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Abstract: (1) Background: Mammographic breast density (MBD) and older age are classical breast
cancer risk factors. Normally, MBDs are not evenly distributed in the breast, with different women
having different spatial distribution and clustering patterns. The presence of MBDs makes tumors
and other lesions challenging to be identified in mammograms. The objectives of this study were: (i)
to quantify the amount of MBDs—in the whole (overall), different sub-regions, and different zones of
the breast using an image segmentation method; (ii) to investigate the spatial distribution patterns
of MBD in different sub-regions of the breast. (2) Methods: The image segmentation method was
used to quantify the overall amount of MBDs in the whole breast (overall percentage density (PD)),
in 48 sub-regions (regional PDs), and three different zones (zonal PDs) of the whole breast, and the
results of the amount of MBDs in 48 sub-regional PDs were further analyzed to determine its spatial
distribution pattern in the breast using Moran’s I values (spatial autocorrelation). (3) Results: The
overall PD showed a negative correlation with age (p = 0.008); the younger women tended to have
denser breasts (higher overall PD in breasts). We also found a higher proportion (p < 0.001) of positive
autocorrelation pattern in the less dense breast group than in the denser breast group, suggesting
that MBDs in the less dense breasts tend to be clustered together. Moreover, we also observed that
MBDs in the mature women (<65 years old) tended to be clustered in the middle zone, while in
older women (>64 years old) they tended to be clustered in both the posterior and middle zones. (4)
Conclusions: There is an inverse relationship between the amount of MBD (overall PD in the breast)
and age, and a different clustering pattern of MBDs between the older and mature women.

Keywords: mammographic images; mammographic breast density; image segmentation; spatial
autocorrelation; overall percentage density; BI-RADS

1. Introduction

According to the World Health Organization (WHO), female breast cancer has topped
as the most diagnosed cancer worldwide [1,2]. Mammographic breast density (MBD) is
increasingly known to be a strong, independent risk factor for breast cancer; MBD is the
ratio of radiodense fibroglandular tissue, which is fibrous connective tissue (the stroma) and
the functional (or glandular) epithelial cells that line breast ducts, to radiolucent adipose
tissue [3,4]. Adipose tissues, which have a much lower X-ray attenuation coefficient than
fibroglandular tissues, may be protective against breast carcinogenesis [5]. However, the
X-ray attenuation coefficient of breast tumors is like that of fibroglandular tissue; thus,
breast tumors are also shown as areas of radiodensity.

High MBD was associated with a 1.8- to 6.0-fold increase in breast cancer risk [6–9].
Although women of younger age have higher MBD than older women, breast cancer
occurrence generally increases with age, with older women having the highest incidence
rates of median diagnosis age at 62 and with the highest probability of being diagnosed
with invasive breast cancer for women in their 70s [10].
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Looking at the relationship between MBD, age, and breast cancer, younger women
should have higher cancer incidence rates, since their MBD is also higher. However,
other factors could also affect the risk of breast cancer, such as geographic location, age at
menarche, menopause age, hormonal replacement therapy, family history of breast cancer,
body mass index (BMI), number of menstrual cycles, and socioeconomic status [11,12].
Katz (2019) found that the increase in menstrual cycles increased the risk of breast cancer.
Breast cancer screening is more effective in older women as MBD decreases due to post-
menopause breast glandular alterations than higher MBD in younger women, which can
mask lesions, thus affecting the diagnostic sensitivity of mammography [3,13]. Among all
the risk factors listed in the literature, as mentioned earlier, the age factor has the highest
relative risk for breast cancer with the elderly women group at risk [12].

Wolfe et al. (1976) were the first to establish an association of variation in MBD with
the risk of breast cancer; additionally, they were the first to come up with the well-known
Wolfe breast density classification—N1 (predominantly fat), P1, and P2 (ductal prominence
in “less than one-fourth or more than one-fourth,” respectively, of the breast), and DY
(extensive “dysplasia”) [14]. Currently, there are five principal methods to assess MBD:
Wolfe classification, Breast Imaging Reporting and Data System (BI-RADS), planimetry,
and computer-assisted thresholding; the former three methods are qualitative, while the
latter two are quantitative methods for visual estimation [15]. Many factors are associated
with higher MBD, including younger age, higher body mass index (BMI), lower parity,
higher first-child postpartum age, higher education level, and family history of breast
cancer [13].

