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Background: Sarcolipin (SLN), myoregulin (MRLN), and dwarf open reading frame (DWORF) are

transmembrane regulators of the sarcoplasmic reticulum calcium transporting ATPase (SERCA)

that we hypothesized played a role in recurrent exertional rhabdomyolysis (RER).

Objectives: Compare coding sequences of SLN, MRLN, DWORF across species and between

RER and control horses. Compare expression of muscle Ca2+ regulatory genes between RER and

control horses.

Animals: Twenty Thoroughbreds (TB), 5 Standardbreds (STD), 6 Quarter Horses (QH) with RER

and 39 breed-matched controls.

Methods: Sanger sequencing of SERCA regulatory genes with comparison of amino acid

(AA) sequences among control, RER horses, human, mouse, and rabbit reference genomes. In

RER and control gluteal muscle, quantitative real-time polymerase chain reaction of SERCA reg-

ulatory peptides, the calcium release channel (RYR1), and its accessory proteins calsequestrin

(CASQ1), and calstabin (FKBP1A).

Results: The SLN gene was the highest expressed horse SERCA regulatory gene with a uniquely

truncated AA sequence (29 versus 31) versus other species. Coding sequences of SLN, MRLN,

and DWORF were identical in RER and control horses. A sex-by-phenotype effect occurred with

lower CASQ1 expression in RER males versus control males (P < .001) and RER females (P = .05)

and higher FKBP1A (P = .01) expression in RER males versus control males.

Conclusions and Clinical Importance: The SLN gene encodes a uniquely truncated peptide in

the horse versus other species. Variants in the coding sequence of SLN, MLRN, or DWORF were

not associated with RER. Males with RER have differential gene expression that could reflect

adaptations to stabilize RYR1.
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1 | INTRODUCTION

Exertional rhabdomyolysis (ER) in horses is characterized by multiple

episodes of stiffness, muscle cramping, reluctance to move, and mus-

cle damage and can have many causes.1 Exertional rhabdomyolysis

affects 5%-7% of Thoroughbred (TB) and Standardbred (STD) race-

horses, and recurrence can be so frequent that 17% of ER horses are

unable to race again in the same season.2–4

The term recurrent exertional rhabdomyolysis (RER) has been

used to describe a chronic form of ER in racehorses with a proposed

underlying cause of abnormal myoplasmic calcium (Ca2+) regulation.5,6

This hypothesis was based on finding a lower threshold for inducing a

contracture in isolated skeletal muscle bundles of RER versus control

horses exposed to increasing concentrations of halothane, potassium,

and caffeine, all of which induce Ca2+ release from the sarcoplasmic

reticulum (SR).5,6 In addition, higher caffeine-induced Ca2+ release

was found in cultured myotubes from RER versus control horses, as

detected by Fura-2 fluorescence imaging.7 Further studies of isolated

SR membranes and genetic linkage analysis have not identified an

underlying cause for alterations of Ca2+ regulation in RER.8,9

Recent discoveries regarding fundamental modes of intracellular

Ca2+ regulation have identified additional regulatory mechanisms for

the SR Ca2+ transporting ATPase (SERCA) that may play a role in the

genesis of RER in horses. After contraction, SERCA induces muscle

relaxation by catalyzing the transport of 2 Ca2+ ions into the lumen of

the SR using the free energy from hydrolysis of 1 ATP molecule. Phos-

pholamban (PLN) inhibits SERCA activity and is primarily expressed in

cardiac and slow twitch muscle fibers.10,11 Sarcolipin (SLN), first dis-

covered in 1974 as a peptide that copurifies with SERCA, was subse-

quently found to decrease the Ca2+ affinity of SERCA12 and decrease

the energetic coupling efficiency of SERCA (Ca2+/ATP transport ratio

<2), thereby decreasing SR luminal Ca2+ stores.12–14 In addition, tran-

scripts that previously were annotated as long noncoding RNAs

recently have been found to encode small transmembrane peptides

MRLN and dwarf open reading frame (DWORF) that also regulate the

activity of SERCA in skeletal muscle (Figure 1).15,16 Dwarf open reading

frame has been shown to enhance SERCA activity in the mouse heart

by displacing PLN and, in cell culture models, by displacing SLN and

MRLN (Figure 1). A decrease in SLN and MRLN or increase in DWORF

expression could increase SR Ca2+ stores by decreased SERCA inhibi-

tion (ie, decreased Ca2+ affinity), thereby acting to increase calcium

release channel (RYR1) Ca2+ release and myoplasmic Ca2+ concentra-

tion during contraction and potentially leading to clinical manifestations

of RER.

