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Bacterial commensal colonization of human skin is vital for the training and maintenance of 
the skin’s innate and adaptive immune functions. In addition to its physical barrier against 
pathogen colonization, the skin expresses a variety of antimicrobial peptides (AMPs) 
which are expressed constitutively and induced in response to pathogenic microbial 
stimuli. These AMPs are differentially effective against a suite of microbial skin colonizers, 
including both bacterial and fungal residents of the skin. We review the breadth of micro-
organism-induced cutaneous AMP expression studies and their complementary findings 
on the efficacy of skin AMPs against different bacterial and fungal species. We suggest 
further directions for skin AMP research based on emerging skin microbiome knowledge 
in an effort to advance our understanding of the nuanced host–microbe balance on 
human skin. Such advances should enable the scientific community to bridge the gap 
between descriptive disease-state AMP studies and experimental single-species in vitro 
studies, thereby enabling research endeavors that more closely mimic the natural skin 
environs.

Keywords: antimicrobial peptides, dermatology, microbial immunology, cathelicidin, human beta defensins, 
psoriasin

inTRODUCTiOn

Human skin is the largest epithelial layer and provides a vast surface area for the interaction between 
the host and environmental factors (1). The skin acts as the first line of defense against physical, 
chemical, and biological challenges (2). The epidermis, or the outermost layer of the skin comprised 
mostly of stratified keratinocytes, is the first to encounter external stimuli and is therefore equipped 
with an arsenal of immune-modulating activities (3). Microbial colonization of the skin, long rec-
ognized as an etiological factor in many skin diseases, has been shown to induce species-specific 
immune responses (3, 4). Antimicrobial peptides (AMPs) are critical elements of the skin’s chemical 
barrier against pathogens due to their antibacterial and immunomodulatory properties (5).

Antimicrobial peptides have been discovered in a wide array of organisms and provide a first-line 
defense mechanism against pathogen colonization. Microbial-induced AMP expression on human 
skin was first reported in 1997 with the discovery of human β-defensin 2 (hBD2), a cationic peptide 
exhibiting broad spectrum antibiotic activity (6), in addition to cathelicidin LL-37 (7, 8). The list of 
skin-associated inducible AMPs has since expanded to include hBD3 (9), psoriasin (also referred 
to as S100A7) (10), and RNase 7 (11) in addition to the constitutively expressed dermcidin (12) 
and hBD1. Most AMP’s carry a cationic charge, thereby allowing them to attach to the anionic 
parts of the bacterial membranes. Once attached, AMP’s then take advantage of their amphipatic 
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structure and disrupt the bacterial membrane by inserting their 
hydrophobic end into the bacterial membrane (13). While all of 
the AMPs listed above are expressed by keratinocytes, hBD2 can 
also be expressed by macrophages and dendritic cells, and LL-37 
can be expressed by macrophages and neutrophils (14, 15). The 
ability of human skin to modulate bacterial colonization through 
the secretion of AMPs has direct consequences on the microbial 
landscape of the skin.

Microbial inhabitants of the skin have been of great interest 
as they affect skin homeostasis, and therefore are involved in 
important biological processes in both health and diseased states. 
Traditional cutaneous microbiology has focused on Staphylococcus 
epidermidis, Staphylococcus aureus, and Propionibacterium acnes, 
yet expanding experimental techniques have shown that healthy 
skin is a habitat for a milieu of other microorganisms, including 
varied species in the Staphylococcus genus, Micrococcus luteus, 
Corynebacterium spp., Streptococcus mitis, Malassezia globosa, 
Malassezia restricta, and others (16–18). Microorganisms immo-
bilized on skin can display biofilm-like properties, including viru-
lence and resistance to antibiotics (19). Importantly, biogeography, 
or body site, drives microbial community composition, a factor 
often attributed to the different glands and secretions present 
in moist, sebaceous, and dry areas of the skin (16, 17). Resident 
microorganisms have been implicated in disease pathogenesis. 
For example, S. aureus infects the skin of atopic dermatitis indi-
viduals (20) and P. acnes colonization is an important etiological 
factor in acne vulgaris (21). Interestingly, AMP expression in situ 
is also linked to diseased states. Rosacea patients secrete elevated 
levels of cathelicidin (22), psoriasis patients upregulate a host of 
AMPs (23, 24) and atopic dermatitis skin expresses less hBD and 
cathelicidin than that of healthy individuals (25, 26). The former 
two research hypotheses grew out of the observation that psori-
atic individuals rarely contract skin infections (23), while atopic 
dermatitis patients often suffer from skin infections (27, 28).

