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Abstract 

Non-parametric and semi-parametric resampling procedures are widely used to perform support estimation in 
computational biology and bioinformatics. Among the most widely used methods in this class is the standard 
bootstrap method, which consists of random sampling with replacement. While not requiring assumptions about 
any particular parametric model for resampling purposes, the bootstrap and related techniques assume that sites are 
independent and identically distributed (i.i.d.). The i.i.d. assumption can be an over-simplification for many problems 
in computational biology and bioinformatics. In particular, sequential dependence within biomolecular sequences is 
often an essential biological feature due to biochemical function, evolutionary processes such as recombination, and 
other factors. To relax the simplifying i.i.d. assumption, we propose a new non-parametric/semi-parametric sequential 
resampling technique that generalizes “Heads-or-Tails” mirrored inputs, a simple but clever technique due to Landan 
and Graur. The generalized procedure takes the form of random walks along either aligned or unaligned biomolecular 
sequences. We refer to our new method as the SERES (or “SEquential RESampling”) method. To demonstrate the per-
formance of the new technique, we apply SERES to estimate support for the multiple sequence alignment problem. 
Using simulated and empirical data, we show that SERES-based support estimation yields comparable or typically 
better performance compared to state-of-the-art methods.

Keywords:  Statistical support, Non-parametric, Semi-parametric, Resampling, Bootstrap, Multiple sequence 
alignment, Random walk

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Resampling methods are widely used throughout compu-
tational biology and bioinformatics as a means for assess-
ing statistical support. At a high level, resampling-based 
support estimation procedures consist of a methodologi-
cal pipeline: resampled replicates are generated, infer-
ence/analysis is performed on each replicate, and results 

are then compared across replicates. Among the most 
widely used resampling methods are non-parametric 
approaches including the standard bootstrap method [6], 
which consists of random sampling with replacement. 
We will refer to the standard bootstrap method as the 
bootstrap method for brevity. Unlike parametric meth-
ods, non-parametric approaches need not assume that 
a particular parametric model is applicable to a problem 
at hand. However, the bootstrap and other widely used 
non-parametric approaches assume that observations are 
independent and identically distributed (i.i.d.).
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In the context of biomolecular sequence analysis, there 
are a variety of biological factors that conflict with this 
assumption. These include evolutionary processes that 
cause intra-sequence dependence (e.g., recombina-
tion) and functional dependence among biomolecular 
sequence elements and motifs. Felsenstein presciently 
noted these limitations when he proposed the application 
of the bootstrap to phylogenetic inference: “A more seri-
ous difficulty is lack of independence of the evolutionary 
processes in different characters. . . . For the purposes of 
this paper, we will ignore these correlations and assume 
that they cause no problems; in practice, they pose the 
most serious challenge to the use of bootstrap methods.” 
(reproduced from p. 785 of [7]).

To relax the simplifying assumption of i.i.d. observa-
tions, Landan and Graur [11] introduced the Heads-
or-Tails (HoT) technique for the specific problem of 
multiple sequence alignment (MSA) support estimation. 
The idea behind HoT is simple but quite powerful: infer-
ence/analysis should be repeatable whether an MSA is 
read either from left-to-right or from right-to-left—i.e., 
in either heads or tails direction, respectively. While HoT 
resampling preserves intra-sequence dependence, it is 
limited to two replicates, which is far fewer than typi-
cally needed for reasonable support estimation; often, 
hundreds of resampled replicates or more are used in 
practice. Subsequently developed support estimation 
procedures increased the number of possible replicates 
by augmenting HoT with bootstrapping, parametric resa-
mpling, and domain-specific techniques (e.g., progressive 
MSA estimation) [12, 18, 20]. The combined procedures 
were shown to yield comparable or improved support 
estimates relative to the original HoT procedure [20] as 
well as other state-of-the-art parametric and domain-
specific methods [10, 16], at the cost of some of the gen-
eralizability inherent to non-parametric approaches. In 
this study, we revisit the central question that HoT par-
tially addressed: how can we resample many non-para-
metric replicates that account for dependence within a 
sequence of observations, and how can such techniques 
be used to derive improved support estimates for biomo-
lecular sequence analysis?

Methods
In our view, a more general statement of HoT’s main 
insight is the following, which we refer to as the “neigh-
bor preservation property”: a neighboring observation is 
still a neighbor, whether reading an observation sequence 
from the left or the right. In other words, the key prop-
erty needed for non-parametric resampling is preserva-
tion of neighboring bases within the original sequences, 
where any pair of bases that appear as neighbors in 
a resampled sequence must also be neighbors in the 

corresponding original sequence. To obtain many resam-
pled replicates that account for intra-sequence depend-
ence while retaining the neighbor preservation property, 
we propose a random walk procedure which generalizes 
a combination of the bootstrap method and the HoT 
method. We refer to the new resampling procedure as 
SERES (“SEquential RESampling”). Note that the neigh-
bor preservation property is necessary but not sufficient 
for statistical support estimation. Other important prop-
erties include computational efficiency of the resampling 
procedure and unbiased sampling of observations within 
the original observation sequence.

SERES walks can be performed on both aligned and 
unaligned sequence inputs. We discuss the case of 
aligned inputs first, since it is simpler than the case of 
unaligned inputs.

SERES walks on aligned sequences
Detailed pseudocode for a non-parametric SERES walk 
on a fixed MSA is shown in Additional file 1: Additional 
methods section: Algorithm 1.

The random walk is performed on the sequence of 
aligned characters (i.e., MSA sites). The starting point for 
the walk is chosen uniformly at random from the align-
ment sites, and the starting direction is also chosen uni-
formly at random. The random walk then proceeds in 
the chosen direction with non-deterministic reversals, or 
direction changes, that occur with probability γ ; further-
more, reversals occur with certainty at the start and end 
of the fixed MSA. Aligned characters are sampled during 
each step of the walk. The random walk ends once the 
number of sampled characters is equal to the fixed MSA 
length.

The long-term behavior of an infinitely long SERES 
random walk can be described by a second-order 
Markov chain. Certain special cases (e.g., γ = 0.5 ) can be 
described using a first-order Markov chain.

