
https://doi.org/10.1177/1176934317724764

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 13: 1–10
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1176934317724764

Introduction
High-end graphics processing units (GPUs), such as NVIDIA
Tesla/Fermi/Kepler series cards, became very popular for high-
performance computing fields in a decade. Many desktop GPU
cards contain up to thousands of cores per chip, for example, a
NVIDIA Tesla K80 GPU card has 4992 Compute Unified
Device Architecture (CUDA) cores (belong to Kepler GPUs).
They contain massive multithreaded processors and can be exe-
cuted concurrently to fully use the GPU computing power.
However, these desktop GPU cards should be installed in per-
sonal computers/servers with desktop CPUs. The cost and
power consumption of constructing a GPU cluster platform
with these desktop CPUs and GPU cards are very high. For
example, it may spend more than $10 000 to buy a personal
computer with a NVIDIA Tesla K80 GPU card and a kilowatt-
class power supplier. Therefore, for most of the research insti-
tutes, it is hard to construct a GPU cluster platform based on
personal computers/servers with multiple desktop GPU cards.

Jetson Tegra K1 (TK1) released by NVIDIA is a full-fea-
tured platform for embedded applications and it contains 4
ARM Cortex-A15 CPUs, 192 CUDA Cores (belong to Kepler
GPUs), and 2 image signal processing cores. The cost of a sin-
gle TK1 is less than $300 and its power consumption is about
tens of watts by the tests.1 Moreover, TK1 has several advan-
tages, such as the low cost, low power consumption and high

applicability, by comparing with other embedded platforms,2,3
desktop CPUs,1,4 and desktop GPU cards.4 For example,
Wolfer3 presented the results that a single TK1 outperforms a
Raspberry Pi Model in terms of time and speedup ratios;
Paolucci et al1 proved that the dual-socket node connected by
TK1s achieves 14.4 times better than that by SuperMicro
server with Intel XEON E5620 CPUs for the power consump-
tion; and Fu et al4 showed the results that the power efficiency
and cost efficiency by a single TK1 are both better than those
by an Intel i7-3770 CPU and a NVIDIA GTX 690 GPU card.
Hence, it becomes a new research direction to study TK1s in
several specific applications, such as the surveillance, bioinfor-
matics, and image processing.

Compute Unified Device Architecture5 could access GPUs
as a graphic Application Programming Interface and has made
the supercomputing available to the mass. In the past, many
parallel algorithms, programs, and tools have been developed
using CUDA based on desktop GPU cards. For example, in the
bioinformatics field, several CUDA-based tools, such as
MUMmerGPU,6 CUDA-MEME,7 and CUDA-BLASTP,8
have been proposed. ClustalW9 is a well-known multiple
sequence alignment tool, which is used to align a set of
sequences by repeatedly (or called progressively) aligning pairs
of sequences and previously generated alignments according to

Embedded-Based Graphics Processing Unit Cluster
Platform for Multiple Sequence Alignments

Jyh-Da Wei1,2, Hui-Jun Cheng1, Chun-Yuan Lin1, Jin Ye1

and Kuan-Yu Yeh1

1Department of Computer Science and Information Engineering, School of Electrical and
Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.
2Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan.

ABSTRACT: High-end graphics processing units (GPUs), such as NVIDIA Tesla/Fermi/Kepler series cards with thousands of cores per chip, are
widely applied to high-performance computing fields in a decade. These desktop GPU cards should be installed in personal computers/servers
with desktop CPUs, and the cost and power consumption of constructing a GPU cluster platform are very high. In recent years, NVIDIA releases
an embedded board, called Jetson Tegra K1 (TK1), which contains 4 ARM Cortex-A15 CPUs and 192 Compute Unified Device Architecture
cores (belong to Kepler GPUs). Jetson Tegra K1 has several advantages, such as the low cost, low power consumption, and high applicability,
and it has been applied into several specific applications. In our previous work, a bioinformatics platform with a single TK1 (STK platform) was
constructed, and this previous work is also used to prove that the Web and mobile services can be implemented in the STK platform with a
good cost-performance ratio by comparing a STK platform with the desktop CPU and GPU. In this work, an embedded-based GPU cluster
platform will be constructed with multiple TK1s (MTK platform). Complex system installation and setup are necessary procedures at first. Then,
2 job assignment modes are designed for the MTK platform to provide services for users. Finally, ClustalW v2.0.11 and ClustalWtk will be ported
to the MTK platform. The experimental results showed that the speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk,
respectively, by comparing 6 TK1s with a single TK1. The MTK platform is proven to be useful for multiple sequence alignments.

KEywoRdS: NVIDIA Jetson TK1, CUDA, multiple sequence alignment, parallel processing, cluster

RECEIVEd: May 10, 2017. ACCEPTEd: July 12, 2017.

PEER REVIEw: Two peer reviewers contributed to the peer review report. Reviewers’
reports totaled 134 words, excluding any confidential comments to the academic editor.

