5, and 7 years. We also performed the
multivariate Cox regression analysis using important clinicopathological features (age,
TNM, and stage) and IRGPI scores in the TNBC patients.

2.5. Identification of Molecular Characteristics between Different IRGPI Groups

Differential expression analysis was first performed for the groups with high (n = 57)
and low (n = 58) IRGPI scores. The DEGs in the IRGPI-high and low groups were subjected
to the enrichment analysis and the gene set enrichment analysis (GSEA) to determine the
signaling pathways involved with the clusterProfiler package of R (p-value < 0.05).

2.6. Determine the Levels of Immune Cell Infiltration between Different IRGPI Groups

CIBERSORT is a method using gene expression profiles to characterize cell composi-
tions of complex tissues [30]. We used LM22, a leukocyte gene signature matrix containing
547 genes that distinguish 22 human hematopoietic cell phenotypes to determine the levels
of immune cell infiltration in TCGA TNBC samples. We obtained the CIBERSORT R script
from CIBERSORT website (https://cibersort.stanford.edu/, accessed on 11 January 2021)
and analyzed the mRNA expression matrix in combination with LM22 in TNBC samples.
The Wilcoxon rank sum test was used to calculate the levels of immune cell infiltration
among different IRGPI groups (p values < 0.05), and Spearman correlation was used to
calculate the correlation between immune cells (p values < 0.05).

2.7. GO and KEGG Analyses of Immune-Related DEGs

Immune-related DEGs were obtained and analyzed using GO and KEGG analyses
with the clusterProfiler package of R to analyze the biological processes (BP), cellular
component (CC), and molecular function (MF) of the DEGs involved and to identify
significantly enriched pathways (adjusted p values < 0.05).

2.8. TIDE Analyses in Different IRGPI Groups

TIDE is a computational method to evaluate T-cell dysfunction and exclusion in tumor
microenvironments [31]. We used TIDE to assess the individual response to immunother-
apy, and the Wilcoxon rank sum test was used to calculate the difference in TIDE scores
between different IRGPI groups (p values < 0.05). In addition, Spearman correlation was
also adopted to investigate the correlation between prognostic markers (IRGPI, CCL5, and
CCL25) and PD-L1/PD1 expression.

2.9. Specimen and Clinical Data

Formalinfixed, paraffin-embedding (FFPE) specimens were collected from the Harbin
Medical University Cancer Hospital. Tissues were collected from 89 TNBC patients who
underwent radical mastectomy of breast cancer between 2012 and 2015 and 40 patients
between 2020 and 2021 in Harbin Medical University Cancer Hospital. Serum samples
were collected from the 40 surgical patients diagnosed between 2020 and 2021 mentioned
above. The patients did not have hepatitis and other infectious diseases or immune diseases.
The study was approved by the Ethics Committee of Harbin Medical University Cancer
Hospital. Follow-up time ranged from 1 to 107 months, with a median of 72 months.

2.10. Immunohistochemistry

Tissue sections were dewaxed in xylene and hydrated gradually through graded
alcohol. EDTA buffer was used for antigen retrieval. The endogenous peroxidase activity
was blocked, and then the sections were incubated with the primary anti-CCL25 (1:200;
ab200343, Abcam, Cambridge, UK), anti-CCL5 (1:100; ab9679, Abcam, Cambridge, UK),
or anti-PD-L1 (1:100; SK006, DAKO) overnight at 4 ◦C. Then the secondary antibody and
a DAB kit (K5007, DAKO; Dako REAL™ EnVision™) were applied to the sections. A

https://cibersort.stanford.edu/
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rabbit-specific HRP/DAB (ABC) IHC Detection Kit (ab64261, Abcam, Cambridge, UK) was
used for CCL25. Normal tonsil tissue was used as a positive control for CCL5 and PD-L1
IHC, and normal thymus tissue was used as a positive control for CCL25 IHC (Figure S4).

The tissue sections were evaluated by two pathologists who were unaware of the
patient’s clinical information. Positive PD-L1 expression was defined as the Combined
Positive Score (CPS) ≥ 10 [32,33]. For CCL5 and CCL25 IHC, the scores were assigned from
0 to 3 based on the staining intensity level (no staining, light brown, brown, and tan). The
staining extent was graded from 0 to 4 for the percentage of positive cells (0–5%, 5–25%,
26–50%, 51–75%, and 76–100%). The product of staining intensity and extent scores was
used as the IHC score, with a range of 0 to 12. Scores 0–4 were assigned as negative, and
scores 5–12 were assigned as positive.