In theory, a finite-length SERES random walk can 
exhibit biased sampling of sites since reversal occurs 
with certainty at the start and end of the observation 
sequence, whereas reversal occurs with probability γ 
elsewhere. However, for practical choices of walk length 
and reversal probability γ , sampling bias is expected to be 
minimal.

SERES walks on unaligned sequences
Detailed pseudocode for SERES resampling of unaligned 
sequences is shown in Additional file 1: Additional meth-
ods section: Algorithm 2. Figure 1 provides an illustrated 
example.

The procedure begins with estimating a set of 
anchors—sequence regions that exhibit high sequence 
similarity—which enable resampling synchronization 
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across unaligned sequences. A conservative approach for 
identifying anchors would be to use highly similar regions 
that appear in the strict consensus of multiple MSA esti-
mation methods. In practice, we found that highly similar 
regions within a single guide MSA produced reasonable 
anchors. We used the average normalized Hamming dis-
tance (ANHD) as our similarity measure, where indels 
are treated as mismatches.

Unaligned sequence indices corresponding to the start 
and end of each anchor serve as “barriers” in much the 
same sense as in parallel computing: asynchronous 
sequence reads occur between barrier pairs along a cur-
rent direction (left or right), and a random walk is con-
ducted on barrier space in a manner similar to a SERES 
walk on a sequence of aligned characters. The set of bar-
riers also includes trivial barriers at the start and end of 
the unaligned sequences. The random walk concludes 
once the unaligned sequences in the resampled repli-
cate have sufficient length; our criterion requires that the 
longest resampled sequence has minimum length that 
is a multiple maxReplicateLengthFactor of the longest 
input sequence length.

Technically, the anchors in our study make use of 
parametric MSA estimation and the rest of the SERES 
walk is non-parametric. The overall procedure is there-
fore semi-parametric (although see “Conclusions” for an 
alternative).

Performance study
Our study evaluated the performance of SERES-based 
support estimation in the context of MSA support esti-
mation. Of course, there are many other applications for 
non-parametric/semi-parametric support estimation—
too many to investigate in one study. We focus on this 
application since the multiple sequence alignment prob-
lem is considered to be a classical problem in computa-
tional biology and bioinformatics and MSAs are used as 
inputs for a variety of important computational problems 
throughout computational biology and bioinformat-
ics (e.g., phylogenetics and phylogenomics, proteomics, 
comparative genomics, etc.). It is well known that MSA 
quality has a major impact on downstream analysis [11, 

14, 15]. We also note that the need to quantify support 
in the context of MSA estimation bears upon the critical 
issues of scientific rigor and reproducibility.

Computational methods
We examined the problem of evaluating support in the 
context of MSA estimation. The problem input consists 
of an estimated MSA A which has a corresponding set of 
unaligned sequences S. The problem output consists of 
support estimates for each nucleotide-nucleotide homol-
ogy in A, where each support estimate is on the unit 
interval. Note that this computational problem is distinct 
from the full MSA estimation problem.

There are a variety of existing methods for MSA sup-
port estimation. The creators of HoT and their col-
laborators subsequently developed alignment-specific 
parametric resampling techniques [12] and then com-
bined the two to obtain two new semi-parametric 
approaches: GUIDANCE [18] (which we will refer to as 
GUIDANCE1) and GUIDANCE2 [20]. Other parametric 
MSA support estimation methods include PSAR [10] and 
T-Coffee [16].

We focus on GUIDANCE1 and GUIDANCE2, which 
subsume HoT and have been demonstrated to have com-
parable or better performance relative to other state-of-
the-art methods [20]. We used MAFFT for re-estimation 
on resampled replicates, since it has been shown to be 
among the most accurate progressive MSA methods to 
date [9, 15].

We then used SERES to perform resampling in place 
of the standard bootstrap that is used in the first step of 
GUIDANCE1/GUIDANCE2. Re-estimation was per-
formed on 100 SERES replicates—each consisting of a 
set of unaligned sequences—using MAFFT with default 
settings, which corresponds to the FFT-NS-2 algorithm 
for progressive alignment. The SERES resampling proce-
dure used a reversal probability γ = 0.5 , which is equiva-
lent to selecting a direction uniformly at random (UAR) 
at each step of the random walk; each SERES replicate 
utilized a total of ⌊ k

20
⌋ anchors with anchor size of 5 bp 

and a minimum distance between neighboring anchors 
of 25 bp, where k is the length of the input alignment A. 

(See figure on next page.)
Fig. 1  Illustrated example of SERES resampling random walk on unaligned sequences. Detailed pseudocode is provided in Additional file 1: 
Additional methods section: Algorithm 2. a The resampling procedure begins with the estimation of a consensus alignment on the input set 
of unaligned sequences. b A set of conservative anchors is then obtained using the consensus alignment, and anchor boundaries define a set 
of barriers (including two trivial barriers—one at the start of the sequences and one at the end of the sequences). c The SERES random walk is 
conducted on the set of barriers. The walk begins at a random barrier and proceeds in a random direction to the neighboring barrier. The walk 
reverses with certainty when the trivial start/end barriers are encountered; furthermore, the walk direction can randomly reverse with probability 
γ . As the walk proceeds from barrier to barrier, unaligned sequences are sampled between neighboring barrier pairs. d The resampling procedure 
terminates when the resampled sequences meet a specified sequence length threshold
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 a Estimate consensus alignment on input set of unaligned sequences.

s1 AGTCTGGACTATAATGAAAGCCGA
s2 AGTCTGGTATAATGAAAGCTGGTACGA
s3 AGTCTGTACTATAATGGAAGTGGGGACACGTGGACAGCCGA
s4 AGTCTGTACTATAATGCGACACGTGGATAGCCGA
s5 AGTCTGTACTATAATGGGAGGAAAGCCGA

s1
s2
s3
s4
s5

b Obtain anchors on consensus alignment. Barriers (dashed lines) 
     consist of anchor boundaries plus trivial start/end barriers.

c Choose an initial barrier and walk direction at random.

     As walk proceeds from one barrier to neighboring barrier, 
     sample unaligned sequences between barrier pairs.

s1
s2
s3
s4
s5
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Anchor
1

Anchor
2

Anchor
3

Anchor
4

Anchor
5

s1
s2
s3
s4
s5

Barriers (dashed lines)

d Random walk terminates when resampled sequences reach required length.

