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Symbiotic nitrogen fixation (SNF) process makes legume crops self-sufficient in nitrogen
(N) in sharp contrast to cereal crops that require an external input by N-fertilizers.
Since the latter process in cereal crops results in a huge quantity of greenhouse gas
emission, the legume production systems are considered efficient and important for
sustainable agriculture and climate preservation. Despite benefits of SNF, and the fact
that chemical N-fertilizers cause N-pollution of the ecosystems, the focus on improving
SNF efficiency in legumes did not become a breeder’s priority. The size and stability of
heritable effects under different environment conditions weigh significantly on any trait
useful in breeding strategies. Here we review the challenges and progress made toward
decoding the heritable components of SNF, which is considerably more complex than
other crop allelic traits since the process involves genetic elements of both the host and
the symbiotic rhizobial species. SNF-efficient rhizobial species designed based on the
genetics of the host and its symbiotic partner face the test of a unique microbiome for
its success and productivity. The progress made thus far in commercial legume crops
with relevance to the dynamics of host–rhizobia interaction, environmental impact on
rhizobial performance challenges, and what collectively determines the SNF efficiency
under field conditions are also reviewed here.
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INTRODUCTION

Biological nitrogen fixation (BNF) is the largest nitrogen (N) input pathway in the ecosystem
(Vitousek and Field, 2001). It is estimated that BNF generates approximately 200 Tg of organic
N annually (Galloway et al., 2003; Peoples et al., 2009); thus, it can play an important role in
climate preservation and agriculture sustainability. In legumes, a group of bacteria collectively
referred to as rhizobia enzymatically convert atmospheric nitrogen into organic form through a
symbiotic process (symbiotic N fixation, SNF) in the host roots. The grain legumes account for
27% of the world crop production and are only next to cereals. Globally, 60% of the total human
protein requirement is met through plant-based proteins, of which legumes contribute to about
50% (Smýkal et al., 2015; ref. in Leinonen et al., 2019). An assessment of global protein sustainability

Frontiers in Microbiology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 669404

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.669404
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.669404
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.669404&domain=pdf&date_stamp=2021-06-11
https://www.frontiersin.org/articles/10.3389/fmicb.2021.669404/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-669404 June 7, 2021 Time: 17:35 # 2

Goyal et al. Symbiotic Nitrogen Fixation – Agriculture Sustainability

favors a shift from animal-based to plant-based proteins
(Chaudhary et al., 2018; Leinonen et al., 2019)1. The legumes are
valuable in agriculture for two main reasons. One, the legume
seeds are rich in protein content (20–25% of the dry weight)
and help meet the daily protein requirement of a majority of
the world population, especially for those who cannot afford
to source it from animals. Second, the environmental cost of
legume cultivation, calculated as life cycle assessment (LCA), is
significantly lower compared to non-legume crops due to the
former’s ability to fix their own nitrogen (MacWilliam et al., 2014;
Romeiko, 2019). Despite the challenges of accuracy and precision,
the LCA is calculated by computing greenhouse gas (GHG)
emission of all operations associated with a crop production
system and delivering a product to the consumer table (Caffrey
and Veal, 2013). The carbon footprint comparison depicts the
lowest environmental cost of legumes among important food
types (Figure 1).

In order to emphasize the significance of legumes in
agriculture sustainability, it is pertinent to consider the
environmental consequences of synthetic N use. The annual
demand of chemically synthesized nitrogen is projected at about
120 Tg (FAO, 2017), approximately 50% of which is required
to fertilize wheat, maize, and rice (Ladha et al., 2016). The
N-use efficiency for cereals is estimated to be about 33%; the
remaining becomes either a source of aquatic systems pollution
(Raun and Johnson, 1999) or a substrate for N2O or nitrous
oxide (NO) gases in the environment through denitrification.
According to the US Environmental Protection Agency (EPA),
N2O has 294 times more GHG effect than carbon dioxide on
a per unit mass basis. In addition, the process of nitrogen
fertilizer synthesis uses fossil fuels as one of the energy sources.
Depending on the type of the fossil fuel, it releases 1.10–3.37
t of CO2/ton fossil fuel burnt2. It has been predicted that 2%
consumption of global energy by 2050 will be due to chemical
synthesis of N fertilizers (Glendining et al., 2009). Approximately,