2.11. ELISA

Serums CCL5 and CCL25 were measured by ELISA (Cloud-Clone Corp, Wuhan, China)
according to the manufacturer’s instructions. Optical densities at 450 nm of replicate speci-
mens were determined in a plate reader. Untreated wells were used as the blank control.

2.12. Statistical Analysis

All statistical analysis was performed with R language. χ2 test was used to compare
the relationships between the IRGPI and clinicopathological factors of TNBC, and the Cox
regression analysis was used to determine hazard ratios (HRs) and 95% confidential intervals
(CIs) for univariable and multivariable analyses. Progression-free survival (PFS) was defined
as the time between the initiation of surgical treatment and the date of the first evidence of
tumor progression. We used Kaplan–Meier plots and log-rank tests to calculate the differences
in PFS among different subgroups. The Pearson correlation analysis was used to calculate the
correlation of two variables. p < 0.05 was defined as a statistical significance.

3. Results
3.1. Identify Gene Co-Expression Networks of Immune-Related Genes in TNBC Samples

To obtain the immune-related hub genes, WGCNA analysis was carried out on the
immune genes obtained from the ImmPort and InnateDB databases. The WGCNA analysis
identifies gene clusters that are highly correlated to each other among patients. The results
are shown with modules of different colors. Seven modules were then identified with a soft
threshold of 4. A total of 1957 genes were allocated to 7 modules (432 in blue, 282 in brown,
77 in green, 72 in red, 842 in turquoise, 102 in yellow, and 150 in grey) (Figures 1a and S1b).
With the GO and KEGG analyses, we found that the CC chemokine family genes were
significantly enriched in the blue and brown modules (19/26, 14 in blue, 5 in brown, 3 in
turquoise, 1 in green, 1 in red, and 2 in grey). Therefore, the genes in the blue and brown
modules (including 432 genes in the blue module and 282 genes in the brown module)
were selected for further analysis (Table S1). The analysis of co-expression networks of
genes in the blue and brown modules identified 162 genes and 1169 edges in the blue
module (Figure 1b) and 196 genes and 7151 edges in the brown module (Figure S1c) with
a threshold weight >0.2. The 358 genes were subject to GO and KEGG analyses, and
the top ten significantly enriched GO terms and KEGG pathways are separately shown
(Figures 1c,d and S1d,e).
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Figure 1. Identifying co-expressed immune genes related to CC chemokine genes by WGCNA. (a) Heat map of the Topological
Overlap Matrix in WGCNA analysis; (b) co-expression network of genes in the blue module; (c) GO enrichment of genes in the
blue module of co-expression network; (d) KEGG enrichment of genes in the blue module of co-expression network.

3.2. Identify Differentially Expressed Immune-Related Hub Genes in TNBC Samples

By comparing the expression data of 115 tumors vs. 13 normal samples, a total
of 4375 DEGs were obtained, of which 2377 genes were upregulated, and 1998 genes
were downregulated in the tumor samples (Figure 2a, Table S2). Interestingly, 12 of
28 CC subfamilies of chemokines were differentially expressed. Among them, CCL11,
CCL20, CCL7, CCL25, CCL1, CCL17, and CCL5 were significantly upregulated, while
CCL23, CCL28, CCL21, CCL16, and CCL14 were significantly downregulated (Figure 2b,c).
The DEGs in normal and tumor samples were further intersected with the 358 genes
obtained from the blue and brown modules; 67 genes were attained as differentially
expressed immune-related hub genes (Table S3). GO and KEGG function enrichment
analysis was performed on these hub genes, and the results show that these key genes
were significantly associated with 389 GO terms (353BP + 12CC + 24MF) and 41 KEGG
pathways (Table S4). The relationship between the 67 hub genes and top 10 GO categories
are illustrated in Figure 2e. In addition, six of the differentially expressed CC subfamily
chemokines, including CCL17, CCL21, CCL5, CCL1, CCL25, and CCL20, were in the hub
gene list.
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Figure 2. Identifying immune-related hub genes that are differentially expressed in tumor and normal samples. (a) Volcano
plot of DEGs in TNBC and normal samples; (b,c) heat map and box plot of differential CC chemokines genes between TNBC
(red) and normal samples (blue) (ns: not significant, * p < 0.05; ** p< 0.01; *** p < 0.001); (d) Venn diagram of immune-related
genes, DEGs in TNBC and normal samples, genes in the blue and brown modules, and genes of CC chemokines. (e) GO
enrichment of immune-related hub DEGs (Top10).

