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Abstract

Motivation: Hi-C is currently the method of choice to investigate the global 3D organization of the genome. A major
limitation of Hi-C is the sequencing depth required to robustly detect loops in the data. A popular approach used to
mitigate this issue, even in single-cell Hi-C data, is genome-wide averaging (piling-up) of peaks, or other features,
annotated in high-resolution datasets, to measure their prominence in less deeply sequenced data. However, current
tools do not provide a computationally efficient and versatile implementation of this approach.

Results: Here, we describe coolpup.py—a versatile tool to perform pile-up analysis on Hi-C data. We demonstrate its
utility by replicating previously published findings regarding the role of cohesin and CTCF in 3D genome organiza-
tion, as well as discovering novel details of Polycomb-driven interactions. We also present a novel variation of the
pile-up approach that can aid the statistical analysis of looping interactions. We anticipate that coolpup.py will aid in
Hi-C data analysis by allowing easy to use, versatile and efficient generation of pile-ups.
Availability and implementation: Coolpup.py is cross-platform, open-source and free (MIT licensed) software.
Source code is available from https://github.com/Phlya/coolpuppy and it can be installed from the Python Packaging
Index.
Contact: ilya.flyamer@igmm.ed.ac.uk

1 Introduction

Major advances in the study of 3D genome organization have come
from the development of a family of Chromosome Conformation
Capture (3C) methods (Dekker, 2002). While these all rely on the
same principle of in situ proximity ligation of cross-linked and
digested chromatin, the scope of each method varies depending on
experimental processing and the method of quantification of the 3C
library (Barutcu et al., 2016). Hi-C, a genome-wide 3C-derivative, is
the method of choice to investigate the organization of the whole
genome (Lieberman-Aiden et al., 2009; Rao et al., 2014).

One of the main challenges in Hi-C remains the required
sequencing depth due to the extreme complexity of good quality Hi-
C libraries. The output of Hi-C is a square matrix of interactions
and therefore requires a vastly greater sequencing depth than most
sequencing-based approaches that simply look for enrichment of
reads linearly along the genome (Lajoie et al., 2015). This limits the
resolution at which genomes can be analysed in 3D, since going be-
yond �5 kb resolution requires billions of read pairs for a mamma-
lian genome.

Looping interactions are among the most interesting features
that can be studied using Hi-C. Chromatin loops bring distal regions
in the genome into close proximity and are manifest in Hi-C data as
foci of increased interaction frequency (Rao et al., 2014). The ma-
jority of loops identified in Hi-C data from mammalian cells corres-
pond to CTCF/cohesin-associated interactions, created by loop

extrusion (Fudenberg et al., 2016; Gassler et al., 2017; Sanborn
et al., 2015). CTCF/cohesin-associated loops are closely related to
topologically associating domains (TADs), which in most cases are
encompassed in a loop, and which can in turn contain loops. TADs
are suggested to constrain enhancer-promoter communication in
some cases (Franke et al., 2016; Lupiá~nez et al., 2015; Williamson
et al., 2019) and might be related to genome stability (Canela et al.,
2017, 2019), while some loops have been suggested to correspond
to enhancer-promoter contacts (Rao et al., 2014). In addition, distal
polycomb sites can be brought together in ‘loops’ (Joshi et al., 2015;
McLaughlin et al., 2019).

To our knowledge, currently the only robust method to identify
loops de novo requires very deep Hi-C libraries, on the order of over
a billion Hi-C contacts (Rao et al., 2014). This means that the vast
majority of Hi-C datasets cannot be used to identify loops.
However, they can be used to quantify the average loop strength
(i.e. enrichment of contacts in those loops relative to their local
background). To do this, one can average (or ‘pile up’) all areas of
the Hi-C maps containing loops, that have been annotated in a high-
depth dataset (Rao et al., 2014). This idea is very similar to ‘aver-
age/aggregate profiles’ used, for example, in chromatin immunopre-
cipitation and sequencing (ChIP-seq) analysis to quantify signal in a
subset of regions, except in Hi-C this is for a 2D matrix instead of a
linear track. The same approach can, of course, be applied directly
to the data where the loops were annotated for quantification of
their average prominence. Apart from quantifying the strength of
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known features, the same analysis can be used to investigate whether
certain regions, defined for example based on ChIP-seq peaks, tend
to interact with each other on average above background. To our
knowledge, the first application of pile-up-like analysis was to inves-
tigate clustering of pluripotency factor binding sites in mouse em-
bryonic stem (ES) cells (de Wit et al., 2013). Pile-up analysis can
also aid in the discovery of novel drivers of interactions.