It is evidently clear that the human body and the microbiota that 
colonize its skin are in a constant state of attenuation. Microbe–
microbe and human–microbe interactions mediate the events that 
determine both the amount and type of microorganisms that reside 
on the skin and the results of these exchanges have broad medical 
and cosmetic consequences. In this review, we summarize two 
decades of research devoted to the antimicrobial efficacy of skin 
AMPs and their ability to be induced by the cutaneous microbiota. 
We briefly touch upon associations between AMP expression 
and disease states [reviewed in Ref. (29)]. Additionally, we do not 
focus on the signaling or alarmin mechanisms of AMP expression 
[reviewed in Ref. (30)], but rather their antimicrobial capabilities. 
We conclude with an outlook toward future AMP research, with 
an emphasis on integrating microbiome-era knowledge into our 
understanding of AMP expression.

eXPeRiMenTAL MODeLS FOR THe 
ASSeSSMenT OF AMP eXPReSSiOn  
in HUMAn SKin

Three main experimental models can be used to detect AMP 
expression on human skin: in  vitro cell lines, ex vivo skin 

fragments and in situ biopsies. Keratinocyte cell lines, whether 
primary or commercial, provide the most readily accessible and 
easily manipulated medium for the study of skin–microbial 
interactions. Keratinocytes have the distinct advantage of being 
able to be maintained in the laboratory for extended periods of 
time and their availability does not hinge upon extralaboratory 
sources. However, cell lines are maintained submerged in media, 
thereby necessitating that any microbial growth be maintained 
within the cell culture medium. This poses two limitations: 
microorganisms capable of growth on human skin may not be 
sustained by cell culture media and submerged growth may 
induce physiological changes in the microorganism that are 
not present when grown on the skin–air interface. Additionally, 
keratinocytes allow for a two-dimensional modeling of the skin 
surface which lacks many of the biological and physical elements 
present in vivo (31). In addition to keratinocytes, sebocyte cell 
lines can serve as a model substrate for bacterial-induced AMP 
expression. However, immortalization of sebocytes has proven 
difficult, and therefore, their availability as a model platform is 
limited.

Human skin organ cultures, typically obtained following 
cosmetic surgeries, serve as an additional model for cutane-
ous–microbial interactions. Skin explants are advantageous 
for the research of skin–microbe interactions for a number 
of reasons: they contain all of the various elements of human 
skin including the dermis, epidermis, and associated append-
ages, and unlike keratinocytes, the surface topography of skin 
explants matches that of human skin. Additionally, microbial 
growth is sustained at the skin–air interface, similar to in vivo 
conditions. Disadvantages of the ex vivo model include its 
restricted availability and limited life-span [roughly 2  weeks 
sustained in culture (31)]. Additionally, skin fragments are 
obtained from a human donor and are therefore intrinsically 
not sterile. They can be treated with antibiotics and antifungals 
before inoculating with bacteria, however, resistant bacteria 
may remain viable, thereby interfering with experimental 
procedures. Finally, bacterial immobilization on skin explants 
is a poorly characterized method of bacterial growth, thereby 
limiting the conclusions that can be garnered from such 
experiments.