3.3. Establish the Immune-Related Gene Prognostic Index (IRGPI) in TNBC

To investigate the survival outcomes of the 67 immune-related hub genes, univariate and
multivariate Cox regression analyses for OS were performed. Three genes, including AIM2,
CCL5, and CCL25, were significantly associated with the OS of TNBC patients in univariate
Cox regression analyses (Figure 3b). Figure 3a shows the Kaplan–Meier (KM) plots of AIM2,
CCL5, and CCL25. The three candidate predictive variables were subject to the stepwise
regression analysis, and the coefficients of the final optimal regression model were calculated.
The IRGPI of each sample was then calculated by the final model equation: IRGPI = expression
level of CCL25 × (−1.1233) + expression level of CCL5 × (−0.0033). The KM survival curves
showed that TNBC patients with a low IRGPI had better OS than the patients with a high
IRGPI (p = 0.0026, log-rank test) (Figure 3c). The predictive performance of this prognostic
model was evaluated by ROC curves, and the AUC for 5-year survival was 0.778, showing
a good predictive ability. In addition, the ROC curves for 1-year, 3-year, 5-year and 7-year
survival are shown in Figure 3d.

Next, we performed the multivariate Cox regression analysis with available TNBC
clinical information (AGE, TNM, and STAGE) and IRGPI scores to determine whether IRGPI
was an independent prognostic predictor of overall survival. Univariate Cox regression
analysis showed that the IRGPI group was significantly associated with overall survival
(HR = 1.139, 95%CI = 1.043–1.243, p values= 0.004). Multivariate Cox regression analy-
sis confirmed that IRGPI was an independent prognostic factor after adjusting for other
clinicopathologic factors (HR = 1.138, 95%CI = 1.040−1.244, p values = 0.005) (Figure S2a).
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Figure 3. Construct of the immune-related gene prognostic index (IRGPI) in TNBC. (a) Kaplan–Meier survival analysis of
AIM2, CCL5, and CCL25 genes that are significant in the univariate Cox analysis (p < 0.05); (b) univariate and multivariate
Cox regression analysis of survival-related genes; (c) Kaplan–Meier survival analysis of IRGPI scores using TCGA data
and the relationship between the survival status and IRGPI score distribution in the TCGA TNBC cohort; (d) ROC curves
of the prognostic models in TNBC (the TCGA cohort) at 1, 3, 5, and 7 years; (e) expression of CCL25, CCL5, PD-L1 in
TNBC. (a) Representative samples with CCL25 positive (above) and negative (below) expression; (b) representative samples
with CCL5 positive (above) and negative (below) expression; (c) representative samples with PD-L1 positive (above) and
negative (below) expression. Scale bars: 200 µm for the left pictures in (a–c), and 50 µm for the right pictures in (a–c);
(f) Kaplan–Meier survival analysis of CCL5 and CCL25 expression and IRGPI groups using IHC scores of the patients from
our hospital (p < 0.05).
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3.4. Validation of the Prognostic Value of IRGPI

We further validated the prognostic value of CCL5, CCL25, and the prognostic model
with other cohorts. We used the TNBC cohort of the Kaplan–Meier plotter database (http:
//kmplot.com/, accessed on 21 February 2021) to evaluate the effect of CCL5 and CCL25
expression on survival. The results show that CCL5 expression was positively associated
with the overall survival (OS) of TNBC patients (log-rank test, p values < 0.05). Similarly,
the OS of the high-CCL25-expression group was superior to the low-CCL25-expression
group (log-rank test, p = 0.064) (Figure S2b). Because the prognostic value of IRGPI could
not be validated with the Kaplan–Meier plotter database, we further analyzed IRGPI scores
in the TNBC cohort of the METABRIC data set (n = 196). Consistent with the result of the
TCGA data set, the IRGPI-low subgroup had a significantly better prognosis than those in
the IRGPI-high subgroup (p = 0.049, log-rank test) (Figure S3a).