Our goal was to determine if RER is associated with variants in

the coding sequences of SLN, MRLN, or DWORF, altered expression of

Ca2+ regulatory genes involved in SR Ca2+ uptake and Ca2+ release or

both. The first aim of our study was to compare the coding sequences

of SLN, MRLN, and DWORF in the horse with other species. The sec-

ond aim was to determine if the coding sequences for these genes dif-

fered between RER and control horses. The third aim was to determine

if there was a difference in expression of skeletal muscle Ca2+ regula-

tory genes between horses with and without RER.

2 | METHODS

2.1 | Pilot study

To determine if SERCA1 (expressed in fast twitch type 2 fibers) or

SERCA2 (expressed in cardiac and type 1 muscle fibers) was primarily

expressed in equine gluteal muscle, we initially evaluated transcripts

per million reads from RNA-seq data obtained from gluteal muscle of

6 healthy Arabian horses (NCBI's Gene Expression Omnibus GEO

Series accession number GSE104388). Mean transcripts per million

reads (SD) were 3.7 times higher for SERCA1 (562 ± 152 TPM) than

SERCA2 (243 ± 145 TPM). When muscle fiber type composition was

assessed for 6 of the TBs in our study, we found they had 50% fewer

type 1 fibers than did the Arabian horses used in the RNA-seq ana-

lyses (TB: 8% ± 3% type 1, 92% ± 5% type 2: Arabian 17% ± 3% type

1, 83% ± 8% type 2). Thus, SERCA1 rather than SERCA2 seemed to

be the primary isoform of interest when studying SERCA inhibitors in

TB gluteal muscle.

The study was approved by the Institutional Animal Use and Care

Committee of Michigan State University.

2.2 | Comparative amino acid sequences

The entire coding sequences for SLN and MRLN were identified from

the annotated references genomes of horse (EquCab2; http://ncbi.

nlm.nih.gov/genome/145). Horse coding sequences were verified by

comparison to RNA-seq data for Arabian control horses (NCBI's Gene

Expression Omnibus GEO Series accession number GSE104388) and

comparison to Sanger sequencing described below. Coding sequences

for DWORF were identified in the annotated human and mouse

FIGURE 1 Schematic of key Ca2+ regulatory proteins in skeletal

muscle sarcoplasmic reticulum (SR). Sarcoplasmic reticulum calcium
transporting ATPase (SERCA) is the SR Ca2+ pump with isoform
SERCA1 expressed in fast twitch type 2 fibers and SERCA2 expressed
in slow twitch and cardiac muscle fibers. SERCA is inhibited by
sarcolipin (SLN), phospholamban (PLN), or myoregulin (MRLN).
Phospholamban primarily inhibits SERCA2, and SLN and MRLN inhibit
SERCA1, depending upon species. Dwarf open reading frame

(DWORF) displaces the SERCA inhibitors, PLN, SLN, and MRLN.
FKBP (calstabin) modulates Ca2+ release through the Ca2+ release
channel which has 2 isoforms: RYR2 (cardiac and slow twitch) and
RYR1 (fast twitch muscle fibers). Calsequestrin (CASQ) is the luminal,
high-capacity Ca2+ binding protein, which directly modulates Ca2+

release by RYR. DHPR, the dihydropyridine receptor, is a voltage-
gated Ca2+ channel that triggers RYR to release Ca2+. The legend
(right) indicates the effect of each regulatory protein on myoplasmic
Ca2+ concentration: increase (+) or decrease (−)

934 VALBERG ET AL.

http://ncbi.nlm.nih.gov/genome/145
http://ncbi.nlm.nih.gov/genome/145


reference genomes and used as a BLAST-like alignment tool (BLAT)

on EquCab2 (University of California, Santa Cruz [UCSC] genome

browser; https://genome.ucsc.edu/). Reads for the equine DWORF cod-

ing sequence were present in the reference genome, but the reads

ended abruptly without a stop codon, suggesting that EquCab2 is not

well assembled in the 30 region of this gene. The RNA-seq data from

Arabian horses (GEO Series accession number GSE104388) was used

to complete the derived equine DWORF sequence.