Resampled
sequences

Resampled
sequences

s1 TA
s2 TA
s3 TA
s4 TA
s5 TA

s1 TATAATGAAAGCCGAGCCGAAAGCC
s2 TATAATGAAAGCTGGTACGAGCATGGTCGAAAGCTGGTAC
s3 TATAATGGAAGTGGGGACACGTGGACAGCCGAGCCGACAGCC
s4 TATAATGCGACACGTGGATAGCCGAGCCGATAGCC
s5 TATAATGGGAGGAAAGCCGAGCCGAAAGCC

s1
s2
s3
s4
s5

Reversal
Reversal
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All downstream steps of GUIDANCE1/GUIDANCE2 
were then performed using the re-estimated alignments 
as input.

To further explore the impact of our algorithmic design 
choices, we included additional experiments which var-
ied the parameter settings used to perform SERES-based 
support estimation. Each set of experiments manipulated 
one parameter setting—either the number of anchors, 
anchor length, or the method used for estimating the 
input MSA—but otherwise used default settings for 
SERES-based support estimation. The number of anchors 
was selected from the set {3, 5, 20, 50, 100} . Anchor length 
in bp was chosen from the set {3, 5, 10, 30, 50} . Three dif-
ferent methods were used for estimating an input MSA: 
ClustalW [13], MAFFT [9], and FSA [2].

Simulated datasets
Model trees and sequences were simulated using INDEL-
ible [8]. First, non-ultrametric model trees with either 10 
or 50 taxa were sampled using the following procedure. 
Model trees were generated under a birth-death process 
[21], branch lengths were chosen UAR from the interval 
(0,  1), and the model tree height was re-scaled from its 
original height h0 to a desired height h by multiplying all 
branch lengths by the factor h/h0 . Next, sequences were 
evolved down each model tree under the General Time-
Reversible (GTR) model of substitution [19] and the indel 
model of Fletcher and Yang [8], where the root sequence 
had length of 1 kb. We used the substitution rates and 
base frequencies from the study of Liu et al. [15], which 
were based upon empirical analysis of the nematode Tree 
of Life. Sequence insertions/deletions occurred at rate ri , 

and we used the medium gap length distribution from 
the study of Liu et al. [15].

The model parameter values used for simulation and 
summary statistics computed on the simulated datasets 
are shown in Table 1. Each combination of model param-
eter values constitutes a model condition. Model condi-
tions are enumerated in order of generally increasing 
sequence divergence, as reflected by ANHD. For each 
model condition, the simulation procedure was repeated 
to generate twenty replicate datasets.

To explore the impact of gap length distribution, our 
study also included 10-taxon model conditions which 
utilized the long gap length distribution from the study 
of Liu et al. [15] in place of the medium gap length distri-
bution that was used elsewhere in our simulation study. 
Parameter values and summary statistics for the long-
gap-length model conditions are shown in Table 2.

The MSA support estimation problem under study 
requires an MSA as input. Summary statistics for the 
estimated alignments used as input are provided in 
Table 3.

The performance of the MSA support estimation meth-
ods in our study was evaluated using receiver operating 
characteristic (ROC) curves, precision-recall (PR) curves, 
and area under ROC and PR curves (ROC-AUC and 
PR-AUC, respectively). Consistent with other studies of 
MSA support estimation techniques [18, 20], the MSA 
support estimation problem in our study entails anno-
tation of nucleotide-nucleotide homologies in the esti-
mated alignment; thus, homologies that appear in the 
true alignment but not the estimated alignment are not 
considered. For this reason, the confusion matrix quan-
tities used for ROC and PR calculations are defined as 

Table 1  Medium-gap-length model conditions: parameter values and summary statistics

The main simulations in our study utilized the medium gap length distribution from the study of Liu et al. [15]. The model condition parameters consist of the number 
of taxa, model tree height, and insertion/deletion probability. Each model condition corresponds to a distinct set of model parameter values. The 10-taxon model 
conditions are named 10.A through 10.E in order of generally increasing sequence divergence; the 50-taxon model conditions are named 50.A through 50.E similarly. 
The following table columns list average summary statistics for each model condition ( n = 20 ). “NHD” is the average normalized Hamming distance of a pair of aligned 
sequences in the true alignment. “Gappiness” is the percentage of true alignment cells which consists of indels. “True align length” is the length of the true alignment

Model condition Number of taxa Tree height Insertion/deletion 
probability

NHD Gappiness True align length

10.A 10 0.4 0.13 0.297 0.474 1965.3

10.B 10 0.7 0.1 0.394 0.512 2165.1

10.C 10 1 0.06 0.514 0.526 2162.8

10.D 10 1.6 0.031 0.599 0.485 1874.4

10.E 10 4.3 0.013 0.693 0.465 1849.3

50.A 50 0.45 0.06 0.281 0.516 2043.5

50.B 50 0.7 0.03 0.398 0.475 1935.5

50.C 50 1 0.02 0.514 0.498 2047.6

50.D 50 1.8 0.012 0.594 0.471 1945.0

50.E 50 4.3 0.004 0.688 0.459 1890.2
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follows. True positives (TP) are the set of nucleotide-
nucleotide homologies that appear in the true alignment 
and the estimated alignment with support value greater 
than or equal to a given threshold, false positives (FP) are 
the set of nucleotide-nucleotide homologies that appear 
in the estimated alignment with support value greater 
than or equal to a given threshold but do not appear in 
the true alignment, false negatives (FN) are the set of 
nucleotide-nucleotide homologies that appear in the true 
alignment but appear in the estimated alignment with 
support value below a given threshold, and true nega-
tives (TN) are the set of nucleotide-nucleotide homolo-
gies that do not appear in the true alignment and appear 
in the estimated alignment with support value below a 
given threshold. The ROC curve plots the true positive 
rate ( |TP|/(|TP| + |FN|) ) versus the false positive rate 
( |FP|/(|FP| + |TN|) ). The PR curve plots the true posi-
tive rate versus precision ( |TP|/(|TP| + |FP|) ). Varying 
the support threshold yields different points along these 
curves. Custom scripts were used to perform confusion 
matrix calculations. ROC curve, PR curve, and AUC cal-
culations were performed using the scikit-learn Python 
library [17].