We then further validated the association of IRGPI with PFS in TNBC patients from
our hospital. The 89 TNBC patients with a median PFS of 72 months (ranging from
1 month to 107 months) underwent radical mastectomy after being diagnosed with breast
cancer between 2012 and 2015. To confirm the correlation of IRGPI with the characteristics
of TNBC patients, we used the semi-quantitative IHC scores of CCL5 and CCL25 to
calculate IRGPI in the TNBC patients from our hospital. As shown in Figure 3e, CCL5 was
expressed in cancer cells and lymphocytes, while CCL25 was mainly expressed in cancer
cells. Consistent with the TCGA results, a high expression of CCL5 (p = 0.047) and CCL25
(p = 0.049) was associated with a better PFS. Furthermore, the KM estimator showed that
PFS in the IRGPI-low group was significantly longer than that in the IRGPI-high group
(HR = 0.508; 95% CI, 0.263–0.981; p = 0.044). Because age was significantly associated with
PFS in the univariate analysis, it was added to IRGPI for multivariate COX analysis, and the
results also show that IRGPI was an independent biomarker for evaluating the outcomes
of patients (HR = 0.470; 95%CI, 0.242–0.912; p = 0.026) (Figure 3f, Tables 1 and 2).

Table 1. Relationship between IRGPI and the clinicopathological characteristics of TNBC patients
from our hospital.

Clinical
Variables

IRGPI-High
(n = 40)

IRGPI-Low
(n = 49)

n % n % p Value

Age, years
0.855≤50 22 55 26 53

>10 18 45 23 47

TNM
0.264I 11 27.5 20 41

II–III 29 72.5 29 59

Grade

0.775
1 0 0 1 2

2–3 31 77.5 40 82
Unknown 9 22.5 8 16

Menopausal
status

0.938Post- 24 60 29 59
Pre- 16 40 20 41

Ki-67
0.332>20% 32 80 34 69

≤20% 8 20 15 31

http://kmplot.com/
http://kmplot.com/
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Table 2. Univariate and Multivariate Cox analysis of prognostic factors for TNBC patients from our hospital.

Clinical Variables
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age, years
(>50 vs. ≤50) 0.484 (0.248–0.948) 0.034 * 0.450 (0.229–0.885) 0.021 *

TNM
II-III vs. <I 1.482 (0.715–3.076) 0.290

Grade
1 vs. 2–3 0.748 (0.511–1.097) 0.137

Menopausal status
Post- vs. Pre- 0.820 (0.415–1.620) 0.568

Ki-67
>20% vs ≤20% 1.101 (0.518–2.342) 0.803

IRGPI
Low risk vs. High risk 0.508 (0.263–0.981) 0.044 * 0.470 (0.242–0.912) 0.026 *

* p < 0.05.

3.5. Identifying Differentially Expressed Genes Associated with IRGPI Status

Differentially expressed genes in the IRGPI groups showed that 1096 genes were
upregulated in the IRGPI-high group while 750 genes were downregulated (Figure 4a,
Table S5). The top 10 significantly upregulated and downregulated genes are shown in
Figure 4a (Figure 4a, Table S5), and both CCL5 and CCL25 are among the top 10 signifi-
cantly downregulated genes in the IRGPI-high group. GSEA was performed to determine
the gene sets enriched in different IRGPI subgroups. The gene sets upregulated in the
IRGPI-high samples were enriched with 10 pathways, including the biosynthesis of cofac-
tors, drug metabolism-cytochrome P450, and metabolism of xenobiotics by cytochrome
P450, while the gene sets upregulated in the IRGPI-low samples were enriched with neu-
trophil extracellular trap formation and human T-cell leukemia virus 1 infection pathways
(Figure 4b).