Image segmentation is defined as “separating the image into similar constituent parts,
including identifying and partitioning regions of interests” [16]. Image segmentation of
mammographic images provides more information at the local level than breast classi-
fication by segmenting into radiolucent adipose and radiodense fibroglandular tissues,
and automated thresholding algorithms can overcome observer bias in choosing threshold
values subjectively to achieve optimum segmentation objectively [17,18]. The thresholding
method can identify and extract the region of interest, such as the foreground (fibrog-
landular tissue) from its background (adipose tissue) based on the texture (grey-level
distribution) in image areas. An example is based on entropy distribution of the grey
levels in mammographic images, which after the ratio value between the foreground and
background is quantified after thresholding [19,20]. The ratio of the radiodense (white)
area over the entire breast area is known as the quantified MBD.

The spatial distribution pattern of MBD can depend on various factors, such as
physiological, genetic, environmental, and pathological. Pereira et al. (2009) studied the
spatial distribution of breasts in women and concluded that age is not a greater factor
in the degree of clustering of high-density areas in women’s breasts. However, they did
an eight-year longitudinal study on women aged between 39–41, a narrow age range of
women below 50 years old [21]. Another research by Lai and Law (2015) studied the
spatial distribution patterns of MBD in 50 Chinese women aged 40 to 60 at the entry
mammographic examination. They concluded that the MBD is spatially autocorrelated
together in different regions for Chinese women of different breast size; clustering occurs
in the anterior part of the breast in those with smaller breast size, while those with a larger
breast size tend to have their MBD clustered near the posterior part of the breast [22].
From the comparison of entry and exit mammograms (after three years since the entry),
MBD clustering decreased with reduced Moran’s I values, and a tendency towards a more
dispersed pattern was observed.

The objectives of this current work are: (i) to quantify the amount of MBD in terms of
overall PD and over different regions/zones of the breast using the image segmentation
method; and (ii) to investigate the spatial distribution patterns of MBD within the breast of
segmented mammographic images.
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2. Materials and Methods
2.1. Database and Sample Population

The study worked on normal screening digitized film-screen mammographic images
from the Digital Database for Screening Mammography (DDSM) based on women from the
USA [23]. Each case (as per woman) comes in four projections—left mediolateral oblique
(LMLO), right MLO (RMLO), left craniocaudal (LCC), and RCC. Each case information
consists of the patient’s age and MBD category (density group) according to the BI-RADS
density classification [24]. Based on the median breast cancer diagnosis age of 62 from the
American Cancer Society (2019), this study divided the cases into two age groups—mature
women (35–64 years old) and older women (65–90 years old).

A total of 529 LMLO mammographic images of normal screening cases were extracted
from DDSM with exclusion criteria of benign cases and 1 case in which a pacemaker
overlapped with the radiodense areas of the breast. The rationale for a single-sided
projection (i.e., LMLO) selection is that the spatial distribution and amount of MBD are
similar for both breasts [18], and the MLO view allows for the visualization of the maximum
coverage of a breast until the pectoral muscles in a single projection.

2.2. Data Pre-Processing

Extracted anonymized and digitized mammographic images (converted from lossless
JPEG format to PNG format) were processed using the NIH ImageJ program (Version
1.51, Rasband, US National Institute of Health, Bethesda, MD, USA), to define the pectoral
muscle and the breast contour, while the area outside of the defined region of interest
(ROI) was cropped out (Figure 1). This procedure was to avoid the miscalculation of the
radiodensity by considering radiodense objects outside of the ROI. A contrast enhancement
function was applied to the images to better outline the breast borders, because the X-
ray attenuation of the breast near the skin borders is the lowest due to reduced breast
tissue thickness.