Empirical datasets
We downloaded empirical benchmarks from the Com-
parative RNA Web (CRW) Site database, which can be 
found at http://www.rna.icmb.utexa​s.edu [3]. In brief, the 
CRW database includes ribosomal RNA sequence data-
sets than span a range of dataset sizes and evolutionary 
divergence. We focused on datasets where high-quality 
reference alignments are available; the reference align-
ments were produced using intensive manual curation 
and analysis of heterogeneous data, including secondary 
structure information. We selected primary 16S rRNA, 
primary 23S rRNA, primary intron, and seed alignments 

Table 2  Long-gap-length model conditions: parameter values and summary statistics

Our simulation study included additional 10-taxon model conditions that utilized the long gap length distribution from the study of Liu et al. [15]. The model 
parameters consisted of model tree height and insertion/deletion probability, and each model condition corresponds to a distinct set of model parameter values. 
The long-gap-length model conditions are named 10.long.A through 10.long.E in order of generally increasing sequence divergence. The following table columns 
list average summary statistics for each model condition ( n = 20 ). “NHD” is the average normalized Hamming distance of a pair of aligned sequences in the true 
alignment. “Gappiness” is the percentage of true alignment cells which consists of indels. “True align length” is the length of the true alignment. “Est align length” is the 
length of the MAFFT-estimated alignment [9] which was provided as input to the support estimation methods. “SP-FN” and “SP-FP” are the proportion of homologies 
that appear in the true alignment but not in the MAFFT-estimated alignment and vice versa, respectively

Model condition Tree height Insertion/
deletion 
probability

NHD Gappiness True align length Est align length SP-FN SP-FP

10.long.A 0.4 0.13 0.276 0.440 1804.8 1433.7 0.272 0.315

10.long.B 0.7 0.1 0.363 0.481 1926.7 1447.8 0.381 0.426

10.long.C 1 0.06 0.455 0.456 1853.5 1413.3 0.510 0.537

10.long.D 1.6 0.031 0.542 0.432 1754.1 1403.1 0.725 0.729

10.long.E 4.3 0.013 0.660 0.445 1811.0 1560.1 0.899 0.897

Table 3  Medium-gap-length model conditions: estimated 
alignment statistics

The MSA support estimation problem requires an input MSA. MAFFT [9] was 
used to estimate an input MSA for all model conditions in our study. Our study 
also included ClustalW [13] and FSA [2] alignments to explore the impact of 
input alignment quality on downstream support estimation. The following 
table columns list average statistics for estimated alignments on each model 
condition ( n = 20 ). “Est align length” is the estimated alignment length. “SP-FN” 
and “SP-FP” are the proportion of homologies that appear in the true alignment 
but not in the estimated alignment and vice versa, respectively

Model condition Est align length SP-FN SP-FP

MAFFT
10.A 1552.3 0.294 0.341

10.B 1563.5 0.483 0.533

10.C 1554.0 0.657 0.684

10.D 1507.5 0.747 0.752

10.E 1612.8 0.945 0.943

50.A 1785.7 0.086 0.088

50.B 1714.2 0.105 0.102

50.C 1703.1 0.245 0.230

50.D 1712.2 0.455 0.419

50.E 2319.2 0.963 0.948

Model condition Est align length SP-FN SP-FP

ClustalW
10.A 1208.5 0.497 0.556

10.B 1186.2 0.624 0.684

10.C 1144.8 0.711 0.754

10.D 1105.7 0.756 0.786

10.E 1060.1 0.896 0.906

Model condition Est align length SP-FN SP-FP

FSA
10.A 2289.3 0.334 0.124

10.B 3418.5 0.585 0.164

10.C 4506.6 0.729 0.211

10.D 5000.9 0.800 0.223

10.E 6657.1 0.907 0.531

http://www.rna.icmb.utexas.edu
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with at most 250 sequences. Aligned sequences with 99% 
or more missing data and/or indels were omitted from 
analysis. Summary statistics for the empirical bench-
marks are shown in Table 4.

Computational resources used and software/data 
availability
All computational analyses were run on computing 
facilities in Michigan State University’s High Perfor-
mance Computing Center. We used compute nodes 
in the intel16-k80 cluster, each of which had a 2.4 GHz 
14-core Intel Xeon E5-2680v4 processor with 256 GiB of 
main memory. Open-source software and open data can 
be found at https​://gitla​b.msu.edu/liula​b/SERES​-Scrip​
ts-Data.

Results
Simulation study
On the medium-gap-length model conditions, SERES-
based resampling and re-estimation yielded improved 
MSA support estimates compared to GUIDANCE1 and 
GUIDANCE2, two state-of-the-art methods, where 
performance was measured by PR-AUC or ROC-AUC 
(Table  5). In all cases, PR-AUC or ROC-AUC improve-
ments were statistically significant (corrected pairwise 
t-test or DeLong et  al. [5] test, respectively; n = 20 and 
α = 0.05 ). The observed performance improvement 
was robust to several experimental factors: dataset size, 
increasing sequence divergence due to increasing num-
bers of substitutions, insertions, and deletions, and the 
choice of alignment-specific parametric support estima-
tion techniques (i.e., the parametric approaches used by 
either GUIDANCE1 or GUIDANCE2) that were used in 
combination with SERES-based support estimation.

Compared to dataset size, sequence divergence had a 
relatively greater quantitative impact on each method’s 
performance. For each dataset size (10 or 50 taxa), PR-
AUC differed by at most 3% on the least divergent model 
condition. The SERES-based method’s performance 
advantage grew as sequence divergence increased—to as 
much as 28%—and the largest performance advantages 
were seen on the most divergent datasets in our study. 
The most divergent datasets were also the most chal-
lenging. For each method, PR-AUC generally degraded 
as sequence divergence increased; however, the SERES-
based method’s PR-AUC degraded more slowly com-
pared to the non-SERES-based method. Consistent 
with the study of Sela et  al. [20], GUIDANCE2 consist-
ently outperformed GUIDANCE1 on each model condi-
tions and using either AUC measure. The performance 
improvement of SERES + GUIDANCE1 over GUID-
ANCE1 was generally greater than that seen when 
comparing SERES + GUIDANCE2 and GUIDANCE2; 
furthermore, the PR-AUC-based corrected q-values were 
more significant for the former compared to the latter in 
all cases except for the 10.D model condition, where the 
corrected q-values were comparable. Finally, while the 
SERES-based method consistently yielded performance 
improvements over the corresponding non-SERES-based 
method regardless of the choice of performance measure 
(either PR-AUC or ROC-AUC), the PR-AUC difference 
was generally larger than the ROC-AUC difference, espe-
cially on more divergent model conditions.