Hi-C is a cell population-based method, and only provides popu-
lation average measurements. Several single-cell Hi-C approaches
have been published (Flyamer et al., 2017; Nagano et al., 2017,
2013; Stevens et al., 2017; Tan et al., 2018; reviewed in Ulianov
et al., 2017); however, none of these provides data depth or reso-
lution comparable to that which can be obtained from a population
of thousands of cells (Dı́az et al., 2018): the resulting matrices are
too sparse to analyse individual regions and only aggregate genome-
wide metrics can be efficiently employed. Approaches to analyse
strength of loops, TADs and genome compartmentalization from
such data genome wide have been developed (Flyamer et al., 2017).
These are all based on the ‘pile-up’ approach described above using
data from single cells for the regions corresponding to specific fea-
tures identified in population Hi-C data, to boost the amount of
reads used in the analysis.

Since its inception in the current form (Rao et al., 2014), origin-
ally termed APA (‘Aggregate Peak Analysis’), pile-up analysis has
been used both to analyse single-cell Hi-C data (Flyamer et al.,
2017; Gassler et al., 2017; Nagano et al., 2017) and as a general
way of quantifying feature strength (Abdennur et al., 2018; Bonev
et al., 2017; Dı́az et al., 2018; Fudenberg et al., 2016; Hsieh et al.,
2019; Krietenstein et al., 2019; Kruse et al., 2019; McLaughlin et
al., 2019; Nora et al., 2017; Rao et al., 2017; Rowley et al., 2019;
Schwarzer et al., 2017). A visual interactive tool to semi-manually
classify and pile-up predefined regions has also been developed
(Lekschas et al., 2018). However, no single computational tool can
perform all the various kinds of pile-up analyses that have been used
in the literature, including local and rescaled (features of different
size or shape are averaged, e.g. average TADs) and off-diagonal (e.g.
average loops) pile-ups with different normalization strategies
(Table 1). At the same time, performing detailed analysis of Hi-C
data remains difficult for non-specialists due to the absence of easy
to use tools.

Here, we present a unified command-line interface tool written
in Python to pile-up Hi-C data stored in the widely used and versa-
tile .cool format (Abdennur and Mirny, 2019) (coolpup.py). A sim-
ple script for plotting the output of coolpup.py is provided in the
package (plotpup.py), although for higher flexibility, we suggest dir-
ectly using matplotlib or another library. We have extensively
applied this tool to investigate the role of Polycomb group proteins
in 3D genome organization of mouse ES cells (Boyle et al., 2019;
McLaughlin et al., 2019).

Here, we have applied coolpup.py to published data to investi-
gate the effect of different normalization strategies on the resulting
pile-ups, and to replicate published results to verify coolpup.py’s

algorithm. We also present a novel variation of the pile-up approach
implemented in coolpup.py that retains some of the locus-specific in-
formation and would allow more detailed statistical analysis of
looping interactions in Hi-C data. Using published single-cell Hi-C
data, we also investigate the dynamics of polycomb-associated loop-
ing revealing a different dynamics of looping across the cell cycle
compared with CTCF loops.