2.3. Breast Tissue Segmentation and Quantification of Overall Percentage MBD in Segmented Images

Segmentation of the cropped and pre-processed LMLO images (Figure 1) into radio-
dense (highly X-ray attenuating fibroglandular tissue) and non-dense (low X-ray attenu-
ating adipose tissue) areas used the Maximum Entropy Threshold algorithm [25] in the
ImageJ program.

After defining the contour of the breast in the ImageJ program, the overall percentage
mammographic density in the whole breast (overall PD) in terms of radiodensity could be
quantified by the ratio of the white area (radiodensity) to defined breast area (radiodensity
and radiolucency areas) × 100%.

2.4. Division into 48 Sub-Regions and Self-Defined Three Zones of the Breast

After image segmentation (Figure 1), each segmented image was divided into 48 equally
sized rectangular sub-regions (8 × 6 matrix of six columns and eight rows with coordi-
nates) by TileMage Image Splitter software (Version 2.0.1), OrangeBright, Israel. Individual
sub-regional MBD (regional PD) was quantified and tabulated. Then, the three zones of
the breast—posterior, middle, and anterior—were self-defined, as shown in Figure 1. The
mean zonal percentage mammographic density (zonal PD) was calculated by averaging
the regional PDs within each of the self-defined zones.
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Figure 1. Pre- and post-image segmentation processes of extracted LMLO mammographic images.

2.5. Spatial Autocorrelation

The regional PD values were used to estimate the spatial autocorrelation (using
Moran’s I equation) of the 48 sub-regions (per breast):

Moran′s I =
N

∑i ∑i wij

∑i ∑j wij(xi − x)(xj − x)

∑i (xi − x)2 (1)

where the weighting factor wij is defined as 1/d2, and d refers to the distance between
the midpoints of adjacent two sub-regions [22,26]. Moran’s I value ranges from −1 to
1, whereby a positive autocorrelation (>0) is a clustered spatial distribution pattern of
MBD, no autocorrelation (=0) is a random pattern, and a negative autocorrelation (<0) is a
scattered spatial distribution pattern of MBD [21].

2.6. Statistical Methods

IBM SPSS Statistics (Version 26) software, IBM Corp., Armonk, NY, USA, was used,
and all statistical analyses were done at a 95% confidence interval. For continuous outcome
variables, such as age, overall segmented MBD, and mean zonal PDs, a Shapiro–Wilk test
was applied to test for normality—if a distribution was normal, p > 0.05. Non-parametric
tests were done for all statistical analyses due to the non-normality of the continuous
distributions studied (except for the mean age comparison) and the nominal nature of the
other outcome variables.
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2.6.1. Age, MBD, Overall PD, and Zonal PDs

The independent t-test compared the mean age in the less dense breasts group and
denser breasts group, while the Pearson’s correlation test was used to check for any
association of overall PD with age. Median posterior, middle, and anterior zonal PDs were
compared across the four BI-RADS density groups using Kruskal–Wallis tests; Friedman
tests were applied within each zone (anterior and middle) to make pair-wise comparisons
of median zonal PD of different BI-RADS density groups.

2.6.2. Analysis of Spatial Autocorrelation Data

The spatial distribution pattern of MBD was tabulated for the two age groups of
women (mature and older women). Median Moran’s I value from each age group was
then computed to indicate either a clustered, random, or scattered pattern. The spatial
autocorrelation in the four different BI-RADS density categories was compared using the
Chi-square test.

2.6.3. Clustering of Breast Tissue Density

The clustering locations of MBD between two age groups of women (mature women
versus older women) were studied. Clustering of MBD can occur at different zones of the
breast—anterior, middle, or posterior (Figure 1). A Mann–Whitney U test was used to
check for any significant statistical difference in the medians of three zonal PD within these
two age groups.

3. Results
3.1. Demographics of Women in This Study

The heatmaps in Figure 2 showing individual regional PD in each of the 48 sub-regions
stratified by age groups (mature vs. older women). It shows that mature women had more
sub-regions containing higher amounts of MBD. When the whole population were further
divided into BI-RADS density groups for analysis, the mean age of 56.7 was statistically
significantly (p < 0.001) younger in the denser breasts group (combining BI-RADS groups C
and D) when compared to the mean age of 61.8 in the less dense breasts group (combining
BI-RADS groups A and B), (Table 1).