1https://www.ipcc.ch/sr15/
2 https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html

FIGURE 1 | Comparison of carbon footprint generated by per unit serving of
different food types. The areas in the triangles are approximate to carbon
footprint values (http://css.umich.edu/factsheets/carbon-footprint-factsheet).

one-third of total GHG emission occurs via the agriculture
sector including crop cultivation and livestock (Gilbert, 2012).
A large carbon footprint of agriculture along with the detrimental
effects of runoff fertilizers puts a question mark on agriculture
sustainability. The need for minimizing GHG emission and
protecting the climate has been highlighted in a report by the
Intergovernmental Panel on Climate Change (IPCC, see text
footnote 2). In this connection, the legume production systems
hold a great promise to reduce the agriculture carbon footprint
by expanding the acreage under legumes and making the SNF
process more efficient.

Low cost and easy accessibility of the synthetic N fertilizers
obscured the importance of SNF. Most of the legume crop
improvement strategies have focused on yield, disease resistance,
and other agronomic traits. The availability of chemical fertilizers
was one reason that interested breeders to utilize synthetic
fertilizer, and the lack of interest in incorporating enhanced SNF
efficiency as a trait in legume improvement programs was seen
as far more complex since it involved a large array of gene
medleys both in the host and in its symbiotic partner (Roy
et al., 2020). Compared to an agronomic trait, the mapping of
symbiosis-related genes on the chromosomes and understanding
their heritable effect in breeding lines is far more challenging.
Moreover, the stability of a heritable trait under different
environmental conditions is very important, since it requires
understanding and suitable deployment strategies for an optimal
symbiotic efficiency. Introduction of novel and superior or
genetically modified strains may face formidable challenges as
the native strains are well-adapted to a specific niche. The
development of elite rhizobial strains to maximize crop-specific
symbiotic outcome is required which, however, has not received
the needed attention (Sessitsch et al., 2002). In the recent past,
an ecological relevance of rhizobia and the quest to gain in-
depth knowledge of nitrogen fixation phenomenon have led to
many advances. In this review, we bring together information
relevant to the SNF as a breeding trait and the prominent factors
that influence the symbiosis and N-fixing efficiency. This should
help evoke more interest in filling the research gaps toward
strengthening the symbiotic bond for a sustainable future.

SNF-ASSOCIATED QTLs AND SNPs

Quantitative trait locus/loci (QTL) is the location of an individual
locus or multiple loci in the genome that affects a quantitative
trait. QTLs provide valuable information on the inheritance of
linked traits which can be used to identify a candidate gene(s)
associated with a phenotype. The DNA sequences linked with
QTLs can be deployed as molecular markers for a phenotypic trait
governed by them. Such molecular markers are being increasingly
used in marker-assisted selection (MAS) in modern breeding
programs (Kumar et al., 2017). Several successful examples of
using QTLs to increase quality, yield, and disease resistance
in cereal crops include rice (Ali et al., 2017), maize (Beyene
et al., 2016), and wheat (Zhang et al., 2017). However, the use
of QTLs for improving SNF has not gained prominence in
legume breeding programs. Nodulation, which comprises nodule
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number, shape, size, fresh/dry weights, and type (determinate or
indeterminate), along with the health of nodules, is an indicator
of the N fixation efficiency and represents important quantitative
SNF traits. The process of nodulation is tightly regulated by
both the host and rhizobia genetics, collectively determining the
output of fixed N (Wang et al., 2018; Ferguson et al., 2019).
A high heritability of nodulation traits in a given environment is
an indicator of traits controlled by genetic loci (Yang et al., 2019).
A significant correlation is known between nodule number,
nodule fresh or dry weight, and N fixed in a symbiotic process
(Pereira et al., 1993; Pazdernik et al., 1996). A positive correlation
has also been found between nodule dry weight/plant and the
seed yield (Burias and Planchon, 1990). The SNF-QTLs have
been identified in several legumes, including soybean, cowpea,
pea, and common bean. Thus, identification of the genetic loci,
QTLs, or markers associated with nodulation traits is useful in
breeding legumes for an efficient N fixation and for improving
yields. However, the focus or the progress has been conspicuously
more in soybean and common bean than other commercial
legumes (Table 1).