The final human model applicable for skin–microbial 
interactions is biopsies from individuals in diseased states 
whereby the disease has a known microbial etiological fac-
tor. Such biopsies can be useful for histological analysis and 
molecular studies, thereby establishing associations between 
microorganisms and disease states. However, these specimens 
are often not culturable and therefore their usefulness as a 
model is limited. As with any model system, complementary 
experiments using all models are the preferred path for 
approaching skin–microbe research hypotheses. Specifically, 
the availability of keratinocytes, the wealth of knowledge 
available in the literature regarding keratinocyte inoculates, 
and the ability to manipulate experimental conditions neces-
sitates their inclusion in an experimental setup. Validation 
of observations made with keratinocytes can be done ex vivo 
with the skin explant model and finally in situ from relevant 
pathological specimens.
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TABLe 1 | Summary of experimental reports of Staphylococcus aureus-induced antimicrobial peptide (AMP) expression.

Rnase 7 hBD1 hBD2 hBD3 Psoriasin LL37

Human  
keratinocytes

Live 3X RNA  
expression (11)

Not upregulated (34) 70X RNA 
expression (34)

95X RNA 
expression (34)

Undocumented 3X RNA 
expressiona (35)

60X RNA  
expression (34)

3X RNA expressiona 
(35)

2X RNA 
expressiona (35)

5X RNA 
expressiona (35)

Upregulated but 
not quantified (36)

Conditioned Media 25X RNA  
expression (34)

Not upregulated (34) Not upregulated 
(34)

110X RNA 
expression (34)

Undocumented 4X RNA 
expressiona (35)

Not upregulated (35) 3X RNA 
expressiona (35)

10X RNA 
expressiona (35)

Human  
explants

Live 2X RNA  
expressionb (32)

Undocumented Undocumented Undocumented Undocumented Undocumented

Anti-Staphylococcus 
aureus activity of 
antimicrobial peptide

Undocumented Effective only at 
high concentrations 
(38, 39)

Effective (38, 39) Very effective  
(38, 39, 41)

Undocumented Very effective  
(38, 39)

Several studies have noted the upregulation of RNase7, hBD2, hBD3 and LL37 following challenge by S. aureus on keratinocytes. However, the AMP Psoriasin has not been studied 
in this model, nor have the aforementioned studies validated their results on an ex vivo model. Additionally, hBD3 and LL37 kill S. aureus at lower concentrations than the others 
tested.
aCa2+ differentiated keratinocytes.
bExpression measured after 2 h.

3

Brandwein et al. Microorganism-Induced Cutaneous AMP Expression

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1637

AMP’s AnD SKin MiCROORGAniSMS

Staphylococcus aureus
Skin-associated AMP expression and efficacy has been studied 
on a host of microorganisms, yet studies involving S. aureus 
are the most widespread (Summarized in Table  1). The first 
report of RNase 7 expression in human skin cells reported that 
challenging human primary keratinocytes with an inoculum 
of S. aureus leads to increased RNase 7 mRNA levels and that 
RNase 7 kills S. aureus in a dose-dependent manner (11). A 
subsequent study expanded upon these results and showed 
elevated RNase 7 secretion 2 h after challenging skin explants 
with an S. aureus inoculum. The study also showed that block-
ing RNase 7 activity in stratum corneum extracts and in skin 
explants hindered skin antimicrobial activity (32). Separately, 
anti-S. aureus activity of RNase 7 was shown in vitro (33) and 
secreted factors of S. aureus were shown to upregulate RNase 7 
expression in primary keratinocytes (34).