Table 1. The distribution of MBD by age group and BI-RADS density groups.

Breast Density

Less Dense
Breasts Denser Breasts

BI-RADS Density
Group A B C D Total

Number of
Cases by

Age group

Mature Women 39 118 101 95 353

n (%) (53.4) (61.5) (69.7) (80.5) (66.9)

Older Women 34 74 44 23 175

n (%) (46.6) (38.5) (30.3) (19.5) (33.1)

All age combined 73 192 145 118 528

n (%) (13.8) (36.4) (27.5) (22.3) (100)

Mean Age
(year ± SD) 61.8 ± 10.5 56.7 ± 11.3 Independent

t-test, p < 0.001
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Figure 2. Mean regional PD in each of the 48 sub-regions stratified by age groups (mature vs. older
women). The numerical value inside the coordinate system corresponds to the amount of MBD at the
individual sub-region. The amount of MBD determines the MBD heatmaps with different hues (from
yellow to orange to reddish-orange to red) of each sub-region after segmentation. Yellow color—none
or minimal amount of MBD; orange color—about 25% of MBD; red color—equal to or more than 50%
of MBD.

3.2. Age and Quantification of the Segmented Overall Amount of MBD (Overall PD)

Using Pearson’s correlation test, the overall PD of segmented mammographic images
showed a statistically significant negative correlation p = 0.008 (p < 0.05) with the age
of women, i.e., as the age of women increased, the overall PD had a decreasing trend
(Figure 3).
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3.3. Spatial Distribution and BI-RADS Density Groups

The spatial distribution pattern was determined by Moran’s I values, in which a
positive autocorrelation indicates a clustered pattern, while a negative autocorrelation
indicates a scattered pattern. For the less dense breasts groups (BI-RADS density A and B;
p < 0.001 for both groups), a higher proportion (74.0% and 66.1%) of women had a clustered
pattern of MBD (positive autocorrelation), whereas denser breasts groups (BI-RADS density
C and D; p < 0.001 and p = 0.030, respectively) had a higher proportion (53.8% and 50.8%)
of women with a scattered pattern of MBD (negative autocorrelation). Overall, there was a
statistically significant difference (p < 0.001) in the spatial autocorrelation across the four
BI-RADS density groups (Table 2).

Table 2. Spatial distribution patterns versus different BI-RADS groups.

Chi-Square Test

Moran’s I (Counts)

p-ValueNegative
Autocorrelation
Scattered Pattern

Positive
Autocorrelation

Clustered Pattern

BI-RADS density group A
Entirely fatty breasts

(n = 73)
19 (26.0%) 54 (74.0%) <0.001

BI-RADS density group B
Scattered fibroglandular density

breasts (n = 192)
65 (33.9%) 127 (66.1%) <0.001

BI-RADS density group C
Heterogeneously dense breasts

(n = 145)
78 (53.8%) 67 (46.2%) <0.001

BI-RADS density group D
Extremely dense breasts

(n = 118)
60 (50.8%) 58 (49.2%) 0.030

Total (n = 528) 222 (42.0%) 306 (58.0%) <0.001

3.4. Zonal PDs and BI-RADS Density Groups

In Figure 4 (heatmaps of MBD), the denser breasts groups (C and D) had higher mean
MBD in the middle zone, while the less dense breasts groups (A and B) had a more even
distribution of MBD in the posterior and middle zones, but with much lower MBD values.
Using Kruskal–Wallis tests to compare the median posterior, middle, and anterior zonal
PDs across the four BI-RADS density groups, the middle and anterior median zonal PDs
were found to be statistically significantly different, with both having p < 0.001, while
p = 0.761 for the posterior median zonal PD (Figure 5). Friedman tests (Table 3) were
applied within each zone (anterior and middle zones) to make pair-wise comparisons
of the BI-RADS density groups. Within the middle zones, the median zonal PDs are
statistically different (p < 0.05) between A–C, A–D, B–C, and B–D pairs, while within the
anterior zones, the median zonal PDs were statistically different (p < 0.05) between A–B,
A–C, A–D, and B–D.
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parison across four BI-RADS density groups: p = 0.761 for posterior median zonal PD; p < 0.001 was
statistically significant for both the middle and anterior median zonal PDs. The outliers and extremes
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Table 3. Pairwise comparisons of median anterior and middle zonal PDs in different BI-RADS
density groups.