Figure 4. Identifying differentially expressed genes (DEGs) in different IRGPI subgroups. (a) Heat map of DEGs between
high and low IRGPI risk groups; (b) significantly enriched pathways of upregulated DEGs in the high (above) and low
(below) IRGPI risk groups revealed by GSEA.
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3.6. IRGPI Is Associated with Immune Cell Compositions in TNBC Samples

To analyze the composition of immune cells in different IRGPI subgroups, CIBERSORT
was used to systematically evaluate the infiltration level of immune cells in each sample,
and the Wilcoxon test was used to compare the distribution of immune cells between
different IRGPI groups (Figure 5a and Table S6). We found that M0 macrophages, M2
macrophages, and eosinophils were more abundant in the IRGPI-high subgroup, while
memory B cells, CD8+ T cells, activated memory CD4 T cells, follicular helper T cells,
regulatory T cells (Tregs), gamma delta T cells and M1 macrophages were more abundant
in the IRGPI-low subgroup (Figure 5b). In addition, the association between immune cells
in TNBC indicated the interactions inside immune microenvironments (Figure 5c).

Figure 5. Immune cell compositions in TIME of different IRGPI groups. (a) The proportions of 22 tumor infiltrated immune
cells of individual patient calculated by CIBERSORT; (b) the difference of immune cell infiltration in different IRGPI groups
(pink: high IRGPI risk group; and blue: low IRGPI risk group); (c) correlations among immune cells in TNBC (ns: not
significant, * p < 0.05; ** p < 0.01; *** p < 0.001).

Next, we verified this result with the METABRIC data set. Consistent with the TCGA
results, M0 macrophages and M2 macrophages were also more abundant in the IRGPI-high
subgroup, and there were more memory B cells, CD8+ T cells, activated memory CD4 T
cells in the IRGPI-low subgroup (Figure S3b). Similarly, M1 macrophages also tended to
be enriched in the IRGPI-low subgroup (p = 0.087). Besides, the compositions of plasma
cells, naive CD4 T cells, activated NK cells and activated mast cells were also significantly
higher in the IRGPI-low subgroup than the high subgroup, but activated master cells and
neutrophils were markedly low in the IRGPI-low subgroup. Even though the differences
exist between the two data sets, the results of major TIME players are consistent, including
memory B cells, CD8+ T cells, activated memory CD4 T cells, M0, M1, and M2 macrophages.

3.7. IRGPI Is Associated with T-Cell Exclusion and Dysfunction in TNBC Samples

We then used TIDE to assess the potential treatment efficacy of immunotherapy in
different IRGPI subgroups (Table S7). A higher TIDE prediction score represented a higher
potential for immune evasion, which suggested that the patients were less likely to benefit
from ICI therapy. The IRGPI-low subgroup was not associated with TIDE scores (p = 0.99)
in the TCGA data set (Figure 6a). However, we found that the IRGPI-low subgroup
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had a higher T-cell dysfunction score, but a lower T-cell exclusion score (Figure 6a). The
microsatellite instability (MSI) score of IRGPI-low subgroup is higher than the IRGPI-high
subgroup in the TCGA data set.

Figure 6. IRGPI is associated with T-cell exclusion and dysfunction, and PD1 and PD-L1 expression in TNBC of TCGA data
set. (a) Scores of TIDE, MSI, and T-cell exclusion and dysfunction in different IRGPI risk groups (ns: not significant, ** p < 0.01;
*** p < 0.001); (b) Correlation between CCL5/CCL25/ IRGPI scores and PD-L1/PD1.

Similar results were also observed in the METABRIC data set. The IRGPI-low sub-
group had a higher T-cell-dysfunction score, but a lower T-cell-exclusion score. Unlike the
TCGA data set analyses, the IRGPI-low subgroup was also significantly associated with a
low TIDE scores (p = 0.025) and a lower MSI score in the METABRIC analyses (Figure S3c).
These results demonstrate that IRGPI performs well in predicting T-cells dysfunction and
exclusion in the TNBC samples.

3.8. IRGRI Is Correlated with PD-1 and PD-L1 Expression in TNBC Samples

Because PD-L1 expression was the most frequently used criterion to determine
whether the patients should undergo ICI therapy for multiple cancers, we explored the
correlation of PD-L1/PD1 expression with IRGPI scores, as well as with the expression of
CCL5 or CCL25. The results show that the expression of CCL5 and CCL25 were positively
correlated with the expression of PD-L1 and PD1, while the IRGPI score was negatively
correlated with the expression of PD-L1 and PD1 in both TCGA and METABRIC data sets
(Figures 6b and S3d).