2 Materials and methods

2.1 Sources of datasets and data analysis
As a proof of principal, we applied coolpup.py to publicly available
Hi-C data (Bonev et al., 2017; Nora et al., 2017) using distiller
(https://github.com/mirnylab/distiller-nf) to obtain .cool files filtered
with a map quality (mapq) of �30. We used these data at 5 kb reso-
lution. In addition .cool files for single-nucleus Hi-C (snHi-C), to-
gether with coordinates of loops and TADs used in the original
publication (kindly shared by Hugo Brand~ao) (Gassler et al., 2017;
Rao et al., 2014), were re-analysed at 10 kb resolution (without bal-
ancing and with coverage normalization and 10 random shifts). We
also used single-cell Hi-C data for mouse ES cells grown in serum
from Nagano et al. (2017) (.cool files were kindly shared by
Aleksandra Galitsyna) at 5 kb resolution. We created pile-ups for
each cell in the same manner as for snHi-C. The pile-ups with the
coefficient of variation of values in their 5�5 upper left and lower
right corners equal to 0.5 or above were not used further as too
noisy. We used the average value of interactions in the central 3�3
pixel square to get the level of interaction enrichment. RING1B and
H3K27me3 ChIP-seq peaks (Illingworth et al., 2015) were lifted
over to the mm9 mouse genome assembly. The coordinates of bio-
chemically defined CpG islands were taken from (Illingworth et al.,
2010). CTCF ChIP-seq peaks were taken from Bonev et al. (2017)
and, following liftOver to the mm9 assembly, intersected with
CTCF motifs found in the mm9 genome using Biopython’s motifs
module (Cock et al., 2009). A human CTCF position-frequency ma-
trix was downloaded from JASPAR (MA0139.1). We used only
motifs with a score >7 and discounted peaks containing >1 motif.

Regions of high insulation (meaning low number of contacts
crossing this regions) in the Bonev et al. Hi-C data were called using
cooltools diamond-insulation from 25 kb resolution data and a win-
dow size of 1 Mb. The output was filtered to exclude boundaries
with strength <0.1 and then pairs of consecutive boundaries were
combined to create an annotation of TADs. TADs longer than 1500
kb were excluded due to their likely artefactual nature (based on
both visual inspection, and the fact that TAD sizes are reported to
be on the order of a few hundred kbp in mammalian cells; Rao
et al., 2014). The same loop annotations for mouse ES cells were
used as in our recent publication (McLaughlin et al., 2019).

All figure panels were created using matplotlib (Hunter, 2007)
and assembled in Inkscape.

Table 1. Comparison of four tools for pile-up analysis across a set of features: Juicer Aggregate Peak Analysis (APA) (Rao et al., 2014),

HiCExplorer (hicAggregateContacts and hicAverageRegions) (Ramı́rez et al., 2018) and GENOVA (APA, ATA and PE-SCAn) (van der Weide,

2019) and coolpup.py

Feature Juicer HiCExplorer GENOVA coolpup.py

Aggregate loops þ � þ þ
Aggregate region pairs � þ þ þ
Interactions between two region sets � þ � þ
Local pile-ups � þ � þ
(Local) rescaled pile-ups � � þ þ
Distance normalization � Expected (and z-score) Fixed shifts (for pairwise analysis) Expected or random shifts

Coverage normalization � � � þ
Anchored pile-ups/loop-ability � � � þ
Command-line interface þ þ � þ
Simple text output of pile-ups þ þ � þ
Hi-C file format .hic .cool, .h5, other? HiC-pro .cool
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2.2 Coolpup.py implementation
Coolpup.py is a versatile tool that uses .cool files as the main input
together with a bed (chrom, start, end) or pair bed ("bedpe":
chrom1, start1, end1, chrom2, start2, end2) file to define the
regions under investigation. The tool is implemented as a python
package which parses all arguments via argparse, performs the
computation and saves the output file(s). It leverages the scientific
python environment, taking advantage of numpy (van der Walt
et al., 2011), scipy (Virtanen et al., 2020) and pandas (McKinney,
2010). A separate CLI tool included in the package (plotpup.py)
can be used to visualize the results and uses matplotlib (Hunter,
2007). The code is available on GitHub (https://github.com/Phlya/
coolpuppy) and the package can be installed using pip, which then
makes coolpup.py and plotpup.py available in the command line.
Alternatively, all main functions can be accessed directly from
python.