In addition to the RNase 7 observations above, human 
beta-defensin activity against S. aureus has been studied as 
well. Several groups have documented increased expression 
of hBD2 (6, 34–36) and hBD3 (34, 35, 37) in keratinocytes 
in response to inoculation with live S. aureus. Additionally, 
marked hBD2 and h-BD3 upregulation has been observed 
when inoculating keratinocytes with heat-killed S. aureus 
or S. aureus conditioned medium (34, 35, 37, 38). The hBD2 
concentration needed to kill 100% S. aureus in vitro is 10 µg/ml  
(38) and its anti-S. aureus activity is increased in acidic 
con ditions, similar to that of the skin (39). Furthermore, 
hBD2 works synergistically with a host of other compounds, 
including hBD3, lysozyme, and the serine protease Esp  
(39, 40). Additionally, Kisich et  al. showed that constitutive, 
and not inducible, expression of hBD3 provides a level of clear-
ance from S. aureus immediately upon infection (41).

Keratinocytes infected with S. aureus were shown to slightly 
overexpress the AMP LL-37 (38) and the anti-S. aureus activity 
of keratinocytes is partially dependent on cathelicidin expression 
(42). These experiments, along with the majority of the afore-
mentioned AMP-S. aureus induction studies, were carried out 
solely on cultured keratinocytes.

Staphylococcus epidermidis
Staphylococcus epidermidis, the “helpful” Staphylococci, has also 
been shown to induce expression of several AMPs. Percoco et al.  
showed that S. epidermidis infection significantly upregulates 
hBD2 and hBD3, but not Psoriasin and RNase 7, expression in 
skin explants (43). A further study on keratinocytes supported 
these results and showed that hBD2 and hBD3 expression was 
stimulated by S. epidermidis infection and that this induction is 
mediated through TLR2 signaling (44). Wanke et  al. reported 
upregulation of hBD2, hBD3, and RNase 7 24 h after S. epidermidis 
colonization of keratinocytes (34), whereas both Harder et  al. 
and Dinulos et al. examined the keratinocyte expression solely of 
hBD2 following S. epidermidis inoculation, and determined that 
it was upregulated in response to the commensal (6, 36). Of note, 
the experimental conditions for the aforementioned observations 
may reflect a state of infection rather than commensal living of S. 
epidermidis on the skin.

Propionibacterium acnes
Propionibacterium acnes, classically regarded as a resident of the 
pilosebaceous unit, also has the ability to induce AMP expres-
sion. Nagy et al. showed that certain clinical strains of P. acnes 
induces hBD2 expression in keratinocytes (45). Subsequently, 
P. acnes supernatant was shown to induce the expression of 
hBD2 and LL-37 mRNA in keratinocytes (46). Unique among 
skin resident microorganisms, P. acnes-induced AMP expres-
sion has also been studied in sebocytes. P. acnes supernatant 
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upregulated LL-37 expression in sebocytes and it was shown to 
work synergistically with psoriasin (47). Additionally, different 
strains of P. acnes were shown to induce hBD2 expression in  
sebocytes (48).

Other Microorganisms
Various other bacteria and fungi have been shown to induce 
AMP expression in keratinocytes or other skin models. 
Pseudomonas fluorescens induces hBD2 and hBD3 expres-
sion in skin explants (43) and Pseudomonas aeruginosa can 
induce hBD2 and hBD3 expression in keratinocytes (6, 36). 
Escherichia coli infection of keratinocytes induces the expres-
sion of Psoriasin and of hBD2 (6, 36, 49), while Acinetobacter 
baumannii induces hBD2 and hBD3 transcripts following 
infection of primary skin epithelial cells (50). Streptococcus 
pyogenes induces RNase 7 expression and certain strains 
can induce hBD2 expression (11, 36). Malassezia furfur can 
upregulate hBD2 and hBD3 expression in human keratinocytes 
(51, 52). Finally, Candida albicans induces hBD2 expression in 
primary keratinocytes (6). Of additional note, the vast majority 
of the aforementioned experiments were carried out on cell 
lines, with only a select few having been performed on skin 
explants.

in viTRO eFFiCACY OF AMP in 
BACTeRiAL CLeARAnCe

Following the discovery of bacterial-induced skin AMP’s, their 
efficacy in bacterial clearance in  vitro was evaluated. Owing 
to differences in reporting standards, AMP efficacy results 
have been published using various different benchmarks and 
are therefore challenging to compare robustly to one another.  
An additional challenge in translating these studies are the differ-
ences between in vivo and in vitro salt concentrations and human 
topographical differences in salt concentrations owing to varied 
presence of sweat glands on the skin. Nevertheless, these studies 
are crucial in understanding the bacteria-modulating effects of 
AMPs. As per the focus of this article, we summarize AMP anti-
microbial activity with regards to resident skin microorganisms 
exclusively.