The amino acid (AA) sequences of PLN, SLN, and MRLN were com-

pared to the human and mouse sequences because these species have

well-established references genomes and to rabbit because we cur-

rently are performing comparative biochemical assays on SR prepara-

tion from horse and rabbit. The 2016 Ensembl (https://useast.ensembl.

org/index.html) was used to evaluate the genome of rabbit (OrynCun;

https://www.ncbi.nlm.nih.gov/assembly/GCF_000003625.3), mouse

(http://www.informatics.jax.org/), and human (GRCh38.p12version). For

rabbit, coding sequences for DWORF from the annotated human and

mouse reference genomes were used to BLAT the respective reference

genomes (UCSC genome browser; https://genome.ucsc.edu/).

We also performed comparative sequence analysis for SLN on

species closely related to the horse including ass (NCBI accession

NW_014638236.1, Genebank ERX607030, ERX607036, ERX607001,)

Przewalski's horse (databases NC_007675973.1, Genebank ATBW010

57363.1), and zebra as well as another Perisodactyl, the Southern white

rhinoceros (http://rohsdb.cmb.usc.edu; LOC101603223). To obtain SLN

sequence for the zebra (unknown genus), we Sanger sequenced muscle

tissue archived in the Neuromuscular Diagnostic Laboratory in the same

blinded fashion as described for RER and control horses.

2.3 | Gene sequencing

2.3.1 | Horses

The SLN sequence was determined for 17 TB (11 females [F], 3 geld-

ings [G], 3 stallions [S]), 5 STD (2 F, 2 G, 1 S), and 6 Quarter Horses

(QH; 3 F, 3 G) that had experienced repeated episodes of ER and had

muscle biopsy specimens archived in the Neuromuscular Diagnostic

Laboratory (Supplemental Table 1). Control horses included 13 TB

(3 F, 10 G), 6 STD (1 F, 5 G), and 3 QH (1 F, 2 G) with no known his-

tory of RER and samples archived in the Neuromuscular Diagnostic

Laboratory. The MRLN and DWORF sequences were determined in a

subset consisting of 3 TB, 3 STD, and 3 QH with RER and 4 TB,

4 STD, and 3 QH controls (Supplemental Table 1). The RER criteria

included a history of repeated episodes of ER reported by the refer-

ring veterinarian and muscle biopsy specimens with normal periodic

acid-Schiff's (PAS) staining for glycogen. Preference for study inclu-

sion was given to horses with numerous episodes of ER, documented

increases in serum creatine kinase (CK) activity and centrally displaced

nuclei on histological examination (Supplemental Table 1). All QH

examined were negative for the glycogen synthase 1 (GYS1) mutation

responsible for type 1 polysaccharide storage myopathy.17 Control

horses had no known history of ER and, for TB and QH, no evidence

of muscle histopathology. Hair samples rather than muscle biopsy

specimens were available from local STD racehorse controls.

2.3.2 | DNA isolation and sequencing

Qiagen DNeasy Blood and Tissue Kit (Qiagen, Germantown, Maryland)

was used to isolate genomic DNA from hair roots, buffy coat, or frozen

muscle samples according to the manufacturer's protocol.

2.3.3 | Primers

Primers were designed using Primer3Plus software18 to cover the pre-

dicted protein coding regions of horse SLN, MRLN, and DWORF as well

as the 50 upstream sequence, likely containing the 50 untranslated

region of the 3 horse genes based on similarities across species. For

SLN, 8 primers were designed to cover the possible noncoding exon

1 (2148 bp) and predicted coding exon 2 (2092 bp; Supplemental

Table 2). The regions sequenced for SLN comprised 6332 bp. For

MLRN, 4 primers were designed to cover noncoding exon 1, possible

noncoding exon 2, noncoding exon 3, and coding exon 4 (Supplemen-

tal Table 2). The region sequenced for MRLN comprised 2747 bp. For

DWORF, based on the open reading frame that begins in exon 1 and

encodes the first 4 AA of the protein with the remaining protein being

encoded in exon 2, 2 primers were designed to cover 500 bp upstream

of the coding sequence, the first 4 AA in exon 1, and exon 2 and the 30

untranslated region.15 The region sequenced for DWORF comprised

1300 bp. Primers are listed in Supplemental Table 2.

2.3.4 | PCR and sequence analysis

Each primer pair was used to amplify intervening genomic DNA using

polymerase chain reaction (PCR) in 25 μL reactions that included 2.0 μL

sample DNA, 12.5 μL Hot Start PCR 2× Master Mix Taq Polymerase

(Thermo Fisher Waltham, MA), 0.5 μL of 20 μM forward and reverse

primers (Invitrogen), and 9.5 μL molecular biology grade water. The PCR

reactions started with 15 minutes at 95�C, then 35 cycles of 30 seconds

at 94�C, 30 seconds at the primer-specific annealing temperature, and

30 seconds at 72�C, followed by a final extension of 10 minutes at 72�C.