Nitrogen fixation involves additional interactions with the
strain and soil environment when compared to a plant agronomic
trait and adds complexity in identifying SNF-QTLs in legumes.
This could be a bottleneck for slow progress in the identification
of QTLs in leguminous crops in comparison to cereal or other
crops (Ali et al., 2017; Zhang et al., 2017; Fang et al., 2019). The
nodule number was one of the early SNF-related traits shown
to be controlled by QTLs in common bean under certain N
environments (Nodari et al., 1993; Souza et al., 2000). Using
simple sequence repeat markers, a linkage map was constructed
in soybean and the markers were linked to fresh and dry
nodule weights, nodule numbers, plant dry weight, and acetylene
reduction activity corresponding to the N-fixation rate (Tanya
et al., 2005; Nicolás et al., 2006). Some of the SNF-QTLs were
genetically mapped in soybean, although the effect of these QTLs
only ranged from 6.5 to 15.4% of total variation (Santos et al.,
2013). Co-localization of QTLs for root growth and nodule
traits and a significant positive relationship between nodule
establishment and pea root growth are the breeding possibilities
for these two important traits (Bourion et al., 2010). These
QTLs were also associated with an increased percentage of
biological nitrogen derived from atmosphere (%Ndfa) with an
additive effect. Such a synergism between root architecture and
SNF controlled by QTLs has also been observed in soybean
(Yang et al., 2017). The root growth plays an important role
in the drought tolerance ability of crop species. Therefore,
increased nodulation could be utilized for enhanced drought
tolerance in leguminous crops. Two other QTLs associated with
nodule number and nodule size have been identified in soybean
(Yang et al., 2019). Nodule phenotype and number linked to
these QTLs were genotype dependent. A symbiotic interaction
between soybean and Bradyrhizobium strains was influenced by
the QTLs involved in the secretion of genistein by the host
roots (Ramongolalaina et al., 2018). The mapped QTLs showed
a phenotypic variation under many environmental conditions
related to the N level in soil, greenhouse vs. field studies, and
the genotypes employed. Efforts to saturate the genetic map

TABLE 1 | QTLs and SNP loci information for the morphological traits
associated with SNF.

Crop Morphological
trait

QTLs References

Common bean
(Phaseolus vulgaris)

Nodule number 4 QTLs Nodari et al.,
1993

Common bean Nodule number 3 linkage
groups under
each of low and
high nitrogen
environments

Tsai et al., 1998

Common bean Nodule number 5 QTLs in the
presence of N

Souza et al.,
2000

Nodule number 3 QTLs in the
absence of N

Common bean Ndfa QTLs on Pv01,
Pv04 and Pv10

Ramaekers et al.,
2013

Nodule dry
weight

1 QTL on Pv03

Dry bean
(Phaseolus vulgaris)

Ndfa 1 QTL on Pv08 Farid, 2015

Common bean Ndfa (in shoot
and seed)

SNP loci on
Pv03 and Pv09

Kamfwa et al.,
2015

Common bean %Ndfa QTLs on Pv07
and Pv02

Diaz et al., 2017

Black bean
(Phaseolus vulgaris)

Ndfa 1 QTL on Pv01 Heilig et al., 2017

Common bean %Ndfa 3 QTLs on
Pv01, Pv04
and Pv09

Kamfwa et al.,
2019

Total Ndfa 5 QTLs on
Pv04, Pv06,
Pv07, Pv09,
and Pv11

Soybean Nodule
number, nodule
size, nodule dry
matter,
acetylene
reduction

5 QTLs Tanya et al.,
2005

Soybean Nodule number
and nodule dry
weight

2 QTLs Nicolás et al.,
2006

Soybean Nodule number
and nodule dry
weight ratio or
nodule dry
weight per
nodule, shoot
dry weight

4 QTLs (B1/
nn1-B E/
bnf3-E, L/
sdw2-L and I/
bnf4-II)

Santos et al.,
2013

Soybean Symbiosis
specificity

Rj4 locus Tang et al., 2014,
Tang et al., 2016

Soybean Nodule number 8 QTLs Hwang et al.,
2014

Nodule size 7 QTLs

Individual
nodule weight

6 QTLs

Total nodule
weight

5 QTLs

Soybean Nodule fresh
weight

1 QTL on
Gm12

Muñoz et al.,
2016

(Continued)
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TABLE 1 | Continued