In terms of average runtime on the 10-taxon and 
50-taxon model conditions, SERES + GUIDANCE2 
added overhead of at most 1.4 min and 6.5 min relative to 
GUIDANCE2, respectively (Additional file 1: Figure S1). 
The average runtime overhead of SERES + GUIDANCE1 

Table 4  Empirical dataset summary statistics

The empirical study made use of reference alignments (“Ref align”) from the CRW database [3]. The reference alignments were curated using heterogeneous data 
including secondary structure information. The column description is identical to Table 2, where the empirical study made use of reference alignments in lieu of the 
simulation study’s true alignments

Dataset Number of taxa NHD Gappiness Ref align length Est align length SP-FN SP-FP

IGIA 110 0.606 0.915 10,368 6675 0.734 0.784

IGIB 202 0.579 0.910 10,633 7379 0.825 0.864

IGIC2 32 0.533 0.700 4243 3514 0.689 0.715

IGID 21 0.719 0.782 5061 3023 0.874 0.904

IGIE 249 0.451 0.838 2751 2775 0.393 0.376

IGIIA 174 0.668 0.814 6406 7005 0.816 0.800

PA23 142 0.293 0.267 3991 3552 0.078 0.077

PE23 117 0.300 0.612 9436 10,083 0.202 0.213

PM23 102 0.361 0.797 10,999 8803 0.262 0.288

SA16 132 0.212 0.205 1866 1673 0.031 0.028

SA23 144 0.304 0.460 4048 3678 0.077 0.081

https://gitlab.msu.edu/liulab/SERES-Scripts-Data
https://gitlab.msu.edu/liulab/SERES-Scripts-Data
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relative to GUIDANCE1 was at most 1 min and 5 min 
on the 10-taxon and 50-taxon model conditions, respec-
tively. In terms of average memory usage on 10-taxon 
and 50-taxon model conditions, SERES + GUIDANCE2 
adds at most 0.034 GiB and 0.871 GiB overhead relative 
to GUIDANCE2, respectively (Additional file  1: Figure 
S2). A similar outcome was observed when comparing 
SERES + GUIDANCE1 and GUIDANCE1. On average, 
all methods in the simulation study completed analysis of 
each replicate dataset in less than half an hour and with 
less than 1 GiB of main memory usage.

Performance comparisons on the long-gap-length 
model conditions (Table  6) were largely similar to the 

medium-gap-length model conditions. SERES + GUID-
ANCE2 consistently returned significant improvements 
in PR-AUC and ROC-AUC relative to GUIDANCE2 
(corrected pairwise t-test or DeLong et  al. [5] test, 
respectively; n = 20 and α = 0.05 ). Furthermore, SERES 
+ GUIDANCE2’s PR-AUC advantage relative to GUID-
ANCE2 tended to improve on more divergent model 
conditions. With a single exception, PR-AUC improve-
ment of SERES + GUIDANCE2 over GUIDANCE2 was 
similar (within a single percentage point) when compar-
ing medium-gap-length/long-gap-length model condi-
tion pairs that were otherwise equivalent (e.g., 10.A and 
10.long.A); a similar finding was observed for ROC-AUC 

Table 5  Support estimation method performance on main model conditions

Results are shown for five 10-taxon model conditions (named 10.A through 10.E in order of generally increasing sequence divergence) and five 50-taxon model 
conditions (similarly named 50.A through 50.E). We evaluated the performance of two state-of-the-art methods for MSA support estimation—GUIDANCE1 [18] and 
GUIDANCE2 [20]—versus re-estimation on SERES and parametrically resampled replicates (using parametric techniques from either GUIDANCE1 or GUIDANCE2) (see 
“Methods” section for details.) We calculated each method’s precision-recall (PR) and receiver operating characteristic (ROC) curves. Performance is evaluated based 
upon aggregate area under curve (AUC) across all replicates for a model condition ( n = 20 ). The top rows show AUC comparisons of GUIDANCE1 (“GUIDANCE1”) vs. 
SERES combined with parametric techniques from GUIDANCE1 (“SERES + GUIDANCE1”), and the bottom rows show AUC comparisons of GUIDANCE2 (“GUIDANCE2”) 
vs. SERES combined with parametric techniques from GUIDANCE2 (“SERES + GUIDANCE2”); for each model condition and pairwise comparison, the best AUC is shown 
in italics. Statistical significance of PR-AUC or ROC-AUC differences was assessed using a one-tailed pairwise t-test or DeLong et al. [5] test, respectively, and multiple 
test correction was performed using the method of Benjamini and Hochberg [1]. Corrected q-values are reported ( n = 20 ) and all were significant ( α = 0.05)