The PCR products were resolved on 1% agarose gels. The PCR products

then were purified using ExoSAP-IT Product Cleanup (Affymetrix,

Santa Clara, California) and sequenced by the Michigan State Univer-

sity Research Technology Support Facility Genomics Core using the

96-capillary electrophoretic ABI 2730×l platform (Sanger sequencing).

Sequences were aligned to Equcab2.0 (http://ncbi.nlm.nih.gov/

genome/145) and analyzed using Sequencher software (version 5.4.5;

Gene Codes Corporation).

2.4 | Gene expression

2.4.1 | Horses

Muscle samples were obtained prospectively from 14 fit TB RER race-

horses (9 F, 2 G, 3 S; age 5.2 ± 2.4 years) with median serum CK activ-

ity of 251 U/L and mean (SD) CK activity of 970 ± 2166 U/L. Samples

also were obtained from 20 fit control TB racehorses (9 F, 6 G, 5 S; age

3.4 ± 1.6 years) with median CK activity of 250 U/L and mean CK

activity of 267 ± 86 U/L. All horses were housed either at the same

race training center or a nearby racetrack in Lexington, Kentucky

(Supplemental Table 1). The RER horses had a history of episodes of ER

documented by a veterinarian and had not exhibited clinical signs
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within 48 hours of muscle biopsy. Control horses were in training and

had no history of ER. Twelve of the horses used for gene expression

studies also were Sanger sequenced for SLN as described above.

2.4.2 | Primers

Primers for GAPDH, RYR1, SERCA1, CASQ1, DWORF, PLN, MRLN, SLN,

and FKBP1A were designed to cross exon-exon boundaries using

NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) and referen-

cing NCBI EquCab 2.0 (Supplemental Table 3). The glyceraldehyde

phosphate dehydrogenase (GAPDH) gene was used as a housekeep-

ing control because it showed minimal variability and is less variable

across age in skeletal muscle.19

2.4.3 | Muscle biopsies

Gluteus medius muscle biopsy specimens were obtained in the morn-

ing 1-4 hours after jogging or light galloping exercise from a standard-

ized site using a modified Bergstrom biopsy needle as previously

described.20 A portion of the sample was flash-frozen in liquid nitro-

gen and stored at −80�C. A second portion was oriented in cross-

section and frozen within 12 hours of sampling in isopentane that

was suspended in liquid nitrogen.

2.4.4 | Muscle histopathology

Cryostat sections (7-μm thick) were stained with hematoxylin and

eosin and PAS and evaluated for the presence of centrally located

nuclei, degenerating myofibers, or macrophages.21

2.4.5 | RNA extraction

Total muscle RNA was isolated from flash frozen samples using TRI-

zol/chloroform extraction after tissue homogenization with a biopul-

verizer (BioSpec Products, Inc, Fartlesville, Oklahoma) as previously

described.22 Treatments with DNase were performed on columns

(Direct-zol RNA MiniPrep Plus, Zymo, Irvine, California) with DNase I

(RNase-free; New England BioLabs, Inc Ipswich, MA) according to

manufacturer's instructions.

2.4.6 | Complementary DNA synthesis

Complementary DNA (cDNA) was made using a high-capacity cDNA

reverse transcription kit (Applied Biosystems, Thermo Fisher Scientific

Waltham, MA). Each 20 μL reaction contained 2 μL of 10× RT Buffer,

0.8 μL of 100 mM dNTPs, 2 μL of RT Random Primers, 1 μL of RT

Enzyme, approximately 1200 ng of sample RNA, and the remaining

volume made up of sterile nuclease-free distilled water. The reactions

then were run in a ProFlex PCR system (Applied Biosystems, Life

Technologies Waltham, MA) under the following conditions: 25�C for

10 minutes, 37�C for 2 hours, 85�C for 5 minutes, and 4�C until

recovery. All reactions then were diluted with sterile nuclease-free

distilled water to reach a total volume of 100 μL.