To confirm the correlation of IRGPI with PD-L1 expression in TNBC, we used the IHC
results to verify. In the 129 TNBC patients from our hospital, both CCL5 (r = 0.179, p = 0.043)
and CCL25 (r = 0.203, p = 0.021) expression were correlated with PD-L1 expression (Table 3).
Next, we analyzed the relationship between IRGPI and PD-L1 expression. The results
show that IRGPI was negatively correlated with PD-L1 expression (r = −0.204; p = 0.020),
indicating that PD-L1 expression was higher in IRGPI-low group (Table 4).
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Table 3. Correlations between CCL5/CCL25 and PD-L1 expression.

Pearson Correlation Analysis CCL5 Expression CCL25 Expression

PD-L1 expression
r 0.179 0.203
p 0.043 0.021

CCL5, CCL25, and PD-L1 expression was determined by their IHC scores.

Table 4. Correlations between IRGPI IHC and serum scores and PD-L1 expression.

Pearson Correlation Analysis IRGPI IHC Score IRGPI Serum Score

PD-L1 expression
r −0.204 −0.302
p 0.020 0.058

IRGPI IHC scores and serum scores were calculated with CCL5 and CCL25 IHC scores or serum CCL5 and CCL25
concentrations. PD-L1 expression was determined by PD-L1 IHC scores.

Non-invasive tests are always favorable in clinics. Therefore, we also examined
the correlation between tumor tissue PD-L1 expression and serum IRGPI, as well as the
serum levels of CCL5 or CCL25. In the 40 TNBC patients who had both serum and tumor
tissue available, we found a negative correlation between serum IRGPI and tissue PD-L1
expression, as well as between serum CCL25 levels and tissue PD-L1 expression, although
the correlation was not statistically significant (r = −0.302; p = 0.058) (Tables 4 and 5).

Table 5. Relationship between serum CCL5/CCL25 and PD-L1 expression.

Pearson Correlation Analysis Serum CCL5 Serum CCL25

PD-L1 expression
r 0.148 0.286
p 0.362 0.073

4. Discussion

TIME, which are affected by numerous genes, are critical for tumor growth and ICI
therapy effects. Chemokines are pivotal molecules that regulate the migration of immune
cells, and may thus shape the TIME in TNBC. To reduce the complexity of the gene co-
expression network, we employed WGCNA to cluster immune-related genes and identify
immune-related hub biomarkers in chemokine enriched modules. The 67 immune-related
hub genes were further subject to survival analysis, and an immune-related gene prognostic
index (IRGPI) was constructed, composed of two CCL genes, CCL5 and CCL25. IRGPI
was further demonstrated to perform superbly as an independent prognostic factor for
TNBC in multiple cohorts, including TCGA, METABRIC, and a cohort of patients from
our hospital. IRGPI predicts better survival outcomes for IRGPI-low patients and worse
outcomes for IRGPI-high patients. The semi-quantitative IHC scores obtained from the
patients of our hospital also confirmed similar results. The consistency among different
cohorts indicates the great prognostic value of the IRGPI and suggests the component of
IRGPI may be critical for the modulation of TIME in TNBC.

The role of CCL5 and CCL25 is not well understood in TNBC. CCL5 is mainly secreted
by T lymphocytes, macrophages, platelets, synovial fibroblasts, tubular epithelium, and
tumor cells [34–37]. The expression of CCL5 and its receptor CCR5 has been found to be
elevated in many tumors, including triple-negative breast cancer [38–53]. In our study, we
have found CCL5 is mainly expressed in cancer cells and tumor-associated lymphocytes.
CCL5 and its receptor have been reported to be associated with the progression and drug
resistance of many tumors, including breast cancer [54–57]. However, CCL5 is a double-edged
sword in cancer. CCL5 also enhances anti-tumor immunity and promotes immunotherapy
by recruiting anti-tumor-immune cells to the tumor microenvironment [26,27,58–60]. In our
study, we found that a high expression of CCL5 was associated with the better survival of
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TNBC patients in three different cohorts. In bc-GenExMiner (V4.1 DNA chip database),
the univariate Cox regression analysis also showed that CCL5 (p = 0.0335, HR = 0.94) in
metastatic relapse breast cancer had a positive effect on prognosis [61]. All these results
suggest a positive effect of CCL5 on TNBC prognosis.