Model 
condition

PR-AUC (%) Pairwise t-test 
corrected q-value

ROC-AUC (%) DeLong et al. test 
corrected q-value

GUIDANCE1 SERES + 
GUIDANCE1

GUIDANCE1 SERES + 
GUIDANCE1

10.A 88.74 91.17 5.4× 10
−7 80.22 85.57 < 10

−10

10.B 82.21 86.26 1.5× 10
−6 84.83 88.66 < 10

−10

10.C 76.23 83.49 1.9× 10
−4 86.98 91.23 < 10

−10

10.D 74.65 85.81 1.9× 10
−4 88.55 93.72 < 10

−10

10.E 42.61 59.20 3.1× 10
−4 82.24 87.40 < 10

−10

50.A 98.22 98.92 5.3× 10
−10 83.09 90.64 < 10

−10

50.B 97.84 98.69 2.8× 10
−9 82.85 90.39 < 10

−10

50.C 95.08 96.80 5.6× 10
−8 85.54 90.64 < 10

−10

50.D 90.79 95.75 5.3× 10
−6 88.89 94.56 < 10

−10

50.E 62.47 79.14 8.0× 10
−10 91.02 93.23 < 10

−10

Model 
condition

PR-AUC (%) Pairwise t-test 
corrected q-value

ROC-AUC (%) DeLong et al. test 
corrected q-value

GUIDANCE2 SERES + 
GUIDANCE2

GUIDANCE2 SERES + 
GUIDANCE2

10.A 92.55 93.33 7.4× 10
−6 87.17 88.34 < 10

−10

10.B 88.08 89.31 8.4× 10
−4 89.45 90.56 < 10

−10

10.C 84.28 86.86 3.1× 10
−4 91.36 92.88 < 10

−10

10.D 86.03 88.75 1.9× 10
−4 93.34 94.69 < 10

−10

10.E 51.17 62.30 1.3× 10
−3 86.00 88.28 < 10

−10

50.A 98.98 99.14 5.3× 10
−6 91.17 92.50 < 10

−10

50.B 98.79 98.96 1.5× 10
−6 91.24 92.44 < 10

−10

50.C 96.86 97.45 3.2× 10
−7 90.81 92.31 < 10

−10

50.D 94.04 96.23 1.5× 10
−5 92.67 95.09 < 10

−10

50.E 72.61 81.47 1.5× 10
−8 92.94 94.22 < 10

−10
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measurements. The single exception occurred on the 
10.D and 10.long.D model conditions, where a larger PR-
AUC performance improvement by the SERES-based 
method was seen on the 10.long.D model condition ver-
sus the 10.D model condition.

We also conducted additional experiments to study 
the impact of three algorithmic design choices. Table  7 
shows performance results for SERES + GUIDANCE2 
using alternative methods for estimating an input MSA. 
Note that the three MSA methods in our study returned 
varying input alignment quality; relative to the other 
two MSA methods, FSA returned lower average SP-FP 
and was best or close to best in terms of average SP-FN 
(Table  3). Downstream support estimation PR-AUC 
tended to reflect input alignment quality. While PR-
AUC tended to degrade as model conditions became 
more divergent, smaller PR-AUC reductions were seen 
when using FSA as input alignment versus MAFFT or 
ClustalW. SERES + GUIDANCE2’s PR-AUC and ROC-
AUC performance advantage over GUIDANCE2 was 
robust to input alignment quality: it returned PR-AUC 
and ROC-AUC improvements when annotating more 
accurate input alignments (i.e., FSA alignments) as well 
as less accurate input alignments (i.e., the MAFFT and 
ClustalW alignments). Results for algorithmic design 
experiments using differing choices for anchor length and 
numbers of anchors are shown in Figs. 2 and 3, respec-
tively. SERES + GUIDANCE2 returned comparable 

PR-AUC and ROC-AUC regardless of anchor length used 
for SERES resampling. The average ROC-AUC difference 
for different choices of anchor length was less than 0.01 
for all model conditions. The largest PR-AUC difference 
was 0.058 on the 10.E model condition; in comparison, 
SERES + GUIDANCE2’s PR-AUC improvement over 
GUIDANCE2 was 0.28 on the 10.E model condition. 
A similar outcome was seen on experiments involving 
different choices for the number of anchors, with one 
exception: on the most divergent 10.E model condition, 
an intermediate number of anchors (about 20) yielded 
the best PR-AUC. 

Empirical study
Relative to GUIDANCE1 or GUIDANCE2, SERES-
based support estimates consistently returned higher 
AUC on all datasets—primary, seed, and intronic—
with a single exception: the comparison of SERES + 
GUIDANCE2 and GUIDANCE2 on the intronic IGIC2 
dataset, where the PR-AUC and ROC-AUC differences 
were 1.17% and 2.12%, respectively  (Table 8). For each 
pairwise comparison of methods (i.e., SERES + GUID-
ANCE1 vs. GUIDANCE1 or SERES + GUIDANCE2 vs. 
GUIDANCE2), the SERES-based method returned rel-
atively larger PR-AUC improvements on datasets with 
greater sequence divergence, as measured by ANHD 
and gappiness. In particular, PR-AUC improvements 
were less than 1% on seed and primary non-intronic 

Table 6  Support estimation method performance on long-gap-length model conditions

The performance of GUIDANCE2 and SERES + GUIDANCE2 is compared across model conditions 10.long.A through 10.long.E (named in order of generally increasing 
sequence divergence). Aggregate PR-AUC and ROC-AUC are reported across all replicate datasets in a model condition ( n = 20 ), and the best AUC for each pairwise 
method comparison on a model condition is shown in italics. Statistical significance of PR-AUC or ROC-AUC differences was assessed using a one-tailed pairwise t-test 
or DeLong et al. [5] test, respectively, and multiple test correction was performed using the method of Benjamini and Hochberg [1]. Corrected q-values are reported 
( n = 20 ) and all were significant ( α = 0.05)

Model condition PR-AUC (%)

GUIDANCE2 SERES + GUIDANCE2 Pairwise t-test 
corrected q-value

10.long.A 92.32 92.94 9.7× 10
−4

10.long.B 90.62 91.64 3.3× 10
−6

10.long.C 85.10 87.93 9.7× 10
−4

10.long.D 79.22 86.18 9.7× 10
−4

10.long.E 67.63 78.48 9.7× 10
−4

Model condition ROC-AUC (%)

GUIDANCE2 SERES + GUIDANCE2 DeLong et al. test 
corrected q-value

10.long.A 89.99 90.99 < 10
−10

10.long.B 91.84 93.02 < 10
−10

10.long.C 93.14 94.59 < 10
−10

10.long.D 93.89 96.13 < 10
−10

10.long.E 92.62 94.38 < 10
−10
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datasets. Intronic datasets yielded PR-AUC improve-
ments of as much as 13.87%. Observed AUC improve-
ments of SERES + GUIDANCE1 over GUIDANCE1 
were relatively greater than those seen for SERES + 
GUIDANCE2 in comparison to GUIDANCE2. Finally, 
GUIDANCE2 consistently returned higher AUC rela-
tive to GUIDANCE1, regardless of whether PR or ROC 
curves were the basis for AUC comparison.

