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Next Generation Sequencing (NGS) using capture or amplicons strategies allows the detection of a large
number of mutations increasing the rate of positive diagnosis for the patients. However, most of the
detected mutations are Single Nucleotide Variants (SNVs) or small indels. Structural Variants (SVs) are often
underdiagnosed in inherited genetic diseases, probably because few user-friendly tools are available for
biologists or geneticists to identify them easily. We present here the diagnosis of two brothers presenting
a demyelinating motor-sensitive neuropathy: a presumed homozygous c.5744_5745delAT in exon 10 of
SACS gene was initially detected, while actually these patients were heterozygous for this mutation and har-
bored a large deletion of SACS exon 10 in the other allele. This hidden mutation has been detected thanks to
the user-friendly CovCopCan software. We recommend to systematically use such a software to screen NGS

NGS data in order to detect SVs, such as Copy Number Variations, to improve diagnosis of the patients.

CovCopCan

© 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-

technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Inherited genetic diseases are due to germline mutations. Thanks
to Next Generation Sequencing (NGS), an increasing number of
these mutations are detected every day improving patients’ diagno-
sis. Therefore, molecular diagnosis may influence patients’ care
through the choice of adapted treatments, for instance in neurolog-
ical diseases and particularly in genetic epilepsies [1]. However, to
date, the majority of the reported mutations are Single Nucleotide
Variants (SNVs) and Structural Variants (SVs) have rarely been
described, probably due to the analytic methods used to analyze
NGS data, comparing patients’ sequences to a reference one.

In Charcot-Marie-Tooth disease (CMT), the most common hered-
itary neuropathy characterized by damages of both motor and sen-
sory peripheral nerves, the most frequent mutation involved in this
disease is the PMP22 duplication, explaining around 15% of CMT
patients. It has been identified by Southern-Blot in 1992 [2]. Since
this date, more than other 90 genes have been identified to be
involved in this disease and in associated peripheral neuropathies
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[3]. Most of the detected mutations are SNVs or small indels [4,5],
and Structural Variants (SVs) have rarely been described [6].

NGS techniques allow partial or total sequencing of a patient’s
genome. Sequenced libraries can be prepared by capture or by
amplicons. Both methods are efficient for the detection of single-
nucleotide variants or short indels, however only a few tools are
available for the detection of large deletions or duplications, espe-
cially with amplicon sequencing data, such as Cov’Cop and Cov-
CopCan [7,8]. Molecular diagnosis being an essential step of
patient care, we believe it is crucial to improve the detection of
SVs to increase the rate of positive diagnosis by using several bioin-
formatics approaches to analyze NGS data.

By presenting the diagnosis of a specific patient harboring a periph-
eral neuropathy, we show here how it is important to look for all kind
of variants to provide an accurate diagnosis to the patients. Indeed one
mutation could hide another one, such as Structural Variant.

2. Material and methods
2.1. Patients

Our current study focused on a family with two cases of periph-
eral neuropathy: Patients A (propositus) and B (affected brother),
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both with learning disabilities. Patient A is a 19 year-old man, pre-
senting peripheral neuropathy (EMG: abolished sensitive potential
and altered motor velocities, with elongated distal latencies and
altered F-waves — Median nerve conduction velocity: 38 m/s). He
also has pes cavus, progressive cerebellar ataxia and abolished
Achilles reflex. His brother, Patient B, is a 9 year-old boy, present-
ing peripheral neuropathy, exhibiting progressive walking difficul-
ties, fine motor skill disabilities, balance disorder with intermittent
falls and Achilles reflex decrease. We accessed to the DNA of the
four members of this family: Patients A (propositus) and B (af-
fected brother), and patients C and D, the unaffected father and
mother respectively.

2.2. DNA extraction

Blood samples were collected in EDTA tubes after providing
informed consent. The protocol was in accordance with the French
ethics legislation and the Declaration of Helsinki. Genomic DNA
was extracted by standard methods (Illustra DNA Extraction kit
BACC3, GEHC).

2.3. Sequencing

NGS strategy was performed on patient A using a 93-genes-
custom panel designed for CMT and associated neuropathies diag-
nosis (Supplementary Table 1). The amplified library was prepared
with Ion P1 HiQ Template OT2 200 kit (Ampliseq Custom, Life tech-
nologies), sequenced on Proton sequencer (Life technologies), and
mapped to the human reference sequence hg19/GHCh37. Muta-
tions of interest were verified by Sanger sequencing using forward
and reverse primer pairs.