Friedman Tests p-Values

Pair-Wise Comparison between
BI-RADS Desnity Groups Middle Zonal PD Anterior Zonal PD

A–B 0.302 0.001

A–C <0.001 <0.001

A–D <0.001 <0.001

B–C <0.001 0.056

B–D <0.001 0.003

C–D 0.457 0.382
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3.5. Spatial Clustering Location and Age Group

The overall median zonal PD of the anterior, middle, and posterior zones are 2.3%,
17.4%, and 13.6%, respectively, with p < 0.001 comparing the overall median PD across the
three zones. Table 4 further compared the median zonal percentage density (PD) across
the mature and older women groups, and the mean individual regional PD was shown
in Figure 6. It was found that only the middle zonal PD are statistically significantly
different (p = 0.046), with mature women having higher middle zonal PD. In addition,
pairwise comparisons of median zonal PD within the older and mature women groups
were made. There were statistically significant differences in zonal PD in the older women
group between anterior–middle and anterior–posterior zones (p < 0.001), whereas in the
mature women group, statistically significant differences of PD existed between all pairs,
i.e., anterior–posterior, anterior–middle, and posterior–middle zones.
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Figure 6. Comparison of mean individual regional PD between the older and mature women
groups. The numerical value inside the coordinate system corresponds to the amount of MBD at the
individual sub-region. The amount of MBD determines the MBD heatmaps with different hues (from
yellow to orange to reddish-orange to red) of each sub-region after segmentation. Yellow color—none
or minimal amount of MBD; orange color—about 25% of MBD; red color—equal to or more than 50%
of MBD. P—posterior zone; M—middle zone; A—anterior zone.
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Table 4. Median zonal PD of three zones stratified by age group and post-hoc pairwise comparison of three zonal PD within
the age group to locate MBD clustering.

Mann–Whitney
U Test

Median Zonal PD
(in MBD %, Standard Deviation in Parentheses)

p-Value
Mature Women
(<65 Years Old)

Older Women
(>64 Years Old)

Posterior Zonal PD 14.0 (19.5) 12.8 (18.7) 0.221

Middle Zonal PD 17.6 (18.1) 16.4 (17.1) 0.046

Anterior Zonal PD 2.4 (10.7) 2.0 (14.4) 0.887

Post-hoc pair-wise comparisons of Zonal PD in older and mature women age groups (p-value)

Anterior–Posterior Anterior–Middle Posterior–Middle

Older Women <0.001 <0.001 0.855

Mature Women <0.001 <0.001 0.005

4. Discussion
4.1. Age and Segmented Overall Amount of MBD (Overall PD)

Previous studies by Boyd et al. (2010) and Li et al. (2005) identified increasing age
to be one of the factors to decrease the population average MBD [15,27]. From this study,
our younger age group—the mature women (<65 years old)—demonstrated that this age
group has denser breasts than the older women (>64 years old), and the overall PD of
segmented MBD amount in the breast showed a negative correlation (p = 0.008) with age.
This result emphasized that younger women are more likely to have dense breasts and
that breast tissue becomes less dense as women age. This inverse relationship between
MBD and age is because as women age and go through menopause, reductions in stromal
and epithelial breast tissues are reflected as decreased average MBD [3,15,27]. Another
six-year longitudinal study (with three data points; two-year intervals) conducted by Oliver
et al. (2015) confirmed the decreasing trend of MBD in breasts over time, and they also
noticed the decrease in the amount of MBD associated with the initial amount of MBD in
women—particularly the densest breast group (Group D) with a slower decrease in the
MBD [18].