2.4.7 | Quantitative real-time PCR

Genes selected included the Ca2+ release channel (RYR1), calstabin

(FKPB1A), which stabilizes Ca2+ leak from RYR1, and calsequestrin

(CASQ1), a luminal high-capacity Ca2+ binding protein that modulates

RYR1 Ca2+ release. Expression of gene encoding SERCA (ATP2A1), PLN,

SLN, MRLN, and DWORF also was determined. Thermocycling for quanti-

tative real-time polymerase chain reaction (qRT-PCR) was conducted

using EvaGreen dye (Biotium, Inc, Fremont, California), ROX Reference

Dye (Invitrogen, Life Technologies Carlsbad, CA), and Hot Start taq DNA

Polymerase (New England BioLabs, Inc Ipswich, MA), using the QuantStu-

dio 3 Real-Time PCR System (ThermoFisher Scientific Waltham, MA). The

PCR reactions were run in duplicate (20 μL volume reactions). Each reac-

tion contained 2 μL of sample cDNA, 2 μL of 2.5 mM dNTPs, 2 μL of

10× PCR buffer, 1 μL of EvaGreen dye, 1.5 μL of 1:10 ROX reference

dye dilution, 0.125 μL of Hot Start taq DNA Polymerase, 2 μL of 1.6 μM

forward primer, 2 μL of 1600 μM reverse primer, and 7.4 μL of sterile

nuclease-free distilled water. Reactions were run for 40 cycles under the

following conditions: denaturation at 95�C for 10 minutes, annealing at

60�C for 1 minute; melt curve stages at 95�C for 15 seconds, 60�C for

1 minute, and 95�C for 15 seconds. Cycle thresholds (CT) were automati-

cally calculated by the QuantStudio 3 Real-Time PCR System. For each

gene of interest, 100% geometric efficiency was established. Nontem-

plate controls run for each gene showed no amplification.

2.5 | Statistical analysis

2.5.1 | Quantitative real-time PCR

Relative quantitation of gene expression was calculated by the com-

parative threshold cycle method (2-ΔΔCT) using the CT of GAPDH

TABLE 1 Mean (SD) gene expression relative to GAPDH (ΔCT)

RER females Control females RER males Control males
N = 9 N = 9 N = 5 N = 11

RYR1 5.57 ± 0.64a 5.64 ± 0.82a 5.55 ± 0.65a 5.81 ± 0.66a

FKBP1A 5.19 ± 2.76a 6.36 ± 1.32a 4.31 ± 1.49ab 6.77 ± 0.67a

CASQ1 −2.31 ± 2.14acd −3.32 ± 1.83ad −0.23 ± 1.42b −1.64 ± 1.43bc

ATP2A1 7.98 ± 1.03a 8.06 ± 0.55 a 7.02 ± 1.99a 8.72 ± 1.51a

SLN −4.67 ± 1.74a −5.31 ± 1.68a −3.23 ± 1.24a −4.18 ± 2.34 a

MRLN 6.91 ± 0.69a 7.55 ± 1.20a 7.52 ± 0.91a 6.21 ± 1.16a

PLN 8.27 ± 1.48a 8.12 ± 1.61a 8.42 ± 1.68a 8.53 ± 1.34a

DWORF 7.95 ± 1.41a 7.94 ± 1.07a 7.64 ± 1.14a 8.64 ± 1.61a

Genes include RYR1 and its regulators FKBP1A and CASQ1 as well as SERCA (ATP2A1) and its inhibitors SLN, PLN, and MRLN, plus DWORF which displaces
the SERCA inhibitors. Different letters indicate differences between rows. P ≤ .05.
Abbreviations: ATP2A1, gene encoding sarcoplasmic reticulum calcium transporting ATPase; CASQ1, calsequestrin; CT, cycle thresholds; DWORF, dwarf open
reading frame; FKBP1A, calstabin; GAPDH, glyceraldehyde phosphate dehydrogenase; MRLN, myoregulin; PLN, phospholamban; RER, recurrent exertional
rhabdomyolysis; RYR1, calcium release channel; SERCA, sarcoplasmic reticulum calcium transporting ATPase; SLN, sarcolipin.
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(Table 1). Data was tested for normality using the Shapiro Wilks test.

A 2-way analysis of variance and Tukey post hoc test were per-

formed to examine differences in ΔCT values for RER and control

horses stratified by sex using GraphPad Prism 7 (Graphpad Software,

La Jolla, California).