TyPE: Original Research

FUndInG: The author(s) disclosed receipt of the following financial support for the
research, authorship, and/or publication of this article: Part of this work was supported by
the Ministry of Science and Technology under the grant MOST105-2221-E-182-067.

dEClARATIon oF ConFlICTInG InTERESTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CoRRESPondInG AUTHoR: Chun-Yuan Lin, Department of Computer Science and
Information Engineering, School of Electrical and Computer Engineering, College of
Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Email: cyulin@mail.cgu.
edu.tw

724764 EVB0010.1177/1176934317724764Evolutionary BioinformaticsWei et al
research-article2017

https://uk.sagepub.com/en-gb/journals-permissions
mailto:cyulin@mail.cgu.edu.tw
mailto:cyulin@mail.cgu.edu.tw

2 Evolutionary Bioinformatics

the orders in a phylogenetic (or called guide) tree. In our previ-
ous work,10 a CUDA version of ClustalW v2.0.11, called
CUDA ClustalW v1.0, has been proposed using the intratask
parallelization11 on a single-GPU or multiple-GPU card(s).
For the overall execution time, CUDA ClustalW v1.0 based on
a single NVIDIA Tesla C2050 GPU card can achieve more
than 33 times speedup ratio by comparing with ClustalW
v2.0.11 based on an Intel XEON X5550 CPU.

In our previous work,12 we have constructed a mobility and
acceleration computing platform for the bioinformatics field
based on a single TK1 (STK platform). Because there is no
famous or automatics install package designed for a single
TK1, many preparation procedures should be done before
using the computing power of the STK platform, such as the
refresh system image, setup network, and install necessary soft-
ware. After that, CUDA ClustalW v1.0 tool was ported to the
STK platform, called ClustalWtk, by recompiling the source
codes of CUDA ClustalW v1.0 and replacing several functions
used in the ARM CPU instead of the Intel CPU. ClustalW
v2.0.11 was also ported to the STK platform by a similar way
to compare it with ClustalWtk. ClustalWtk based on the STK
platform can achieve 3 times speedup ratio by comparing with
ClustalW v2.0.11 based on an Intel XEON E5-2650 CPU;
ClustalWtk based on the STK platform can achieve 4 times
speedup ratio by comparing with ClustalW v2.0.11 based on
an ARM Cortex-A15 CPU. In addition, for ClustalWtk, the
cost-performance ratio by the STK platform is higher than
that by a NVIDIA Tesla K20 GPU card. The Web and mobile
services for ClustalWtk with user-friendly interfaces also were
provided in our previous work.

However, the computing power of the STK platform still is
limited and not good enough. For example, in the experimental
tests,12 the execution time by ClustalWtk on the STK platform
is 5 times than that by CUDA ClustalW v1.0 on a NVIDIA
Tesla K20 GPU card although the number of CUDA cores on
a NVIDIA Tesla K20 GPU card is 13 times than that on a
single TK1. Therefore, in this article, an embedded-based
GPU cluster platform is constructed based on multiple TK1s
(MTK platform). There are 2 advantages of constructing the
MTK platform. The first one is to enhance the computing
power of STK platform, even equal to that of a desktop GPU
card. The second one is to reduce the construction cost of a
GPU cluster by comparing that with desktop GPU cards.

The construction of MTK platform can be separated into 2
parts: hardware and software. In the hardware part, multiple
TK1s and a 100-MB router should be installed and set up. For
the software part, there are 3 phases should be done, including
the single TK1 setup, multiple TK1s setup, and the job assign-
ment mode design. The single TK1 setup phase is similar to
the system setting up part in our previous work.12 After this
phase, the multiple TK1s should be managed using the “mas-
ter-slave” model in the multiple TK1s setup phase. However,
still there is no famous or automatic install package designed

for multiple TK1s. Hence, the master-slave model of multiple
TK1s is built by setting the network environment and the file
system. For a cluster platform as the MTK platform, many
computations (or called tasks) could be assigned to various
computing units (CPUs or GPUs) by a task schedule tool to
enhance the throughput. In the job assignment mode design
phase, 2 job assignment modes, one is “user selected” mode and
another is “automatic assigned” mode, are designed in the
MTK platform. The user can assign the task(s) to a specific
TK1 using the user selected mode, whereas all the tasks can be
assigned evenly and automatically to multiple TK1s using the
automatic assigned mode. To evaluate the MTK platform, both
ClustalW v2.0.11 and ClustalWtk are ported to the MTK
platform, and then the experimental results showed that the
speedup ratios achieved 5.5 and 4.8 times for ClustalW v2.0.11
and ClustalWtk, respectively, by comparing 6 TK1s with a sin-
gle TK1. The MTK platform is proven to be useful for multi-
ple sequence alignments.