2.4. Bioinformatics analyses

Variants detected by targeted NGS were annotated using lon
reporter software. They were evaluated with Alamut Mutation
Interpretation Software (Interactive Biosoftware, Rouen, France).
Databases such as EXAC Genome browser (http://exac.broadinsti-
tute.org), dbSNP135 (National Center for Biotechnology Informa-
tion [NCBI], Bethesda, Maryland, USA, http://www.ncbi.nlm.
nih.gov/projects/SNP/), ClinVar (www.ncbi.nlm.nih.gov/clinvar)
and HGMD professional (www.hgmd.cf.ac.uk) were also screened.
Cov’Cop and CovCopCan, interactive powerful software, were used
to detect Copy Number Variations (CNV) [7,8]. Briefly, using the
read depth value of each amplicon, these software simultaneously
analyze all the patients of the run. The algorithm is based on the
concept that in common cases, both alleles have to be similarly
amplified within each amplicon. Several normalization steps,
guided by carefully chosen references amplicons, permit to com-
pute a score for each amplicon. Theoretical score of 1 is the normal
case while low (<0.5) or high (>1.5) values respectively reveal dele-
tions or duplications. Cov’Cop and CovCopCan were used with the
default settings, with all options active and we defined a minimum
threshold of three successive amplicons on the same chromosome
to highlight a CNV. For the tested patient, mean read depth value of
the 93 tested genes was 1624 X and the mean value for the 78
amplicons covering SACS was 660 X (minimum: 64 X and maxi-
mum: 2603 X). The coverage of SACS was 100%.

2.5. Quantitative real-time Q-PCR

Primers were designed in exon 9 and 10 of SACS gene and in
exon 1 of Albumin gene, chosen as reference gene. Rotor-Gene
SYBR Green PCR Kit (400) (©QIAGEN) was used following the stan-
dard protocol. Reactions were performed on the Corbett Rotor-
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Fig. 1. Family tree associated with Sanger sequencing of SACS exon 10.
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Fig. 2. Visualization of CovCopCan results. Each dot corresponds to an amplicon. The amplicons are distributed on the x-axis according to their genomic position. The y-axis
corresponds to the normalized values. Grey dots indicate a “normal” value, whereas red or orange dots indicate duplicated and deleted amplicons, respectively. A) Patient A
analysis in which one can see a partial deletion of SACS gene, highlighted in orange; B) A control sample analysis in which no deletion or duplication can be detected. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Gene 6000 Machine (© QIAGEN). The Ct values of each Real-Time
reaction were normalized, using Albumin as endogenous control
gene, and then compared to the normalized Ct values of three con-
trol samples.

3. Results
3.1. Detection of presumed homozygous mutation in SACS gene

Targeted NGS of Patient A DNA, revealed the presence of muta-
tion ¢.5744_5745delAT in exon 10 of SACS gene. This mutation
results in a frameshift, leading to truncated protein p.
His1915Argfs*19. This mutation is very rare (1/125568 in EXAc)
and is predicted as pathogenic in ClinVar. The normal allele has
not been sequenced suggesting the presence of mutation
€.5744_5745delAT at homozygous state, confirmed by Sanger
sequencing (Fig. 1-A). No other rare Single Nucleotide Variant or
short InDels has been detected in this patient. Mutations in SACS
have already been reported to be responsible of spastic ataxia of
Charlevoix-Saguenay, an early-onset neurodegenerative disease.
The transmission follows an autosomal recessive manner and
two mutations are expected in a patient.

3.2. Problematic familial segregation

Sanger Sequencing surrounding the mutation was then per-
formed on the affected brother B and on father C and mother D,
both asymptomatic. As expected, only the c.5744_5745delAT
mutation was detected in patient B (Fig. 1-B), heterozygous muta-
tion was detected in the father (Fig. 1-C), but no mutation was
detected in the mother (Fig. 1-D), showing that only the normal
allele could be sequenced in this case and suggesting the potential

presence of a deletion of this area, that had to be defined more
precisely.

3.3. Detection of Structural Variant using CovCopCan

We then used the new CovCopCan software, a user-friendly
tool, based on the read-depth analysis of NGS data, that allows
the rapid and easily detection of Structural Variants (SVs) in inher-
ited diseases but also in Cancer [8]. Using CovCopCan, we identified
easily the presence of a heterozygous deletion in SACS gene
(Fig. 2A) in comparison to a control (Fig. 2B). We could also define,
thanks to CovCopCan, the boundaries of the deletion. Indeed, we
could see that amplicons on exon 9 were not deleted (value around
1 in CovCopCan) and that amplicons on exon 10 were deleted
(value around 0.5) (Fig. 3A and 3B). This new SV has never been
described (SV-GnomAD) and it could lead to the production of a
truncated protein.