The runtime overhead of SERES + GUIDANCE2 
versus GUIDANCE2 was larger on the empirical data-
sets compared to the simulation study—at most 2.6 h 
on the largest empirical datasets, which have 100–200 
taxa or so (Additional file  1: Figure S1). The runtime 
difference between the two methods also varied to a 
greater degree. Unlike the simulation study, GUID-
ANCE2’s main memory usage was not consistently 
better than SERES + GUIDANCE2 on the empirical 
datasets (Additional file  1: Figure S2). Rather, the two 
methods had comparable memory usage across the 
empirical datasets, with a maximum difference of 0.06 
GiB. Similar runtime and memory usage comparisons 
were observed for SERES + GUIDANCE1 and GUID-
ANCE1, with the former having maximum overhead 
relative to the latter of 4.2 h and 0.07 GiB.

Discussion
Re-estimation using SERES resampling resulted in com-
parable or typically improved support estimates for the 
application in our study. We believe that this perfor-
mance advantage is due to the ability to generate many 
distinct replicates while enforcing the neighbor preserva-
tion principle. The latter is critical for retaining sequence 
dependence which is inherent to the application in our 
study.

On all model conditions, SERES + GUIDANCE1 sup-
port estimation resulted in significant improvements in 
PR-AUC and ROC-AUC compared to GUIDANCE1. 
A similar outcome was observed when comparing 
SERES + GUIDANCE2 and GUIDANCE2. The main 
difference in each comparison is the resampling tech-
nique—either SERES or standard bootstrap. Our 
findings clearly demonstrate the performance advan-
tage of the former over the latter. SERES accounts for 
intra-sequence dependence due to insertion and dele-
tion processes, while the bootstrap method assumes 
that sites are independent and identically distributed. 
Regarding comparisons involving GUIDANCE2 ver-
sus GUIDANCE1, a contributing factor may have been 
the greater AUC of GUIDANCE2 over GUIDANCE1. 
We used SERES to perform semi-parametric sup-
port estimation in conjunction with the parametric 

Table 7  SERES + GUIDANCE2 performance using alternative methods for estimating an input MSA

Input MSAs in these experiments were estimated using either ClustalW [13] or FSA [2] (MAFFT was used to estimate input MSAs throughout the rest of our study.) 
Results are shown for model conditions 10.A through 10.E (named in order of generally increasing sequence divergence). The best AUC for each pairwise method 
comparison on a model condition is shown in italics. Otherwise, table layout and description are identical to Table 6

Model 
condition

PR-AUC (%)

ClustalW FSA

GUIDANCE2 SERES + 
GUIDANCE2

Pairwise t-test 
corrected q-value

GUIDANCE2 SERES + 
GUIDANCE2

Pairwise t-test 
corrected q-value

10.A 95.37 95.78 2.8× 10
−3 96.36 96.55 8.6× 10

−3

10.B 92.30 92.95 8.2× 10
−4 95.40 95.87 4.9× 10

−3

10.C 89.36 91.23 1.7× 10
−4 95.32 96.06 2.7× 10

−3

10.D 88.53 90.45 8.8× 10
−5 96.21 96.87 2.1× 10

−3

10.E 73.96 76.50 8.2× 10
−4 90.23 92.51 8.6× 10

−3

Model 
condition

ROC-AUC (%)

ClustalW FSA

GUIDANCE2 SERES + 
GUIDANCE2

DeLong et al. test 
corrected q-value

GUIDANCE2 SERES + 
GUIDANCE2

DeLong et al. test 
corrected q-value

10.A 96.99 97.23 < 10
−10 80.85 81.61 < 10

−10

10.B 96.64 96.94 < 10
−10 81.31 82.89 < 10

−10

10.C 96.27 96.88 < 10
−10 84.48 86.56 < 10

−10

10.D 95.78 96.65 < 10
−10 88.63 90.37 < 10

−10

10.E 89.84 90.80 < 10
−10 89.10 90.83 < 10

−10
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support techniques of GUIDANCE1 or GUIDANCE2. 
The latter method’s relatively greater AUC may be 
more challenging to improve upon. Finally, the perfor-
mance of SERES-based support estimation was largely 
robust to input MSA accuracy as well as algorithmic 
design choices concerning anchor length and number 
of anchors. We attribute the latter to the conservative 
anchors used in the SERES framework, which suffice 
for the purpose of random walk synchronization and 
are otherwise not used.

The performance comparisons on empirical bench-
marks were consistent with the simulation study. In 
terms of ANHD and gappiness, the non-intronic data-
sets in our empirical study were more like the low diver-
gence model conditions in our simulation study, and the 
intronic datasets were more like the higher divergence 
model conditions. Across all empirical datasets, SERES-
based support estimation consistently yielded compara-
ble or better AUC versus GUIDANCE1 or GUIDANCE2 
alone. The SERES-based method’s AUC advantage 

Fig. 2  SERES + GUIDANCE2 performance using different choices for anchor length. Results are shown for five 10-taxon medium-gap-length model 
conditions (named 10.A through 10.E in order of generally increasing sequence divergence). We evaluated the performance of SERES + GUIDANCE2 
where anchor length in bp was either 3, 5, 10, 30, or 50. We calculated each method’s precision-recall (PR) and receiver operating characteristic 
(ROC) curves. Performance is evaluated based upon aggregate area under curve (AUC) across all replicates for a model condition ( n = 20)
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generally increased as datasets became more divergent 
and challenging to align—particularly when comparing 
performance on non-intronic versus intronic datasets. 
We found that the support estimation methods returned 
comparable AUC (within a few percentage points) on 
datasets with 1–2 dozen sequences and low sequence 
divergence relative to other datasets. In particular, IGIC2 
was the only dataset where SERES + GUIDANCE2 did 
not return an improved AUC relative to GUIDANCE2. 
IGIC2 was the second-smallest dataset—about an order 
of magnitude smaller than all other datasets except the 
IGID dataset—and IGIC2 also had the second-lowest 

ANHD and lowest gappiness among intronic datasets. 
IGID was the smallest dataset, but had higher ANHD 
and gappiness compared to the IGIC2 dataset. Compared 
to the other empirical datasets, SERES + GUIDANCE2 
returned a small AUC improvement over GUIDANCE2 
on the IGID dataset—at most 3.2%.