The rest of this article is organized as follows. Preliminary
concepts used in this article are introduced in section
“Preliminary Concepts.” Section “Platform Construction” pre-
sents the details of constructing the MTK platform. Platform
implementation and experimental results are given in section
“Experimental Results.” Conclusions are drawn in section
“Conclusions.”

Preliminary Concepts
ClustalW and ClustalWtk

ClustalW9 is a progressive multiple sequence alignment tool
and 3 steps are involved in it, including the distance matrix
calculation, guide tree creation, and progressive alignment. In
the first step “distance matrix calculation,” each pair of biologi-
cal sequences are used to calculate the similarity score by a
pairwise alignment algorithm, such as Needleman and Wunsch
algorithm,13 and then these similarity scores are formed as a
distance matrix for all biological sequences. When aligning m
biological sequences with an equal length of n by ClustalW,
m2/2 pairwise alignments should be done, and then, the total
time complexity is up to O(m2n2). Therefore, the computation
time of the first step occupied most of overall execution time by
ClustalW.14 In the second step “guide tree creation,” a guide
tree is built from the distance matrix calculated in the first step
using a phylogenetic tree construction algorithm, such as the
unweighted pair group method with arithmetic mean.15 The
orders of following third step are determined by the guide tree
built in the second step. In the third step “progressive align-
ment,” each pairwise alignment result is generated by a pair-
wise alignment algorithm according to the orders in the guide
tree at first, and then, it is combined with the previously gener-
ated alignments. In our previous work,12 ClustalW v2.0.11 was
ported and executed in the STK platform.

ClustalWtk12 is modified from CUDA ClustalW v1.010
and also can be executed in the STK platform. In ClustalWtk,

Wei et al 3

the step “distance matrix calculation” is implemented on
Kepler GPUs, and several optimization methods were
designed to enhance the performance by ClustalWtk. Other
steps “guide tree creation” and “progressive alignment” are
implemented on ARM Cortex-A15 CPUs. For m biological
sequences, ClustalWtk used the intratask parallelization to
assign each pairwise alignment to a thread block. In a thread
block, a pairwise alignment is implemented by the type
“Synchronous Diagonal Multiple Threads” defined by Lin
and Lin.16 In addition, for ClustalWtk, several optimization
methods, such as the load-balancing strategy and memory
allocation, were also designed for the distance matrix calcula-
tion step. The details of implementation of ClustalWtk can
be found in our previous work.10,12 However, there are several
errors, and system environment should be corrected and set
up when ClustalWtk is compiled on the STK platform.
Moreover, the performance by ClustalWtk on the STK plat-
form could be tuned to obtain the best computing ability. The
details of program porting and performance tuning for
ClustalWtk also can be found in our previous work.12

Asynchronous JavaScript and XML

Asynchronous JavaScript and XML (AJAX) is a combination
technique of Web site development technologies. The tradi-
tional Web application will send a request (with a transmitted
data) to the Web server after the user completes the required
form. The Web server will receive and process the transmitted
data and then will send back a new Web page for the Web appli-
cation. This way will waste a lot of network bandwidth and time.
Asynchronous JavaScript and XML was proposed by Jesse James
Garrett.17 The difference between AJAX and a traditional Web
site technology is that AJAX can only send the necessary infor-
mation (for a request) to the Web server and use JavaScript in
the front-end interface to deal with the server response without
a new Web page. The need for the network bandwidth is reduced
significantly, and the server response time is shorter than that by
the traditional Web site technology. Therefore, many tasks can
be done on the user equipment by AJAX, and it provides a better
user experience to speed up the processing time. Browserscope18
is a well-known community-driven project for profiling Web
browsers. In Browserscope, the network performance for each
Web browser is listed, and we can find that the maximal number
of connections, which means that each Web browser connects to
the server with same host name, is limited to 6 to 8. Asynchronous
JavaScript and XML can simultaneously perform multiple asyn-
chronous data transmission; hence, in this article, AJAX is used
to design the application interface and execute the commands on
the background among multiple TK1s.

Network Address Translation

Network Address Translation (NAT)19 is a technique of rewrit-
ing the source or destination IP address when an IP packet

passes through a router or firewall. Network Address
Translation can solve the shortage problem of IPv4 address and
avoid the difficulty of keeping IP addresses. Network Address
Translation is widely used in multiple hosts but only has 1
entity IP (or called public IP) address. To access the Internet in
a private network, it can set the IP addresses of multiple hosts
to private IP addresses and then connect them to the Internet
via an NAT server (or router) with a public IP address. Network
Address Translation has been widely used in home routers and
its main feature is to build a subnetwork. When a packet in a
subnetwork needs to be sent to an external network, it must be
converted via an NAT router; similarly, a package in an external
network must also be converted via an NAT router to reach the
hosts within a subnetwork. In this article, the MTK platform
consisted of multiple TK1s, and NAT is a necessary technique
to confirm that all the TK1s are set up in the same domain, and
each TK1 will receive a specified private IP address.