Kisich et al., Chen et al., and Midorikawa et al. showed that 
LL-37 and hBD3 had significantly more anti-S. aureus activity 
than hBD1 and hBD2, and that the former two were effective in 
killing 99.9% of S. aureus in single-digit micromolar concentra-
tions (38, 39, 41). Elsewhere, 1.6 μmol of LL-37 was reported 
to kill 50% of S. aureus (53, 54) and 50  µg/ml of LL-37 was 
shown to eradicate 80% of S. aureus (47). Ong et  al. showed 
strong activity of LL-37 against clinical isolates of S. aureus 
from Atopic Dermatitis patients, while hBD2 was significantly 
less potent (25). Acidic pH sharply enhances the antibacterial 
capabilities of the three human beta-defensins, yet decreases 
that of LL-37 (39). Of particular relevance to the skin environ-
ment, hBD1, hBD2, and hBD3 are effective at low and physi-
ologic salt concentrations (0–200 mM NaCl) (9). Additionally, 
AMPs often work synergistically with one another, allowing 

for better S. aureus clearance when administered/secreted 
in tandem (39). Of additional importance, certain AMPs can 
inhibit biofilm formation at subantimicrobial concentrations. 
For example, LL-37 inhibits 40% of S. aureus biofilm growth at 
a concentration well below its minimal inhibitory concentration  
(MIC) (54).

In addition, anti-S. epidermidis activity of skin AMP’s 
has been studied in  vitro. LL-37 kills 50% of S. epidermidis 
at a concentration of 1.3 µg/ml (53). LL-37 inhibits bacterial 
attachment and biofilm formation of S. epidermidis at subin-
hibitory concentrations (55). S. epidermidis exopolysaccharide 
intercellular adhesin provides a level of resistance to hBD3 
and LL-37 (56). hBD2 harbors anti-S. epidermidis activity at  
single-digit micromolar concentrations (36), while Psoriasin 
can kill S. aureus and S. epidermidis in relatively high concen-
trations (10).

Certain AMPs are capable of inhibiting P. acnes growth as  
well. Lee et al. reported that 50 µg/ml of LL-37 was capable of 
clearing 95% of P. acnes (47). Furthermore, single micromolar 
concentrations of RNase 7 eradicate P. acnes growth (11).