CCL25, also known as thymus-expressed chemokine (TECK), is the ligand for CCR9 [24].
CCL25 is produced by tumor-associated cells or cancer cells, such as breast cancer cells
and pancreatic cancer cells [62,63]. Previously, Chen et al. [64] showed that CCL25 was
not expressed in TNBC tumors by IHC. However, our study showed that although the
expression of CCL25 was low, CCL25 was expressed in TNBC tumors, primarily in cancer
cells. In lung cancer, the CCL25/CCR9 axis promotes cancer progression [64–66], but
intratumoral delivery of CCL25 attracts CCR9+ CD8+ T cells to infiltrate the tumor and
enhances CD47-targeted immunotherapy in a murine TNBC model [64]. Thomas et al. [61]
consistently found that the high CCL25 (p = 2.7 × 10−6, HR = 0.77) expression in breast
cancer was associated with an increase in RFS (relapse-free survival). Similarly, the neutral-
ization of CCL25 also promoted tumor growth in a CCL25-expressing mouse melanoma
model [67]. Our study further confirmed the favorable effect of CCL25 on TNBC prognosis.

AIM2 expression showed a significant association with TNBC survival in the uni-
variate analysis but was not included in the final IRGPI score. AIM2 is a component of
inflammasome, which plays a crucial role in the function of T regulatory cells [68]. Its role
in cancer microenvironements is an intriguing topic that requires more investigation. That
it was not included in the IRGPI score could possibly be attributed to the following reasons.
First, it may be related to the process of stepwise regression. During the analysis, the
candidate variables were added or removed into the cox regression analysis in a stepwise
manner. To obtain the optimal final model, the analysis evaluated the predictive power
of the model in every step until there was no justifiable reason to add or remove any
more. Mathematically, if adding AIM2 did not increase the statistical power for the final
model, it would not be included in the final model. Second, biologically, AIM2 is a gene
highly expressed in Tregs. Its expression and function may be affected by factors regulating
Tregs and the infiltration levels of Tregs in the tumor. Thus, its predictive power might be
overridden by other factors in the multivariate analysis.

Owing to the crucial role of CCL5 and CCL25 in TIME, we analyzed the immune cell
profiles in TNBC to explore the link between IRGPI and tumor-immune cell compositions.
The composition of immune cells differed between two IRGPI subgroups. Cytotoxic CD8 T
cells, CD4 T cells, and M1 macrophages were more enriched in the IRGPI-low subgroup,
and M0 and M2 macrophages were more abundant in the IRGPI-high subgroup. A large
number of studies have shown that dense infiltration of T cells, especially cytotoxic CD8
T cells, indicates a favorable prognosis [69–71]. This is in line with previous clinical
observations in TNBCs [72]. In most tumors, M2 macrophages have been proven to favor
the development of tumor. In breast cancer, M2 macrophages inside tumors promote
immunosuppression and predict a poor outcome. Conversely, M1 macrophages are known
to exert anti-tumor activity by promoting immune responses, thus predicting a favorable
prognosis in many cancers [70,73–76]. These results suggested that the IRGPI-low subgroup
had a favorable immune microenvironment than the IRGPI-high subgroup.

The function of infiltrating cytotoxic T lymphocytes (CTLs) is not only related to
their levels but also to their appropriate priming. A new algorithm, TIDE, was recently
developed to model tumor-immune evasion by evaluating the exclusion level of T cells,
as well as the priming level of infiltrating CTLs [31]. TIDE exhibits a better performance
in evaluating the efficacy of first-line ICI therapy in melanoma patients compared with
the widely used biomarkers for ICI therapy, such as tumor mutation burden and PD-
L1 expression. We show here that the CTL exclusion level was consistently low in the
IRGPI-low groups in both TCGA and METABRIC data sets. This observation agrees with
the CIBERSORT analysis, in which the CD8+ T cells infiltrated the IRGPI-low groups
at a significantly higher rate. However, the high CTL dysfunction scores in the IRGPI-
low TNBC suggests a compromised cytotoxic response to cancer cells due to immune
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checkpoints modulated by PD-L1 and PD-1 molecules and thus a potential benefit from ICI
therapy for the IRGPI-low patients. We noticed that TIDE and MSI scores were not always
associated with IRGPI. This may be attributed to the inherent data structure differences
in gene expression of the two data sets: TCGA gene expression data are RNA-seq results,
which are more accurate and have broader detection ranges, whereas the METABRIC
gene expression data are from microarrays, which may exhibit false hybridization and
hybridization saturation problems. Nevertheless, the inconsistent results suggest more
care should be taken when applying TIDE scores in TNBC. And since the frequency of
MSI in breast cancer is relatively low, it also should not be used in evaluating ICI therapy
efficacy in TNBC.