Network File System

Network File System (NFS) is a distributed file system pro-
tocol and originally developed by Sun Microsystems.20
Network File System allows users to access (or share) the files
on various machines or operating systems through the net-
work as a file server. Network File System is an open standard
defined in “Request for Comments” (RFC)21 now, and RFC
allows anyone to implement this protocol. In this article, NFS
is used to access files in the MTK platform by each TK1. All
the resources (or files) are put in the shared folder of “Master”
TK1. Other “Slave” TK1s can access these files through NFS
(see section “Setting NFS”).

Secure Shell Protocol

Secure Shell Protocol (SSH) is formulated by IETF’s Network
Working Group.22 In the traditional delivery technique in a
network, it did not have the password to deliver files and
accounts, so it can be attacked easily. Secure Shell Protocol is a
security agreement based on the application layer and transport
layer of network protocol and allows users to login other com-
puter host through the network remote operation. When using
SSH login, each host should enter the account number and its
corresponding password. However, the password can be omit-
ted when the technology “ssh-keygen” is used. The key genera-
tor will create a public key to corresponding private key and
then the user can do the login without the password. In this
article, the technology “ssh-keygen” is used to allow users to
login each TK1 more conveniently. Secure Shell Protocol also
encrypts and compresses all transmitted data as a packet and
then delivers the packet to the network. Therefore, SSH can
prevent network information security issues, such as the DNS
spoofing and man-in-the-middle eavesdropping. In addition,
the compressed transmitted data will increase the transmission
speed. OpenSSH is a famous open-source free software, and it

4 Evolutionary Bioinformatics

is a default installation in a single TK1. In this article, OpenSSH
is used for the communications among multiple TK1s.

Platform Construction
In this article, the MTK platform is constructed based on mul-
tiple TK1s, and the construction of MTK platform can be sepa-
rated into 2 parts: hardware and software. In the hardware part,
there are 7 TK1s and a 100-Mb router is installed and set up in
the MTK platform. The router should support the NAT tech-
nique, and it is used to connect these 7 TK1s. Each TK1 receives
a specified private IP address from the router, and 1 of 7 TK1s
is set up as a “Master,” each of others (6 TK1s) is set up as a
“Slave” (or called Client). In the MTK platform, the Master
TK1 is used to manage the Slave TK1s and the Slave TK1s are
used to do the computations. For the software part, there are 3
phases, including the single TK1 setup, multiple TK1s setup,
and the job assignment mode design. The details of implemen-
tation of each phase will be described in the following sections.

Single TK1 setup phase

In this phase, there are 3 steps: (1) operating system installa-
tion, (2) internet connection setting, and (3) compile environ-
ment setting. In the first step “operating system installation,”
the system image and device driver for “Linux for Tegra” (L4T)
R21.1 are downloaded from NVIDIA Developer Zone23 (now
for an updated version R21.2). After device driver is decom-
pressed, the system image should be placed in the child direc-
tory “rootfs” at first. Then, the file “apply_binaries.sh” should be
executed. A micro USB cable is connected between a single
TK1 and a Linux PC host. When a single TK1 has successfully
connected with a Linux PC host, the command “sudo ./flash.sh
-S 14580MiB jetson-tk1 mmcblk0p1” is executed, and then,
the default account and password are used to login the L4T. A
single TK1 can be operated directly or remotely. Hence, the
keyboard, mouse, and HDMI screen can be used when they are
connected directly to a single TK1 or using the OpenSSH ser-
vice after the Internet connection is set up. Because L4T oper-
ating system is modified based on Ubuntu 14.04, the system
settings of L4T are the same as those of Ubuntu 14.04. For the
second step “Internet connection setting,” it can modify the

network parameter settings file placed in the directory “/etc/
network/interfaces” and then execute the command “sudo
ifdown -a && sudo ifup –a” to reload the network parameter
settings file, as shown in Figure 1. In the third step “compile
environment setting,” several files, tools, and modules should
be installed in a single TK1. For example, the version of CUDA
6.5 should be installed on a single TK1; Gcc, G++, Apache,
PHP, mail server, and Qt4 may be installed in a single TK1
according to the application requirements. Due to the descrip-
tions of this step are similar to those illustrated in our previous
work,12 the details of this step are omitted in this article.

Multiple TK1s setup phase

After the first phase to set up each TK1, the next step is to
manage multiple TK1s using the “master-slave” model in
the second phase “multiple TK1s setup.” However, still there
is no famous or automatic install package designed for mul-
tiple TK1s. Hence, this phase can be separated into 3 steps,
including (1) setting SSH, (2) setting subnetwork, and (3)
setting NFS. In the following sections, these 3 steps are
described in detail.