The overall procedure for piling up a lot of small regions is the
following. To minimize the number of file reads (at the cost of
required computer memory), a sparse representation of each chro-
mosome’s Hi-C contact matrix is loaded into memory. Then, using
an iterator, each required location (on- or off-diagonal) is individu-
ally retrieved to generate a corresponding submatrix from the data
[with some specified padding around the centre of the region of
interest (ROI)], and added to the matrix of the same shape, initial-
ized with zeros, while keeping track of the number of summed-up
regions. If specified, coverage of the window on each side is
recorded. Similarly, if needed, the window (and the coverage) is
rescaled to a required shape. This is done for all chromosomes (op-
tionally, in parallel using multiprocessing), and then all of the results
are summed and then divided by the total number of windows. If
specified, coverage normalization is applied at this stage. Then, un-
less otherwise specified, a normalization to remove the distance-
dependency of contact probability is applied. In most cases, the best
and most efficient way is to use a (chromosome-wide) expected
value for each diagonal of the matrix, which can be obtained for a
cooler file using, for example, cooltools compute-expected. With the
assumption that the probability of interactions only depends on dis-
tance, the whole-chromosome expected matrix is a diagonal-
constant matrix A with diagonal values d (also known as a Toeplitz
matrix), such as: Ai;j ¼ Ai þ 1; j þ 1 ¼ di � j The simplicity of this
expected model allows trivial creation of a matrix containing
expected values for an arbitrary region of the intra-chromosomal
Hi-C map without generating the whole matrix to avoid high-mem-
ory requirements, which is done for each ROI. All expected matrices
are averaged to generate a normalizing matrix. Alternatively, if the
expected values are not available, for example, for single-cell Hi-C
data, this normalization can be performed using randomly shifted
control regions. In that case, to generate the normalizing matrix, the
whole pile-up procedure is repeated, but the coordinates are ran-
domly shifted. In the end, the resulting matrix of averaged ROIs is
divided element-wise by the normalizing matrix to remove effects of
distance.

If not specified, balanced data with chromosome-wide expected
normalization were used when creating pile-ups, except for the zyg-
ote and single-cell Hi-C datasets, where randomly shifted controls
and coverage normalization were used instead. For the single-cell
Hi-C (Nagano et al., 2017) analysis, we only used pairs of conver-
gent CTCF peaks within 100–800 kb of each other, since previous
analysis (data not shown) indicated this as the distance range where
CTCF-associated loops are most prominent; to reduce noise,
RING1B-associated interactions were analysed for all distances
above 100 kbp.

2.3 Performance profiling
Coolpup.py performance was tested on the University of Edinburgh
Open Grid Scheduler cluster (Eddie3) using the Hi-C datasets for
mouse ES cells (Bonev et al., 2017; Nora et al., 2017). To generate
the required large number of coordinates for testing, we used coordi-
nates of the B3 repeat from the RepeatMasker track available from
UCSC Genome Browser. For coordinate pairs, we used all pairs of
convergent CTCF sites, described above. A separate job was

submitted for each measurement, and the runtime of the coolpup.py
call was recorded. Subsets of different sizes were generated using
coolpup.py’s –subset argument. Where not specified, one compute
core was utilized. The same procedure was performed for
HiCExplorer hicAggregateContacts, except shuf was used to gener-
ate a random sample of required size. The following arguments were
also provided to mimic coolpup.py behaviour as close as possible: –
range 105000:1000000000000 –avgType mean –transform obs/exp.
All measurements were performed five times. Plotted in Figure 4 are
actual measured runtime values, the line shows mean values and
shaded area — 695% confidence interval, using the seaborn plot-
ting package (Waskom et al., 2018).

3 Results

3.1 Different normalization strategies implemented in

coolpup.py
Hi-C data can be normalized in different ways to remove either tech-
nical biases, or uninteresting (in this context) biological signal of the
decay of contact probability with genomic distance. Coolpup.py
provides ways to deal with both of these problems.