On simulated and empirical datasets, greater sequence 
divergence generally resulted in a degradation of method 
performance. However, the SERES-based method’s per-
formance tended to degrade more slowly than the cor-
responding non-SERES-based method as sequence 
divergence increased, and the greatest performance 

Fig. 3  SERES + GUIDANCE2 performance using different choices for the number of anchors. We evaluated the performance of SERES + 
GUIDANCE2 where the number of anchors used was either 3, 5, 20, 50, or 100. Otherwise, figure layout and description are identical to Fig. 2
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advantage was seen on the most divergent model condi-
tions and empirical datasets.

Augmenting GUIDANCE1 and GUIDANCE2 with 
SERES-based resampling and re-estimation generally 
increased computational runtime in our study. The 
added overhead amounted to a few minutes on the 
10-taxon and 50-taxon simulated datasets, and grew to 
a few hours on larger empirical datasets with around 
100–200 taxa. In the simulation study, the SERES-
based methods also required more main memory than 
GUIDANCE1 and GUIDANCE2. The gap between the 
SERES-based methods and standalone GUIDANCE1/
GUIDANCE2 appeared to narrow on the larger empiri-
cal datasets with a few hundred taxa. Compared to 
standalone GUIDANCE1/GUIDANCE2, the SERES-
based methods perform an additional MSA re-esti-
mation step which occurs after SERES random walk 

resampling. This difference is likely the primary expla-
nation for the observed computational overhead. We 
note that the resampling and re-estimation pipelines 
in our study do not explicitly address scalability, but 
existing scalability-enhancing techniques can be read-
ily applied to help mitigate added overhead. One option 
would be to utilize parallelism in the form of pleasantly 
parallel computation or more sophisticated alternatives 
(e.g., coordinated and distributed re-estimations that 
are conditionally independent given a common model 
instance, parallelized divide-and-conquer algorithms, 
etc.).

Finally, we note that non-parametric/semi-paramet-
ric resampling techniques are orthogonal to parametric 
alternatives. Consistent with previous studies [18, 20], we 
found that combining two different classes of methods 
yielded better performance than either by itself.

Table 8  Empirical study results

The empirical study made use of benchmark RNA datasets and curated reference alignments from the CRW database [3]. Results are shown for intronic (“IG” prefix) 
and non-intronic datasets (“P” prefix and “S” prefix, following “primary” and “seed” nomenclature from the CRW database). For each dataset, we report each method’s 
PR-AUC and ROC-AUC. For each dataset and pairwise method comparison, the best AUC is shown in italics. Methods, performance measures, table layout, and table 
description are otherwise identical to Table 5

Dataset PR-AUC (%) ROC-AUC (%)

GUIDANCE1 SERES + GUIDANCE1 GUIDANCE1 SERES + 
GUIDANCE1

IGIA 62.67 69.28 89.50 91.62

IGIB 73.60 87.47 94.49 97.39

IGIC2 72.67 75.36 82.25 83.87

IGID 63.74 76.30 95.10 96.73

IGIE 93.56 95.42 90.08 93.30

IGIIA 73.03 83.06 86.49 96.45

PA23 98.54 99.41 82.59 93.63

PE23 98.44 99.27 94.75 97.41

PM23 97.53 98.48 94.20 96.44

SA16 99.72 99.86 91.07 95.57

SA23 98.35 99.24 81.76 92.18

Dataset PR-AUC (%) ROC-AUC (%)

GUIDANCE2 SERES + GUIDANCE2 GUIDANCE2 SERES + 
GUIDANCE2

IGIA 67.4 68.49 91.38 91.94

IGIB 80.66 86.72 96.47 97.38

IGIC2 74.44 73.27 84.63 82.51

IGID 75.15 78.38 96.44 97.09

IGIE 94.6 95.44 91.84 93.49

IGIIA 78.16 85.09 94.50 96.82

PA23 99.24 99.53 91.48 94.88

PE23 99.07 99.34 96.72 97.63

PM23 98.68 98.85 96.93 97.28

SA16 99.88 99.91 96.22 97.22

SA23 99.04 99.33 89.93 93.18
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Conclusions
This study introduced SERES, which consists of new 
non-parametric and semi-parametric techniques for 
resampling biomolecular sequence data. Using simulated 
and empirical data, we explored the use of SERES resam-
pling for support estimation involving a classical problem 
in computational biology and bioinformatics. We found 
that SERES-based support estimation yields comparable 
or typically better performance compared to state-of-the-
art approaches.

We conclude with possible directions for future work. 
First, the SERES algorithm in our study made use of a 
semi-parametric resampling procedure on unaligned 
inputs, since anchors were constructed using progres-
sive multiple sequence alignment. While this approach 
worked well in our experiments, non-parametric alter-
natives could be substituted (e.g., unsupervised k-mer 
clustering using alignment-free distances [4]) to obtain 
a purely non-parametric resampling procedure. Second, 
the unaligned input application focused on nucleotide-
nucleotide homologies to enable direct comparison 
against existing MSA support estimation procedures (i.e., 
GUIDANCE1 and GUIDANCE2). The SERES framework 
can be extended in a straightforward manner to estimate 
support for nucleotide-indel pairs. Third, SERES resam-
pling can be used to perform full MSA inference. One 
approach would be to analyze homologies that appeared 
in re-estimated inferences across resampled replicates, 
without regard to any input alignment. Fourth, in the 
case where biomolecular sequences evolved under inser-
tion/deletion processes, we consider the distinction 
between aligned and unaligned inputs to be an unneces-
sary dichotomy. In theory, the latter subsumes the former. 
We can apply this insight using a two-phase approach: 
(1) perform SERES-based re-estimation on unaligned 
sequences to estimate support for aligned homologies 
(from either an input MSA or the de novo procedure 
proposed above), and (2) perform support-weighted 
SERES walks on the annotated MSA from the previous 
stage to obtain support estimates on downstream infer-
ence. Alternatively, we can simultaneously address both 
problems using co-estimation. Fifth, MSA estimation 
and MSA support estimation are computationally chal-
lenging problems. Applications of the SERES framework 
to large-scale datasets requires further investigation 
as part of future algorithmic design studies. Finally, we 
envision many other SERES applications. Examples in 
computational biology and bioinformatics include pro-
tein structure prediction, detecting genomic patterns of 
natural selection, and read mapping and assembly. Non-
parametric resampling for support estimation is widely 
used throughout science and engineering, and SERES 

resampling may similarly prove useful in research areas 
outside of computational biology and bioinformatics.
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