Setting SSH. As mentioned in section “Secure Shell Protocol,”
it will be more convenient to let the Master TK1 login into
other Slave TK1s without the password. This way is also useful
for the design of “automatic assigned” mode illustrated in sec-
tion “Job assignment mode design phase.” The goal in this step
is to generate a pair of public key (defined as id_rsa.pub) and
private key (defined as id_rsa) using the RSA method at first.
Then, the private key is stored in the Master TK1, and the
public key is copied to each Slave TK1. Finally, a verification
file (defined as authorized_keys) is generated with the public
key for each Slave TK1.

The details of implementation actions are described below:

•• Action 1. Generate a pair of public key (id_rsa.pub) and
private key (id_rsa) in the Master TK1 using the com-
mand “ssh-keygen-t rsa.” The default settings are used.

•• Action 2. Add the public key from the Master TK1 into
each Slave TK1. For example, it can be done using the

Figure 1. The format of network parameter settings file.

Wei et al 5

command “scp ~/.ssh/id_rsa.pub node2:~/.ssh/” to add
the public key into a the directory “ ~/.ssh/” of a Slave
TK1 (defined as a “node2” in section “Setting
subnetwork”).

•• Action 3. Create a verification file “authorized_keys” in
each Slave TK1 by using the command “touch ~/.ssh/
authorized_key.”

•• Action 4. Add the public key (id_rsa.pub) to the verifi-
cation file “authorized_keys” in each Slave TK1 using
the command “cat ~/.ssh/id_rsa.pub >> ~/.ssh/
authorized_keys.”

Setting subnetwork. As mentioned in section “Network
Address Translation,” multiple TK1s can be connected as a
subnetwork using an NAT router. There are 2 ways to do this
step. The first one is to set up the Master TK1 with a public IP
address and a private IP address and only to set up each Slave
TK1 with a private IP address. By this way, the Master TK1
can be communicated with the Internet (or user) and each
Slave TK1. Another way is only to set up the Master TK1 and
Slave TK1s with private IP addresses and then to set up the

Master TK1 as the DMZ (Demilitarized Zone) by an NAT
router. By this way, the packet in the Internet (or user) only can
be sent to the Master TK1 through an NAT router. The archi-
tecture diagrams of these 2 ways are shown in Figure 2. In
addition, the names, “node1,” “node2,” and etc, are also used for
the Master TK1 (as a “node1”) and Slave TK1s (as the “node2”
to “node7”) to identify them easily. These private IP addresses
and names of the Master TK1 and Slave TK1s are added into
the file “/etc/hosts” copied in each TK1.

The details of implementation actions are described below:

•• Action 1. Login into each TK1 (Master and Slave) to get
its corresponding IP address using the command “ifcon-
fig eth0.”

•• Action 2. Add the IP address and name of each TK1 into
a file “/etc/hosts.” In the Master TK1, the file “/etc/hosts”
is edited by the command “sudo vim/etc/hosts” with the
role of administrator “root.” In the Slave TK1, the file “/
etc/hosts” is also edited as that in the Master TK1. In the
file “/etc/hosts,” all the IP addresses and names obtained
from each TK1 are added.

Figure 2. Architecture diagrams of setting subnetwork: (A) public IP + private IP and (B) private IP + NAT. NAT indicates Network Address Translation.

6 Evolutionary Bioinformatics

Setting NFS. As mentioned in section “Network File System,”
the files placed in the Master TK1 can be accessed by the Slave
TK1s through the NFS protocol. The goal in this step is to
install the NFS protocol into the Master TK1 (as a server) and
each Slave TK1 (as a client) at first. Then, a shared folder
(defined as “/mirror”) is created by the Master TK1. Finally,
this shared folder can be accessed by other Slave TK1s.

The details of implementation actions are described below:

•• Action 1. Install the NFS protocol in the Master TK1
using the command “sudo apt-get install nfs-server.”

•• Action 2. Install the “nfs-common” in each Slave TK1
using the command “sudo apt-get install nfs-common.”

•• Action 3. Set the shared folder “/mirror” of Master TK1
using the command “echo “/mirror*(rw,sync)” | sudo tee
-a/etc/exports.”

•• Action 4. Create a folder “/mirror” in each Slave TK1
using the command “sudo mkdir/mirror.”

•• Action 5. Mount the shared folder “/mirror” of Master
TK1 for each Slave TK1 using the command “sudo
mount node1:/mirror/mirror.” When this step is done
successfully, each file in the shared folder of Master TK1
will be listed in the folder of each Slave TK1.