Hi-C data are usually normalized to remove systematic biases,
such as GC-content or restriction site frequency (Yaffe and Tanay,
2011). Cooler implements a matrix balancing (visibility equaliza-
tion) approach to remove all potential biases (Imakaev et al., 2012)
and, when available, it is recommended to use balanced data for
pile-ups. Sometimes, for example, in single-cell Hi-C, removing
biases is impossible due to the sparsity of data. Therefore, using
unbalanced data is also an option in coolpup.py. However, because
of the averaging of multiple regions during the pile-up procedure,
the effect of biases can be partially mitigated by normalizing the ma-
trix by the coverage (i.e. the total number of contacts of the bins in
the chromosome) of the averaged regions (Flyamer et al., 2017). To
illustrate this, we integrated ChIP-seq datasets with Hi-C and ana-
lysed CTCF and polycomb (RING1B)-associated loops, and all po-
tential intersections between high RING1B peaks, in mouse ES cell
Hi-C data (Bonev et al., 2017). This approach visibly reduces cover-
age variability between bins and removes sharp crosses from the cen-
tral bin that is present with unbalanced data. This normalization
seems to slightly over-correct, i.e. the value of the central pixel is
consistently somewhat lower than when using balanced data.
However, the results overall look more similar to balanced data
than without coverage normalization.

In addition to normalization to remove biases, it is often desir-
able to remove the distance-dependency of contact probability in
Hi-C data, since sometimes it can obscure interesting properties,
such as enrichment in the centre of the pile-up. The general ap-
proach to perform this normalization is to create a vector of
expected contact frequency, which usually corresponds to the aver-
aged value of the Hi-C map at each diagonal per chromosome.
However, sometimes the expected information is unavailable, for
example, in single-cell Hi-C it can be too noisy. In that case, an al-
ternative approach to remove distance-dependency of contact fre-
quency can be used: for each position in the Hi-C map being
averaged, a matched set of randomly shifted control regions with
the same distance separation is used (Flyamer et al., 2017). In this
way, by creating many such control regions for each ROI, it is pos-
sible to estimate the expected frequency of interactions even for
sparse single-cell Hi-C data. As shown in Figure 1B, both of these
approaches are excellent at removing distance-dependency of con-
tact probability and produce visually indistinguishable results.
However, for a small set of regions (e.g. RING1B-associated loops)
a higher number of randomly shifted controls for each ROI is
required to prevent noise. We note that in our experience for local
pile-ups (especially with rescaling; see below) random controls per-
form better than simple normalization to expected values (data not
shown). It is worth bearing in mind that this normalization can also
hide real signal in the data, such as enrichment of interactions in the
lower-left corner, observed in particular for CTCF-anchored loops
(Fig. 1B).
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3.2 Applications of pile-ups
As well as the basic pile-up procedure, there are multiple variations
built in to coolpup.py which are tailored to answer different bio-
logical questions. The following ones are trivial, but worth mention-
ing. For example, often it is desirable to restrict the minimal and/or
maximal separation of analysed sites, either to remove short-range
artefacts, or to analyse the distribution of enrichment signal across
different distance scales. Only certain chromosomes might need to
be included, or, with too many regions of interest, a random subset
can be taken to speed up the computation.

A popular variation of the pile-up approach is ‘local’ pile-up: an
analysis which focuses on near-diagonal features. For example, we
averaged regions of high insulation annotated in the deep ES cell
Hi-C dataset to visualize insulation strength after auxin-induced
degradation of CTCF (Nora et al., 2017) (Fig. 2A). In this case, the
pile-ups are performed in the same way as previous off-diagonal
pile-ups; however, the regions that are averaged lie on the main di-
agonal of the Hi-C map. A variation of this approach is local pile-
ups with rescaling to analyse features of different size, for example,
TADs (Flyamer et al., 2017). As an example, TADs, based on afore-
mentioned regions of high insulation annotated in data from (ref.
Bonev et al., 2017), were averaged to visualize changes in local inter-
action strength upon CTCF degradation (Nora et al., 2017)
(Fig. 2B). Here, all windows centred on regions of interest are
rescaled to the same size, and then averaged.