4.2. Comparison of the Spatial Distribution of MBD and Zonal PDs with the Different BI-RADS
Density Groups

When comparing the four BI-RADS density groups, there was a statistically significant
(p < 0.001) higher proportion of positive autocorrelation (having a clustering of MBD)
observed in the less dense breast groups (Group A: 74.0%; Group B: 66.1%) than those in
the denser breast groups (Group C: 46.2%; Group D: 49.2%). This finding suggested that
MBD in the less dense breasts tends to be more clustered together, while MBD in denser
breasts is more dispersed than the less dense breasts. One possible explanation could be
that less dense breasts have smaller areas of fibroglandular tissue and more adipose tissue.
After image segmentation, the radiodense areas (fibroglandular tissue) clustered mainly in
the middle zones and could be differentiated from larger surrounding radiolucent adipose
areas. The MBD clustering location would affect the median zonal PDs of the posterior,
middle, and anterior zones. Upon comparison of the median zonal PDs in the posterior
zone across the four BI-RADS density groups, there was no statistical difference in the
median posterior zonal PD. Meanwhile, there were statistically significant differences in
the median zonal PDs in the middle and anterior zones, showing changes in the amount of
MBD clustering in these two zones of the breast.
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4.3. Comparison of Spatial Clustering Locations with Age Groups

This study demonstrated the clustering spanning over the middle zones for mature
women (Figure 6), similar to a previous study by Pereira et al. (2009), which had women
with a similar ethnicity (Caucasian women) and age group (39–49 years old versus mature
women’s age range of 35–64 years old) to this study; the middle zone of the breast consists
mainly of mammary gland lobules. Contrary to our results, this study showed a new
finding with older women, demonstrating clustering of MBD in both the posterior and
middle zones, possibly due to a greater decrease of MBD with age over the middle zones.
This finding was supported by the greater middle zonal PDs in the mature women group
than the older women group, and there was no statistically significant difference in the
posterior–middle zones within the breasts of those in the older women group. Thus, this
could also suggest that MBD decreases in the middle zone of the breast over time due to
mammary gland lobules undergoing regression with increasing age [28].

4.4. Limitations of this Study

This study did not consider the thickness and volume of the breast in the determina-
tion of MBD due to the use of the DDSM, which is a very dated dataset in which the original
forms were screen-films which later become digitized. The information accompanying the
mammographic images was limited as other demographics details were absent, such as
ethnicity, parity, usage of hormonal therapy, and menopausal age. These factors could also
be potential confounders affecting MBD and spatial distribution patterns. The digitization
process of screen-film mammographic images may unintentionally create speck artefacts
on the final images and confuse them with MBD radiodensity. This research was a retro-
spective cross-sectional population study; thus, the longitudinal effects of MBD with age
could not be explored.

4.5. Proposed Future Recommendations

Other thresholding algorithms, such as Otsu, can be used to compare the effective-
ness of image segmentation and quantification of MBD. This current work suggested the
decrease in middle zonal PDs in older women was that mammary gland lobules, mainly
located in the middle regions of the breasts, regress as women age. With this knowledge,
further longitudinal studies could investigate if the decrease in MBD over time can affect
the spatial distribution and autocorrelation patterns of MBD in women, such as the possible
shift in zonal clustering location of MBD over time or the change in spatial autocorrelation
patterns as women age.

5. Conclusions

This study showed that mature women (<65 years old) have denser breasts than
older women (>64 years old); age was, indeed, a factor affecting the amount of MBD, as
evidenced by the mean age of 56.7 in the denser breasts and 61.8 for the less dense breasts
groups. There was a general trend of decreasing overall PD with increasing age, i.e., the
overall PD of the segmented mammographic images had a negative correlation with age.
As for the spatial distribution patterns of MBD, we used Moran’s I values to determine the
spatial autocorrelation and found that there was a more significant proportion of positive
autocorrelation in the less dense breasts group than in the denser breasts group; this
suggested that MBD in the less dense breasts tends to have clustered spatial distribution
patterns. By considering the finding from median zonal PDs, mature women tended
to have a clustering of MBD in the middle zone, while older women tended to have a
clustering of MBD in both posterior and middle zones.

The image segmentation and quantification of MBD can help radiologists to iden-
tify extremely dense breasts and highly clustered MBD location areas associated with
carcinogenesis.
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