Job assignment mode design phase

After the above 2 phases, the MTK platform has been con-
structed based on multiple TK1s. However, for a cluster platform
as the MTK platform, many computations (or called tasks) could
be assigned to various computing units (CPUs or GPUs) by a
task schedule tool to enhance the throughput. Unfortunately,
there is no famous task schedule tool designed for multiple TK1s.
Hence, in this article, 2 job assignment modes have been designed
for the MTK platform using the Web site form and JavaScript
according to the user’s requirements. For the Web site design, sev-
eral computer languages and techniques, such as HTML, PHP,
jQuery, and AJAX, are also used. In the Web site, we can use the
“jquery file upload plugin” to upload the files (tasks). The open-
source code for this plugin can be found in the GitHub (https://
github.com/). After that, the user can assign tasks to Slave TK1s
according to the job assignment mode. The first job assignment
mode, called “user selected,” is a simple method to assign the
task(s) to a specific Slave TK1 by the user. After selecting the
specific Slave TK1, AJAX as mentioned in section “Asynchronous
JavaScript and XML” will execute the command and call PHP to
do the SSH2 connection. SSH2 will connect to a selected Slave
TK1 and then the tasks are executed in it.

Another job assignment mode, called “automatic assigned,”
is a rule-based task schedule method (without the load-balanc-
ing strategy now) to check the number of tasks and the number
of computing units (TK1s). Because the maximal number of
connections for various Web browsers is limited in 6 to 8, the
number of tasks per round is set up to 6 in this article. When
the user assigns tasks to Slave TK1s according to the automatic

assigned mode, the Master TK1 will execute the automatic
assign method to assign a task to a Slave TK1 (6 Slave TK1s in
the MTK platform) under the restriction (6 tasks per round).
When the number of tasks is less than 6, all the tasks can be
assigned to Slave TK1s in a round. When the number of tasks
is larger than 6, the first 6 tasks will be assigned to 6 Slave
TK1s at first and then 1 of the reminder tasks will be assigned
to a Slave TK1 when the previous assigned task in it is com-
pleted. Until all the tasks are completed, the process of auto-
matic assign method in the Master TK1 will be stopped. The
pseudocode of automatic assigned method is listed below.

AUTOMATIC ASSIGNED METHOD

Function AssignWorks

/* JavaScript of scheduling works automatically */

Input: file_list, device

output: .aln file

device ← device or NULL

if file_list.length > 0 then

 if device = NULL then

 if file_list.length > 6 then

 pool ← 6

 else

 pool ← file_list.length

 end if

 for i ← 0 to pool do

 work ← file_list.pop()

 /* AJAX to PHP */

 /* PHP connects to Slave TK1 through SSH */

 /* execute work and get output .aln file */

 AssignWorks (file_list, device)//after work finished, recall
AssignWork

 end for

 else

 work ← file_list.pop()

 /* AJAX to PHP */

 /* PHP connects to Slave TK1 through SSH */

 /* execute work and get output .aln file */

 AssignWorks (file_list, device)//after work finished, recall
AssignWork

 end if

else

 /* move file back to web service folder */

end if

https://github.com/
https://github.com/

Wei et al 7

In the automatic assigned method, a queue (defined as
“file_list”) is used to extract (or called pop) the tasks using the
“First In First Out” rule. When the automatic assigned
method is executed, the function “AssignWorks” will be called,

and the AJAX will execute the command and call PHP to do
the SSH2 connection. SSH2 will connect to Slave TK1s and
then the tasks are executed in them. When a task in a Slave
TK1 is completed, the callback function of AJAX will be used

Figure 3. The schematic diagram of calling AJAX, PHP, and SSH in the MTK platform. AJAX indicates Asynchronous JavaScript and XML; SSH, Secure

Shell protocol.

Figure 4. The flowchart of automatic assigned method.

8 Evolutionary Bioinformatics

to call the function “AssignWorks” again to do the assign-
ments until all the tasks are completed. When applying the
automatic assigned method for ClustalWtk, the schematic
diagram of calling AJAX, PHP, and SSH in the MTK plat-
form is shown in Figure 3, and the flowchart of automatic
assigned method is shown in Figure 4.

Experimental Results
In this article, the MTK platform was constructed based on 7
TK1s (1 for the Master TK1 and others for Slave TK1s) and a
100-MB NAT router. To evaluate the MTK platform,
ClustalW v2.0.11 and ClustalWtk were both ported and then
used to do the experimental tests. As mentioned in section “Job
assignment mode design phase,” 2 job assignment modes have
been designed for the MTK platform in this article, and for
each job assignment mode, it is implemented in a Web site,
built using HTML, PHP, jQuery, and AJAX, with ClustalW
v2.0.11 and ClustalWtk. For the MTK platform, the tasks are
used to do the multiple sequence alignments for biological
sequences. The test protein sequences10 were downloaded from
the National Center for Biotechnology Information Web site
(www.ncbi.nlm.nih.gov/), and these sequences can be classified
into 8 test sets: (t1) 100 sequences with length of 97, (t2) 100
sequences with length of 498, (t3) 100 sequences with length of
1002, (t4) 100 sequences with length of 1523, (t5) 1000

sequences with length of 97, (t6) 1000 sequences with length of
498, (t7) 1000 sequences with length of 1002, and (t8) 1000
sequences with length of 1523.