Pile-ups are a particularly important approach to analysing very
low-depth datasets to uncover genome-wide average patterns, which
are indiscernible when looking at individual regions in such sparse
data. Here, we apply coolpup.py to reproduce results from a dataset
comprising pooled data from a few single cells, to show a loss of
loops and TADs in mouse zygotes lacking SCC1 (RAD21), the klei-
sin subunit of cohesin (Gassler et al., 2017). Since the material is so
limiting and data are based on single cells, the total number of con-
tacts in this dataset is very low: 4.8 and 9.2 million contacts in
Scc1þ/þ and Scc1-/-, respectively. However, we successfully per-
formed pile-ups, both with ‘traditional’ averaging of loops, and local
pile-ups of TADs with rescaling, and observe the loss of both loops
and TADs upon deletion of cohesin, comparable to the original
study (Fig. 2C).

All pile-up approaches include averaging of multiple regions, a
drawback of which is the loss of locus-specific information. We,
therefore, designed a novel approach that retains some information

about the specific loci used in the analysis. In this approach, we
pile-up a single region against multiple other regions; the same can
be done for each of many regions in a set against all other regions.
Then by extracting the value in the central pixel in pile-ups for
each region, we can get a ‘loop-ability’ value, which can then be
related to other features of analysed regions, such as the level of
occupancy by different factors. To confirm that this approach can
work, we checked some example regions that displayed high or
low level of ‘loop-ability’, to ensure that the values we observed
were not due to noise from piling up interactions of a single region
(see two examples in Fig. 2D). A simple proof of principle analysis
highlights the interactions between sites bound by polycomb
group proteins in mouse ES cells (data from Bonev et al., 2017).
By splitting the CpG islands (data from Illingworth et al., 2010)
— the main targets of polycomb binding in ES cells — in the
mouse genome into RING1B (a core component of Polycomb
Repressive Complex 1 — PRC1) negative, RING1B positive, and
RING1B and H3K27me3 positive sets (data from Illingworth
et al., 2015), we observe high ‘loop-ability’ values for the two lat-
ter groups, while the RING1B negative CpG islands have close to
no enrichment (Fig. 2E). We perform more detailed analysis of
such loop-ability measurements in our recent report (Boyle et al.,
2019).

Pile-ups are an invaluable tool when analysing Hi-C data from
single cells, since averaging features across the whole genome helps
to circumvent the sparsity of the data. Here, we apply coolpup.py to
analyse the looping interactions across the cell cycle using a pub-
lished single-cell Hi-C dataset from hundreds of mouse ES cells
(Nagano et al., 2017). We compared the enrichment of interactions
in different cell cycles stages for CTCF- and RING1B-associated
interactions (see Fig. 3A and B). For convergent CTCF sites, we
detected the loss of loop strength in pre- and post-mitotic cells until
mid-G1 in the next cell cycle , consistent with the original publica-
tion (Nagano et al., 2017).

In contrast, the interactions between RING1B-binding sites have
a very different dynamic across the cell cycle. They are at their
weakest during S phase, strengthen during G2 and do not reach their
peak until early G1. This is consistent with the cell cycle kinetics of
H3K27me3 abundance at polycomb marked sites with H3K27me3
levels lowest during S phase where they are diluted after the replica-
tion fork, and levels of H3K27me3 only accumulating slowly
through G2 and not peaking again until G1 of the next cell cycle
(Reverón-Gómez et al., 2018).
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Fig. 1. Hi-C data normalization strategies. (A) Comparison of coverage normal-

ization strategies for pile-up analyses using mouse ES cell Hi-C data (Bonev et al.,

2017). Normalization approaches are in columns: matrix balancing (iterative cor-

rection); no normalization; no balancing with coverage normalization of the pile-

ups. The different averaged regions are shown in rows: loops associated with

CTCF (n¼ 6536), loops associated with RING1B (n¼ 104) (see Materials and

Methods section), all pairwise combinations of high RING1B peak regions from

the fourth quartile (by RING1B ChIP-seq read count) (n¼2660 of peak regions).