3 | RESULTS

3.1 | Comparison of AA sequences

3.1.1 | Sarcolipin

The coding sequence of SLN in RER and control horses was truncated

at 29 versus 31 AA relative to the human, mouse, rabbit, and Southern

white rhinoceros sequences. The zebra, ass, and Przewalski’s horse

had the same truncated sequence as did the horse (Supplemental

Table 4). Homology of the horse SLN AA sequence was 77% to rabbit

(24/31), 77% to human (24/31), and 81% to mouse (25/31). Most

importantly, the SLN AA sequence was missing putative regulatory

sites Ser4, Thr5, Cys9, and Tyr31 (Figure 2).32–35

3.1.2 | Myoregulin

The myoregulin (MRLN) AA sequence was similar in length across

species at 46 AA. Sequence identity of horse MLRN was 78% with

rabbit (36/46), 85% with human (39/46), and 74% with mouse

(34/46). Most AA differences occurred in the cytoplasmic domain

with only 1 AA impacting charge, horse neutral Thr15 versus

human and rabbit basic Lys15.

3.1.3 | Dwarf open reading frame

The DWORF peptide was similar in length between horse and

human at 35 AA and was 34 AA in mouse with 3 AA that could not

be deduced from the rabbit reference genome (Figure 2). Sequence

homology of horse DWORF was 86% with human (30/35) and 69%

with mouse (24/35). Amino acid substitutions that altered AA charge

were not identified when comparing AA across horse, human, and

mouse.

3.2 | Coding sequence of SLN, MRLN, DWORF in
RER and control horses

No differences were detected in coding sequences of SLN, MRLN, and

DWORF between RER and control horses.

3.3 | Gene expression

Sarcolipin was the most highly expressed SERCA regulatory gene

(Table 1). No significant difference was found in the expression level

of Ca2+ regulatory genes between control females and control males

or between RER females and control females (Figure 3). An impact of

sex and phenotype was observed in which RER males had signifi-

cantly higher expression of FKBP1A (P = .01) than did control males

(Figure 3). The RER males had lower expression of CASQ1 than did

control females (P < .001) and lower expression than RER females

(P = .05; Figure 3).

FIGURE 2 Amino acid sequence (AA) of SLN, PLN, MRLN, and DWORF derived from mouse, human, and rabbit reference genomes, and Sanger

sequencing of horse genes in the present study. Yellow highlight indicates AA substitution or deletion unique to horse. Green highlight indicates
highly conserved residues near the myoplasmic-membrane interface of SERCA inhibitory peptides.16,23,24 Asterisk (*) indicates regulatory site
residues.10,25–31 Question mark (?) indicates putative phosphorylation sites or lack of consensus sequence for rabbit DWORF from the reference
genome. DWORF, dwarf open reading frame; MRLN, myoregulin; PLN, phospholamban; SERCA, sarcoplasmic reticulum calcium transporting
ATPase; SLN, sarcolipin
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4 | DISCUSSION