For the user selected mode, the Web site with ClustalW
v2.0.11 and ClustalWtk was shown in Figure 5. In Figure 5,
the user can upload a test set to the Web site at first. Then, the
user can select ClustalW v2.0.11 (run on CPU) or ClustalWtk
(run on GPU) to do the multiple sequence alignment for the
uploaded test set. When selecting ClustalW v2.0.11, it will be
executed by an ARM Cortex-A15 CPU of a specific TK1;
when selecting ClustalWtk, it will be executed by the Kepler
GPUs of a specific TK1. Finally, the user can select 1 of the 7
TK1s to do the task. The alignment result will be stored as a
text file and then the user can open this file to see the result.

For the automatic assigned mode, the Web site with
ClustalW v2.0.11 and ClustalWtk was shown in Figure 6. In
Figure 6, the user can upload more than one of the test sets to
the Web site at first. After uploading the test sets, the Web site
will create a list with all the tasks; each task has a task name and
original file name (.fsa file). Then, the user can select ClustalW
v2.0.11 (run on CPU) or ClustalWtk (run on GPU) to do the
multiple sequence alignments for all the uploaded test sets.
When selecting ClustalW v2.0.11, it will be executed by an
ARM Cortex-A15 CPU of each Slave TK1; when selecting
ClustalWtk, it will be executed by the Kepler GPUs of each

Figure 5. The Web site with ClustalW v2.0.11 and ClustalWtk using the user selected mode.

www.ncbi.nlm.nih.gov/

Wei et al 9

Slave TK1. Finally, the Master TK1 will execute the automatic
assign method to assign tasks to 6 Slave TK1s. When a task is
assigned to a Slave TK1 with a running state or a task is in a
waiting state, this task can be stopped and deleted by the user.
After a task is completed, it will be removed from the list shown
in the Web site. When all the tasks are completed, the Web site
will create a list with all of tasks; each task has a task name and
a file name with the alignment result (.aln file). The user also
can open this file to see the result.

For the automatic assigned mode, a test was also done to
evaluate the MTK platform in this article. In this test, for 8 test
sets, each test set is divided into 6 equal parts at first. Then, for
each test set, each part can be seen as a task and all the 6 parts

(as 6 tasks) are uploaded to the Web site to be executed concur-
rently by ClustalW v2.0.11 or ClustalWtk (the MTK plat-
form). In addition, for each test set, all the 6 parts also are
executed one by one by ClustalW v2.0.11 or ClustalWtk on
the STK platform. The execution time (unit: second, repre-
sented by log10) by ClustalW v2.0.11 and ClustalWtk based on
the STK and MTK platforms is shown in Figure 7, respec-
tively. In Figure 7, the “Cluster(CPU)” and “Cluster(GPU)”
mean that ClustalW v2.0.11 and ClustalWtk are executed on 6
Slave TK1s, respectively (the MTK platform); similarly,
“Single(CPU)” and “Single(GPU)” mean that ClustalW
v2.0.11 and ClustalWtk are executed on a single TK1, respec-
tively (the STK platform). When comparing the MTK

Figure 6. The Web site with ClustalW v2.0.11 and ClustalWtk using the automatic assigned mode.

Figure 7. The execution time by ClustalW v2.0.11 and ClustalWtk based on the STK and MTK platforms.

10 Evolutionary Bioinformatics

platform with the STK platform, from Figure 7, for 8 test sets,
we can see that the execution time by ClustalW v2.0.11 and
ClustalWtk on the MTK platform is less than that on the STK
platform. The speedup ratios achieved 5.5 and 4.8 times for
ClustalW v2.0.11 and ClustalWtk, respectively, by comparing
the MTK platform with the STK platform. Because more
extra computations in the GPU are needed, the speedup ratio
by ClustalWtk is not larger than that by ClustalW v2.0.11
(only for ARM CPU).

When comparing the computing power by the ARM
Cortex-A15 CPU and Kepler GPUs in the MTK platform,
from Figure 7, we also can see that the execution time by
ClustalW v2.0.11 is less than that by ClustalWtk for the test
sets with small sequence lengths (t1 and t2). The reason is that
the computation costs for these sets are too small and are not
useful for the GPU computing. For other test sets (t3-t8), the
execution time by ClustalWtk is less than that by ClustalW
v2.0.11. For test set t8 with a large sequence length, the speedup
ratio can achieve 4.4 times by comparing ClustalWtk with
ClustalW v2.0.11 on the MTK platform.