All pile-ups produced with 10 randomly shifted controls. All pile-ups are normal-

ized to the average of the top-left and bottom-right corner pixels to bring them to

same scale. Value of the central pixel is displayed. Five kilobytes resolution

with 100 kb padding around the central pixel. Colour is shown in log-scale and

shows enrichment of interactions. (B) Same as (A), but for different approaches

to remove distance-dependency of contact probability with balanced data. In col-

umns: single randomly shifted control regions per ROI; 10 randomly shifted con-

trol per ROI; normalization to chromosome-wide expected; no normalization.
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Fig. 2. Pile-up variations. (A) Local pile-ups of high-insulating regions in ES cells

across untreated, auxin-treated and wash-off conditions in CTCF-AID Hi-C data

(Nora et al., 2017). Twenty-five kbp resolution data with 1000 kbp padding

around the central pixel. (B) Local rescaled pile-ups of TADs (defined based on

high-insulating regions) across same data as in (A) from 5 kbp resolution data. (C)

Loop and rescaled TAD pile-ups for pooled single-cell Hi-C data showing loss of

structures in Scc1�/� zygotes (Gassler et al., 2017). (D) Two examples of anchored

pile-ups from RING1Bþ/H3K27me3þ CpG islands on chr1, with no visible en-

richment (top), or with very prominent enrichment (bottom). The anchored region

is on the left side of the pile-up, and its coordinates (including the padding) are

shown on the left. The value of the central pixel (‘loopability’) shown in top left

corner. (E) Distribution of ‘loopability’ values of CpG islands not bound by

RING1B, CpG islands bound by RING1B, and CpG islands bound by RING1B

and also marked by H3K27me3
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3.3 Coolpup.py can deal with huge numbers of regions
Creating pile-ups from intersections of genomic regions can require
averaging a huge number of 2D windows: the number of two combi-
nations grows quickly with the number of regions. For example,
with �1000 regions per chromosome (which is approximately
equivalent to the number of genes), requires averaging of
�10 000 000 regions for the whole genome, several orders of magni-
tude more than the number of regions usually averaged, such as
number of annotated loops (�10 000). Therefore, it is important for
a general-purpose tool for creating pile-ups to scale well with the
number of averaged 2D windows. To facilitate this, coolpup.py per-
forms a very low number of read operations on the Hi-C data —
only once per chromosome (or twice, when using randomly shifted
controls). Whilst this necessitates that the whole Hi-C matrix of a
chromosome has to be loaded into memory, it is only stored in a
sparse format, and so conventional Hi-C datasets can be analysed
on a regular desktop (although multi-billion contact datasets might
require a high-memory machine; data not shown).

To test the performance of coolpup.py and how this depends on
number of regions of interest, we measured the runtime with varying
number of two-sided coordinate pairs (mimicking loop annotation)
(Fig. 4A), and varying the number of one-sided coordinate interac-
tions being averaged (Fig. 4B). We used both deep (Bonev et al.,
2017), and ‘regular depth’ Hi-C data (Nora et al., 2017) from mouse
ES cells. With both datasets, the runtime was almost constant (prob-
ably due to file system read speed limitations) up to a certain num-
ber of ‘loops’ (�1–2�105), where it starts quickly increasing
(Fig. 4A). Notably, the best annotations that exist to date only con-
tain <40 000 loops (Krietenstein et al., 2019), and therefore this
would fall within the flat part of the curve. Similarly, in the latter
analysis, runtime did not increase up to 1600 and 3200 regions of
interest for the Nora et al. and Bonev et al. datasets, respectively.
Importantly, in both analyses the difference in time between datasets
with almost 10-fold sequencing depth difference is not very large,
and probably mostly driven by differences in time required to read
the data from disk. When similar analysis was performed using
HiCExplorer hicAggregateContacts, the runtime was >10-fold lon-
ger for each dataset with low numbers of regions (Fig. 4B), and the
analysis required much more memory since the algorithm uses dense
data structures and stores each submatrix of interest in memory
(required >100 Gb for the Bonev et al. dataset; the longest time-
point required over 512 Gb of RAM and was not computed, while
coolpup.py only needed �8 Gb for any calculation). HiCExplorer
implementation computes observed/expected matrix for every calcu-
lation and cannot use pre-computed expected values, which at least
partially accounts for much longer runtimes.