In resting striated muscle across all species, Ca2+ is tightly regulated to

maintain 10 000-fold lower myoplasmic Ca2+ than SR luminal Ca2+

concentration because of the activity of SERCA.36 The activity of

SERCA is regulated by myoplasmic Ca2+ and by the inhibitory pep-

tides, PLN and SLN.37 More recently, MRLN in mouse skeletal muscle

and sarcolamban in fly heart have been reported to be important

SERCA inhibitors that have highly conserved protein sequences and

molecular structure across species.16,38,39 Such conservation for over

550 million years suggests an important, conserved system for the

regulation of Ca2+ uptake by SERCA.38 In keeping with this conserva-

tion, the transmembrane domains of SLN, PLN, and MRLN are similar

within genes across species, with only a few conservative AA substitu-

tions in this region in equine MRLN (Leu33 versus Phe33, Ser45 ver-

sus Thr 45) compared to mouse, human, or rabbit. Remarkably,

however, equine SLN is distinct from 67 other species evaluated in

our and other studies in that it is truncated at 29 AA, missing a termi-

nal Tyr residue that has been shown to be directly involved in the inhi-

bition of SERCA.40 Other unique aspects of SLN included missing

potential regulatory residues in the cytoplasmic domain including Ser4

(serine/threonine-protein kinase 16 phosphorylation), Thr5 (calmodu-

lin-dependent protein kinase II phosphorylation), and Cys9 (acyla-

tion).11,32,41 These changes do not prove a functional effect and

potentially would be a fruitful area for future research in horses. In

other species, deletion of Thr5 in SLN has been shown in cardiac

muscle to selectively downregulate SR Ca2+ handling proteins and

decrease SR Ca2+ uptake.34 In addition, the luminal tail of SLN in the

horse was missing the terminal Tyr, which is proposed to functionally

interact with luminal residues in SERCA and to target SLN to the

SR and endoplasmic reticulum.39,42,43 Notably, the 29 AA equine

SLN sequence is also found in zebra and ass, (ERX607036 and

ERX607001) and Przewalski’s horse but not in another Perisodactyl,

the Southern white rhinoceros. Thus, the distinct SLN sequence of

Equus sp. has been present for millions of years, before the diver-

gence of Equus caballus, Equus przewalski, Equus grevi, and Equus

asinus, and suggests a unique mechanism for myoplasmic Ca2+ regu-

lation in the horse.44

A selection advantage for RER is suggested by the fact that STD

horses with RER have faster racing times from a standing start than do

STD without RER and by the high prevalence of RER in STD and TB at

5%-7%.2,3 Small increases in myoplasmic Ca2+ concentration during

muscle relaxation induced by the unique protein sequence of equine

SLN could provide a selection advantage to horses with their superior

athletic capacity by facilitating Ca2+ entry into mitochondria (which

activates ATP production and metabolic processes), activating Ca2+-

dependent signaling pathways important for programming an oxidative

muscle phenotype, and increasing the power of muscle contraction by

initial enhancement of actomyosin force production.45 Whereas slight

increases in myoplasmic Ca2+ could enhance speed and endurance,

excessive increases in myoplasmic Ca2+ lead to persistent myofiber con-

tracture, enhanced reactive oxygen production, activation of proteases,

and myodegeneration.46 Thus, in horses, it is possible that slight alter-

ations in the regulation of myoplasmic Ca2+ result in a fine balance

between enhanced speed on the 1 hand and RER on the other.

The distinctive sequence of equine SLN made it a potential candi-

date gene for RER. However, no differences in SLN coding sequence

were detected among 18 TB, 5 STD, and 6 QH with RER versus con-

trol horses. Coding sequences of MRLN and its inhibitor DWORF also

were evaluated in a small number of horses, but no mutation associ-

ated with RER was identified. Additional resources were not directed

to sequence more horses for MRLN and DWORF, because those RER

horses that were sequenced had repeated episodes of ER of sufficient

concern to submit muscle biopsy samples but no mutations were

found. Multiple causes for RER may exist, some of which may be

breed specific, and individual horses may have mutations in genes that

were not evaluated in our study. However, based on our results, we

propose that there is no high-frequency coding mutation in SERCA

inhibitors SLN or MRLN or the dominant-negative SERCA activator

DWORF in TB, STD, and QH with RER. Sequencing of PLN was not

performed on the horses in our study because PLN had much lower

mRNA expression in skeletal muscle than did SLN and the reference

genomes across species had identical PLN AA sequences. Our results

did not eliminate a PLN mutation as a basis for RER. Previous studies

of RER have failed to identify a single genome-wide significant candi-

date locus for RER, suggesting that multiple genes, strong environ-

mental influences, or both are at play.47,48 The heritability of RER in

TB and STD horses has been estimated at approximately 0.40.49 Envi-

ronmental factors such as sex, diet, fitness, and stress also have been

shown to play important roles in expression of RER.3,49

A previous study of gene expression of RER in gluteal muscle of

4 female and 1 male French STD and 6 male and 4 female control

FIGURE 3 Quantitative real-time polymerase chain reaction for

genes involved in myoplasmic Ca2+ regulation in RER and control
horses stratified by sex and expressed as relative abundance of
transcripts compared to GAPDH and their respective control group
(ΔΔCT). Genes include RYR1 and its regulators FKBP1A and CASQ1 as
well as SERCA (ATP2A1) and its inhibitors SLN, PLN, and MRLN, plus
DWORF which displaces the SERCA inhibitors. Asterisks indicate
difference for FKBP1A at P = .01 and CASQ1 at P = .05. ATP2A1,
gene encoding sarcoplasmic reticulum calcium transporting ATPase;
CASQ1, calsequestrin; DWORF, dwarf open reading frame; FKBP1A,
calstabin; GAPDH, glyceraldehyde phosphate dehydrogenase; MRLN,
myoregulin; PLN, phospholamban; RER, recurrent exertional
rhabdomyolysis; RYR1, calcium release channel; SERCA, sarcoplasmic
reticulum calcium transporting ATPase; SLN, sarcolipin
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STD horses was performed using a mouse-equine microarray.50 In