Next, we examined the relationship between PD-1/PD-L1 expression and IRGPI. In
both the TCGA and METABRI data sets, we observed that IRGPI was negatively correlated
with both PD-1 and PD-L1 expression, and the expression of PD-1 and PD-L1 was positively
correlated with CCL5 and CCL25 expression. These results were reproducible, even when
we used the semi-quantitative CCL5 and CCL25 IHC scores to calculate IRGPI IHC scores.
And we observed the negative correlation between IRGPI IHC scores and PD-L1 expression.
More interestingly, IRGPI serum scores, which were calculated with the serum CCL5 and
CCL25 concentrations, also showed a close-to-significant negative correlation with tumor
PD-L1 IHC scores (n = 40, p = 0.058). Further validation of these results in a cohort
with a large sample size may provide a non-invasive way to test PD-L1 expression in
TNBC patients.

Although we repeatedly observed a positive correlation between PD-L1 and CCL5
or CCL25 expression, the molecular mechanisms behind these observations remain elu-
sive. In colorectal cancer, tumor-infiltrated macrophages secreted CCL5, which acti-
vates p65/STAT3 pathway and indirectly stabilizes PD-L1 protein rather than increasing
the mRNA expression of PD-L1 in cancer cells [77]. And in our study, the TCGA and
METABRIC gene expression data are both mRNA expression values. Yet, there are no
reports about the regulatory relationship between CCL25 and PD-L1. Nevertheless, IRGPI
is a useful and reproducible measurement for PD-L1 expression in TNBC.

5. Conclusions

Taken together, we discovered the IRGPI was composed of only two genes. IRGPI
is superb in predicting TNBC survival and is a measurement for the infiltration of major
players of tumor-immune microenvironmental cells and the status of TILs, as well as PD-1
and PD-L1 expression. IRGPI-low patients may benefit more from the activation of CTLs
in ICI therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13215342/s1, Figure S1: Identifying co-expressed immune genes related to CC
chemokine genes by WGCNA. (a) Selection of Soft Threshold in WGCNA analysis; (b) gene dis-
tribution in WGCNA network analysis; (c) co-expression network of genes in the brown module;
(d) GO enrichment of genes in the brown module of co-expression network; (e) KEGG enrichment
of genes in the brown module of co-expression network. Figure S2: Validation of the prognostic
value of IRGPI. (a) Univariate and multivariate Cox analysis of clinicopathological factors and the
IRGPI scores (p < 0.05); (b) effect of CCL5 and CCL25 expression on the survival in TNBC cohort
of Kaplan–Meier plotter database. Figure S3: Validation of the prognostic value of IRGPI and its
associations with immune characteristics in METABRIC database. (a) Kaplan–Meier survival analysis
of IRGPI scores using METABRIC data (p < 0.05); (b) the difference of immune cell infiltration in
different IRGPI groups (pink: IRGPI-high group; and blue: IRGPI-low group); (c) scores of TIDE,
MSI, and T-cell exclusion and dysfunction in different IRGPI groups (ns: not significant, * p < 0.05;
** p < 0.01; *** p < 0.001); (d) correlations between CCL5/CCL25/ IRGPI scores and PD-L1/PD1
expression. Figure S4: Pictures of CCL5, CCL25, and PD-L1 immunohistochemistry using the known
tissue positive for CCL5, CCL25, and PD-L1. (a) CCL5 IHC in tonsil; (b) CCL25 IHC in thymus;
(c) PD-L1 IHC in tonsil. Table S1: Genes in the blue and brown modules. Table S2: DEGs in TNBC
and normal samples. Table S3: The 67 immune-related hub DEGs. Table S4: The 41 KEGG pathways
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