Conclusions
In this article, the MTK platform was constructed based on
multiple TK1s to enhance the computing power of the STK
platform and reduce the construction cost of a GPU cluster.
The details of system installation and setup were presented in
this article. Moreover, 2 job assignment modes, user selected
and automatic assigned, were designed in the MTK platform.
ClustalW v2.0.11 and ClustalWtk were both ported in the
MTK platform, and these 2 tools were used to evaluate the
performance of the MTK platform with the automatic assigned
mode. By the experimental results, the speedup ratios achieved
5.5 and 4.8 times for ClustalW v2.0.11 and ClustalWtk,
respectively, by comparing the MTK platform with the STK
platform. Besides, the speedup ratio can achieve 4.4 times by
comparing ClustalWtk with ClustalW v2.0.11 on the MTK
platform. These results are used to prove that the MTK plat-
form is useful for multiple sequence alignments.

Acknowledgements
The authors would like to thank the anonymous reviewers and
experts discussed with them in the past.

Author Contributions
JDW, HJC, and CYL conceived the idea of this manuscript.
HJC, JY, and KYY designed and carried out the experiments.

JDW, CYL, and JY analyzed the data. JDW, HJC, CYL, and
KYY wrote the manuscript. All authors read and approved
the final manuscript.

REfEREnCEs
 1. Paolucci PS, Ammendola R, Biagioni A, et al. Power, energy and speed of em-

bedded and server multi-cores applied to distributed simulation of spiking
neural networks: ARM in NVIDIA Tegra vs Intel Xeon quad-cores, CoRR
abs/1505.03015, 2015.

 2. NVIDIA Jetson TK1 Development Kit. http://www.nvidia.com/object/jetson-
tk1-embedded-dev-kit.html.

 3. Wolfer J. A heterogeneous supercomputer model for high-performance parallel
computing pedagogy. Proceedings of the IEEE Global Engineering Education
Conference; March 18-20, 2015: 799–805; Tallinn. New York: IEEE.

 4. Fu S, Chang R, Couture S, et al. Micromagnetics on high-performance worksta-
tion and mobile computational platforms. J Appl Phys. 2015;117:17E517.

 5. Nickolls J, Buck I, Garland M, et al. Scalable parallel programming with
CUDA. ACM Queue. 2008;6:40–53.

 6. Schatz MC, Trapnell C, Delcher AL, Varshney A. High-throughput sequence
alignment using Graphics Processing Units. BMC Bioinformatics. 2007;8:474.

 7. Liu Y, Schmidt B, Liu W, Maskell DL. CUDA–MEME: accelerating motif dis-
covery in biological sequences using CUDA-enabled graphics processing units.
Pattern Recogn Lett. 2010;31:2170–2177.

 8. Liu W, Schmidt B, Muller-Wittig W. CUDA-BLASTP: accelerating BLASTP
on CUDA-Enabled Graphics Hardware. IEEE/ACM Trans Comput Biol
Bioinform; 2011;8:1678–1684.

 9. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res.
1994;22:4673–4680.

 10. Hung C-L, Lin Y-S, Lin C-Y, Chung Y-C, Chung Y-F. CUDA ClustalW: an ef-
ficient parallel algorithm for progressive multiple sequence alignment on
Multi-GPUs. Comput Biol Chem. 2015;58:62–68.

 11. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman se-
quence database searches for CUDA-enabled graphics processing units. BMC
Res Notes. 2009;2:73.

 12. Lin C-Y, Ye J, Hung C-L, Wang C-H, Su M, Tan J. Constructing a bioinformat-
ics platform with Web and mobile services based on NVIDIA Jetson TK1. Int J
Grid High Perform Comput. 2015;7:57–73.

 13. Needleman SB, Wunsch CD. A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48:443–453.

 14. Li KB. ClustalW-MPI: ClustalW analysis using distributed and parallel com-
puting. Bioinformatics. 2003;19:1585–1586.

 15. Sneath PHA, Sokal RR. Numerical Taxonomy. San Francisco, CA: W.H.
Freeman, 1973.

 16. Lin CY, Lin YS. Efficient parallel algorithm for multiple sequence alignments
with regular expression constraints on graphics processing units. Int J Comput Sci
Eng. 2014;9:11–20.

 17. Ajax: a new approach to web applications. http://adaptivepath.org/ideas/
ajax-new-approach-web-applications/.

 18. Browserscope. http://www.browserscope.org/.
 19. Network Protocols Handbook. 2nd ed. Javvin Technologies Inc., Saratoga,

California, USA; 2005:27.
 20. Sandberg R, Golgberg D, Kleiman S, Walsh D. Design and implementation

of the Sun network file system. Innov Internetworking. Artech House, Inc.
Norwood, MA, USA; 1988:379–390.

 21. Request for Comments. https://www.ietf.org/rfc.html.
 22. The Secure Shell (SSH) Protocol Architecture. https://tools.ietf.org/html/

rfc4251/.
 23. Linux For Tegra R21.1. https://developer.nvidia.com/linux-tegra-rel-21.

http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://www.browserscope.org/
https://www.ietf.org/rfc.html
https://tools.ietf.org/html/rfc4251/
https://tools.ietf.org/html/rfc4251/
https://developer.nvidia.com/linux-tegra-rel-21