Since coolpup.py supports parallel processing to speed-up analy-
ses, we also tested how well it scales with the number of computer

cores used. We measured the runtime of the same analysis per-
formed with varying number of cores (Fig. 4C) and showed that the
runtime shortened linearly with additional processes. This means
the parallelization strategy used in coolpup.py is efficiently utilizing
available CPU cores and when available, we recommend using many
cores to speed-up computation, although this would also significant-
ly increase memory requirements.

4 Discussion

With the large efforts being made in deciphering the structure and
function of the genome in 3D, efficient, robust and versatile tools
are required to facilitate quick hypothesis testing. Unlike for RNA-
seq, ChIP-seq and other genome-wide methods, analysis of complex
Hi-C data remains a challenge only readily accessible to specialists
in the field due to an absence of easy to use informatics tools, with a
few exceptions. One popular analysis applied to Hi-C data is pile-
ups, which show an average genome-wide view of a selected set of
regions in the 2D Hi-C interaction matrix: a very visual and intuitive
approach to analysing data.

Here, we presented coolpup.py, a versatile tool to perform pile-up
analysis on Hi-C data in .cool format. Apart from simple generation
of pile-ups, coolpup.py can be used to explore different data normal-
ization strategies. While we recommend using balanced data with nor-
malization to chromosome-wide expected interaction frequency, in
certain cases a different normalization strategy can be beneficial.
Similarly, exploring other parameters of the algorithm (such as min-
imal separation between averaged loop bases, or minimal length of lo-
cally averaged features) is straightforward with coolpup.py. Using our
tool, we reproduced published results on the role of CTCF and cohe-
sin in generating chromatin loops and TADs. We have shown applica-
tion of coolpup.py to both low coverage Hi-C data (merged snHi-C
data), and extremely sparse single-cell Hi-C data. The latter analysis
not only replicated published data on CTCF-mediated looping
changes across the cell cycles, but also revealed novel cell cycle dy-
namics of polycomb-associated interactions with highest contact en-
richment around the time of mitosis. We note that these observations
are generally consistent with the dilution and slow recovery of the
H3K27me3 mark after the replication fork (Alabert et al., 2015;
Reverón-Gómez et al., 2018), as well as an antagonistic relationship
between cohesin-mediated loop extrusion and looping between
RING1B target sites, reported previously (Rhodes et al., 2020). These
observations also pose a question of whether polycomb-associated
interactions persist in metaphase chromosomes—a possibility since
components of CBX2-containing PRC1 remain associated with meta-
phase chromosomes (Zhen et al., 2014). These novel insights highlight
the exploratory power of pile-up analysis.

A B

Fig. 3. Chromatin looping dynamics across cell cycle. (A) Hi-C interaction enrich-

ment levels for single cells ordered along the cell cycle (Nagano et al., 2017) for

CTCF- and RING1B-associated interactions. The former is limited to 100–800 kb

distance, while the latter is shown for all distances above 100 kb. Curves represent

LOWESS-smoothed data for easier interpretation. (B) Distribution of enrichment

values in all cell cycle stages from data in (A)
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Fig. 4. Performance profiling. (A) Runtime (seconds) of coolpup.py with varying

number of averaged ‘loops’ for two Hi-C datasets with different depth. (B) Same as

(A), but for number of linear regions between which interactions are averaged. Also

shown is runtime for HiCExplorer hicAggregateContacts. Note that the longest

time-point for HiCExplorer required over 512 Gb RAM and was not computed. (�)

Runtime of the same analysis with 5000 linear regions and a varying number of

cores. Same colour coding as in (A)
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Since coolpup.py is designed as a command-line tool and allows
reading the coordinates of regions from standard input, it is compat-
ible with computational pipelines, and can be readily used in shared
computing environments. Moreover, it remains accessible for
non-specialists with minimal knowledge of the command line and
no programming experience. Coolpup.py should aid in improving
reproducibility by providing a standardized approach for pile-up
analysis which is intuitive and therefore accessible to both specialists
and non-specialist alike. We hope that it will facilitate research into
the 3D organization of the genome by allowing easy to use, versatile
and efficient generation of pile-ups.
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