PeRSPeCTiveS/COnCLUSiOn

Given the in vitro and ex vivo inducibility of AMP expression 
by skin microorganisms and their ability to effectively kill 
bacteria and fungal residents of the skin in vitro, it is crucial 
to determine AMP expression levels and their correlation with 
microbial expression patterns on the skin. Several studies have  
already painted a general picture of the biogeographical 
distribution of AMPs in healthy individuals (summarized in 
Figure 1). hBD1 and hBD2 expression, as measured by immu-
nohistochemistry, are generally expressed at higher levels on 
the scalp and plantar surface than on the axilla, abdomen, and 
chest (57). hBD3 is highly expressed on the forehead, and less-
so in other areas of the body (58). Psoriasin is secreted mostly 
on the face and head, as well as in the plantar heel and palm  
(10, 58). RNase 7 is highly expressed on the chest, abdomen, 
facial sites, and forearm (58, 59). While these early descriptive 
studies provided pioneering confirmation that skin AMP’s were 
secreted in many body sites in healthy individuals and that 
their expression was site-dependant, further research must be 
done to strengthen our understanding of the AMP–microbe 
relationship. Microbiome studies have shown that skin bacte-
rial and fungal communities are both site and age dependant  
(17, 60–62). Given the ability of specific microorganisms to 
induce certain AMPs, there is reason to believe that AMP 
expression both reflects and effects the composition of 
bacterial and fungal skin communities at different sites and 
at different ages. Tape-stripping, a non-invasive method of 
gathering AMPs for subsequent ELISA or western blotting 
quantification, could simultaneously be used to collect epi-
dermal microorganisms for microbiome analysis. Our current 
research, which integrates microbial ecology profiling with 
AMP-specific ELISA protein quantification kits, posits that 
dysbiotic states are associated with an altered AMP milieu. 
We are specifically intrigued by diseased states with a known 
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FiGURe 1 | Biogeographical distribution of cutaneous antimicrobial peptide’s (AMP’s)—Gross topographical distribution of AMP expression on healthy  
human skin has been described by Gläser et al. (10), Falconer et al. (57), Wittersheim et al. (58), and Köten et al. (59). (A) hBD1 is secreted at a higher level  
on the abdomen and chest than elsewhere, whereas higher expression of (B) hBD2 and (C) hBD3 is reported on the cheeks and forehead, respectively. (D) 
Two studies (10, 58) examining the biogeography of Psoriasin expression reported similar results on the face, yet differences between the two studies can be 
seen on the palms, arms, chest, abdomen and calves (studies are represented independently on either side of the caricature). (e) Discrepancies between the 
two reports (58, 59) on RNase 7 biogeography are less dramatic, with both studies reporting higher expression on facial sites, chest, and abdomen than on 
arms or legs. For all examined AMPs, the variability of expression between body sites is significant, yet the biological factors leading to such expression 
patterns are not understood.
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microbiological etiological factor, such as atopic dermatitis 
(dysbiosis dominated by S. aureus) or acne vulgaris (dysbiosis 
characterized by outgrowth of certain P. acnes strains). Such 
projects would be supported by recording and correlating vari-
ous chemical attributes of the skin including sebum content, 
salinity, and moisture.

Furthermore, the aforementioned microbiome and metagen-
ome studies have revealed a wide variety of microorganisms that 
are consistently found on the skin surface, yet have not received 
proper attention from the cutaneous microbiological community 
owing to their relative anonymity. Although such organisms 
remain understudied due to their non-pathogenic nature, their 
contribution toward community homeostasis and equilibrium 
cannot be ruled out. We therefore propose investigating their 
susceptibility to AMP exposure and their ability to induce AMP 
expression in relevant skin models.

Finally, in  vitro studies of fungal skin residents have clas-
sically been dominated by the pathogenic fungi M. furfur and  
C. albicans. However, the aforementioned community-structure 
studies have revealed that the two species M. restricta and  
M. globosa comprise over 90% of the fungal skin flora. These 
two Malassezia species induce proinflammatory cytokine secre-
tion following infection of keratinocytes, which is partly TLR-2 
dependant, further strengthening the hypothesis that they can 
alter AMP expression as well (63). To the best of our knowledge, 

no article has addressed either the ability of skin AMPs to kill 
these two fungi or the ability of these fungi to induce AMP 
expression in vitro, ex vivo, or in vivo.

In conclusion, it is evidently clear that our skin cells are 
equipped with a broad arsenal of AMPs to mitigate the effects 
of pathogen colonization. However, our documentation of this 
phenomenon has largely been limited to known skin pathogens 
in in vitro models. We propose expanding the list of microorgan-
isms studied to the myriad other bacteria and fungi that reside 
on our skin and emphasize the importance of validating such 
data on the skin explant model. Finally, we propose integrat-
ing microbiome-era knowledge into experimental design in 
an effort to obtain a more holistic and complete picture of skin 
AMP expression.
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