contrast to the present study, muscle biopsy specimens were taken

within 24 hours of an episode of ER. The previous study found that

gene transcripts involved in muscle fiber Ca2+ homeostasis were mod-

ulated in a way that could increase myoplasmic Ca2+ concentration

with down-regulation of ATP2A1, RYR1, and several other genes

impacting myoplasmic, SR, or mitochondrial Ca2+ load (SLC8A1, UCP2,

ANXA6). The SLN and CASQ1 genes were not included in the array,

and ATP2A1 was found to be upregulated in the same samples using

qRT-PCR. These results are difficult to compare with our study espe-

cially because they were not stratified according to sex and because

the 2 studies sampled RER muscle at different times: between epi-

sodes versus within 1 day of an ER episode.

A sex bias exists for the expression of RER with males being less

prone to RER than females.3,4 It is noteworthy that sex-specific differ-

ences in Ca2+ regulatory gene expression were found in RER horses in

our study. For example, RER males had lower expression of CASQ1

than did RER females (P = .05) and control females (P < .001). A sex

effect of CASQ1 expression and muscle disease is seen in murine

models in which male CASQ1-null mice developed fatal stress-induced

malignant hyperthermic-like reactions, whereas female CASQ1-null

mice were protected.51,52 Calsequestrin is integral in regulating RYR1

Ca2+ release and is the principal Ca2+ binding protein in the SR (50-80

Ca2+ ions bound per molecule CASQ1) during the contraction/relaxa-

tion cycle when Ca2+concentrations are ≥1 mM.53

The gene FKBP1A encodes calstabin which, when bound to RYR1,

stabilizes the channel and in resting muscle decreases Ca2+ leak. The

RER males had significantly higher expression of FKBP1 than control

males. If gene expression translates to protein expression, our results

suggest that an adaptation toward lower myoplasmic Ca2+ concentra-

tion exists in RER males, whereby Ca2+ efflux through RYR1 is

decreased by increased FKBP1A. The finding of altered FKBP1A and

CASQ1 expression in RER horses in our study is novel and clinically

important because of the major roles FKBP1A and CASQ1 play in reg-

ulating RYR1 and excitation-contraction coupling.51,53

Altered expression of genes or proteins involved in myoplasmic

Ca2+ regulation do not necessarily imply that these genes or proteins

have a primary role in causing RER. Abnormal increases in myoplasmic

Ca2+ can be a result both of primary defects in intramuscular Ca2+ reg-

ulation as well as secondary consequences of a loss of myofiber struc-

tural integrity from varied causes.46 For example, diverse diseases

such as dysferlinopathies, α-tocopherol deficiency, myotonic dystro-

phy, and dynamin-dependent centronuclear myopathy all result in

increased expression of SLN in skeletal muscle.54–56 In addition, mice with

dystrophin-deficient muscular dystrophy (mdx model) have increased

CASQ1 expression in quadriceps muscle and abnormally high expression

of SLN protein that correlates with decreased maximum velocity of SR

Ca2+ uptake.57 Thus, altered CASQ1 or FKBP1A expression in RER could

support either an adaptation induced by a primary defect in Ca2+ regula-

tion or a secondary role of myoplasmic Ca2+ in generating RER.

It was not possible in our study to standardize the time interval

between an episode of ER and when the muscle biopsy specimen was

obtained for gene expression analysis. We therefore selected horses

with modest increases in CK activity (median, 251 U/L; maximum,

8453 U/L) to prevent muscle cell damage from being the primary

driver of altered gene expression. A weakness of our study was that

SLN gene expression was evaluated without measurement of SLN pro-

tein expression. Examination of SLN protein content presented chal-

lenges because commercially available antibodies to SLN did not

recognize the unique sequence of equine SLN (personal observation).

Further experiments using a customized anti-horse-SLN antibody would

be necessary to correlate SLN gene and protein expression. The notable

RER sex-specific difference in CASQ1 and FKBP1A expression was an

unexpected finding in our study, and further experiments are needed to

examine their impact on RER in males and females.

In conclusion, our results show that the Equus species has a novel

SLN AA sequence with the potential for unique regulation of the Ca2+

affinity of SERCA. In the horses studied, mutations in the coding

sequences of SLN, MRLN, or DWORF were not identified in TB, STD,

or QH horses with RER. Differential expression of RYR1 regulators

FKPB1A and CASQ1 in RER males suggests that genesis of RER could

be impacted by a sex-specific alteration in myoplasmic Ca2+ regulation.
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