3.4. Confirmation of Structural Variant and correct segregation

We confirmed the presence of exon 10 deletion in Patient A by
Real-Time qPCR. We investigated the other individuals of the fam-
ily: as expected, the affected brother and the mother presented the
exon 10 deletion, but not the father. Normal value has been
obtained for exon 9 in all the family members confirming that
the deletion does not overlap the first exons of SACS gene.

4. Discussion

We showed here the importance of complete bioinformatics
analysis of NGS data to perform an accurate diagnosis. In this fam-
ily, the presumed homozygous mutation c.5744_5745delAT has
been detected in SACS gene by classical variants detection software
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Fig. 3. Detection of SACS Exon 10 deletion - A) Overview of CovCopCan table results, values around 0.5 (highlighted in yellow) show a deletion of this area in patient A (X-
press 18), but not in the other patients tested in the same NGS Run; B) Alamut Overview of SACS gene and of the deleted area. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

such as lon Reporter in Patient A. This conclusion was actually not
accurate. Indeed, Patient A presents in fact one allele with
€.5744_5745delAT mutation and one allele with a Structural Vari-
ation: a large deletion of SACS exon 10. This SV has been detected
thanks to CovCopCan Software, a new user-friendly tool allowing
the detection of Copy Number Variations (CNVs) in NGS data gen-
erated from amplicons sequencing.

Few user-friendly tools are easily usable for biologists and
geneticists to detect SVs, such as CNVs, in amplicons sequencing
data. In addition to CovCopCan, ExomeDepth [9], IonCopy [10],
DeviCNV [11], Cov’Cop [7], are also available and have to be tested
by the users to define their preferred tools to detect these SVs. We
believe tools detecting SVs, such as CNVs, have to be used system-
atically on NGS data analysis in addition to the classical variants
detection tools highlighting only Single Nucleotide Variants and
small indels.

However, it is important to notice that these tools using the
read-depth to detect CNVs, will not be able to detect easily SVs
such as inversion or translocation. To date, we do not know the
percent of CNVs responsible for inherited diseases in comparison
to others SVs, such as inversion or translocation, because all of
them were poorly detected until now. In addition, we do not know
the percent of pathogenic CNVs in comparison to SNVs or some
indels.

Nevertheless, we estimated in our cohort of 695 CMT patients
analysed by NGS using an amplicon targeted sequencing panel of
93 genes of Charcot-Marie-Tooth disease and associated neu-
ropathies, that CNVs were present in 107 patients (15.4% of the
patients), showing a large amount of CNVs in our cohort.

Twenty-eight were small deletions (3-6 amplicons), 10 were large
deletions, 49 were small duplications and 20 were large duplica-
tions. We now investigate the pathogenicity of these new SVs
and we presented one of them in this article: a large deletion of
SACS exon 10, which appeared to be pathogenic.

Currently, in the diagnosis of peripheral neuropathy, we reach
between around 40% of positive diagnosis using only classical vari-
ants detection software highlighting SNVs or some indels. By using,
in addition, tools such as CovCopCan, allowing the detection of SVs,
such as CNVs, we hope to increase the rate of positive diagnosis for
our patients. Indeed, to date, a patient with a homozygous SV was
not diagnosed positively using the classical tools, this was also the
case for male patients harboring, for example, a deletion on X chro-
mosome gene, while these kind of SVs could be pathogenic muta-
tions. Thanks to CovCopCan, or equivalent tools, all these patients
will be diagnosed positively. Of course, CovCopCan can detect
CNVs on all the inherited diseases. This tool works on data gener-
ated from Ion Designer (Life Technologies, CA, USA) as well as that
from Illumina DesignStudio (Illumina Inc., San Diego, CA, USA). The
user-friendly interface associated with our 2D visualization facili-
tates data exploration.

5. Conclusion

Structural Variants are probably underdiagnosed and should be
more looked for to improve inherited diseases diagnosis. It is cru-
cial for physicians to be aware that a potential homozygous varia-
tion can hide a Structural Variant. In addition, if no pathogenic SNV
was found by NGS sequencing, SVs should be systematically inves-
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tigated. Detection of such variants would then help to better
understand the physiopathology involved in inherited diseases,
in order to develop, in fine, therapeutic approaches.
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