Crop Morphological
trait

QTLs References

1 QTL on
Gm18

Soybean SNF traits and
shoot dry
weight

qBNF-C2
qBNF-O
qBNF-B1

Yang et al., 2017

Nodulation in
the field (nodule
number and
weight)

qBNF-11

Soybean Number of
large nodules
and nodule
weight

GmINS1 gene Li et al., 2018

Soybean Average nodule
dry weight

1 QTL on
Gm13

Grunvald et al.,
2018

Soybean Symbiotic
relationship
(three nodules
types) between
indigenous
rhizobia
(B. japonicum,
B. elkanii,
rhizobium sp.)
and soybean

24 QTLs
(qBJ-11 to 14,
qBJ-21 to 24,
qBJ-31 and 32)
spanning
multiple linkage
groups

Ramongolalaina
et al., 2018

Soybean Nodule size
and nodule
number

qBNF16 Yang et al., 2019

Nodule size
and nodule
number

qBNF17

Soybean Nodule number,
nodule fresh
and dry weights

2 SNP loci on
Gm17

Huo et al., 2019

Ndfa (shoot) 3 SNP loci on
Gm17

Soybean Nodule number
and nodule dry
weight

16 QTLs on
eight
chromosomes

Zhu et al., 2019

Soybean Nodule number
and nodule dry
weight

2 QTLs on
Gm19

Wang et al., 2020b

Soybean GmNNL1 gene
is a negative
regulator of
nodulation

GmNNL1 locus Zhang et al., 2021

Pea (Pisum
sativum L.)

Nodule number 9 QTLs Bourion et al., 2010

Nodule size 8 QTLs

Nodule dry
matter

4 QTLs

Relative part of
the nodule dry
matter

3 QTLs

Cowpea (Vigna
unguiculata)

Nodule color QTL (Linkage
group 4)

Ohlson et al., 2018

Nodule number QTL (Linkage
group 4)

Nodule Fresh
Weight

QTL (Linkage
group 6)

(Continued)

TABLE 1 | Continued

Crop Morphological
trait

QTLs References

Lotus japonicas Nitrogen
fixation

Sst1 gene Krusell et al., 2005

Lotus japonicus Nitrogen
fixation
symbiosis

IGN1 gene Kumagai et al.,
2007

Lotus japonicus Nodule number 1 QTL on Chr 3 Tominaga et al.,
2012Nodule weight 5 QTLs on Chr

2,3,4 and 5

Acetylene
reduction
activity per
plant

4 QTLs on Chr
2, 4 and 5

Acetylene
reduction
activity per
nodule number

2 QTLs on Chr
2 and 4

Acetylene
reduction
activity per
nodule weight

3 QTLs on Chr
3, 4 and 5

may allow the identification of other QTLs controlling SNF
which are less affected by the environmental conditions. The
usefulness of a QTL depends on the size and stability of the effect
across environments and genetic backgrounds, as well as the
phenotyping effort required to assess the trait directly (Scott et al.,
2020). Despite several advantages of QTL mapping in biparental
populations, this approach suffers from low genetic diversity
and fewer recombinant events. The drawback is addressed
through multi-parent populations, which can generate a mosaic
of alleles and, hence, a greater potential of precise and dense
mapping in contrast to biparental populations. Two popular
approaches, namely, the nested association mapping (NAM)
and multi-parent advanced generation inter-cross (MAGIC)
populations, are in vogue (reviewed by Scott et al., 2020). Many
of the agronomic traits, though not directly linked to symbiosis,
have been mapped in common bean, faba bean, and cowpea
through MAGIC populations (Diaz et al., 2020; Scott et al.,
2020). MAGIC germplasm is a valuable resource for SNF-QTL
mapping in legumes.

Developments in genome analysis have led to new approaches
to study phenotypic variations linked to the genetic makeup.
Genome-wide association studies (GWAS), which involve
hundreds and thousands of single-nucleotide polymorphisms
(SNPs) in DNA, have emerged as a powerful tool in associating
genetic changes with quantitative trait variation in plants and
animals (Zhu et al., 2018). GWAS allows detection of causative
alleles or loci which sometimes are not possible through
QTL mapping. The use of genome sequencing has led to a
significant progress in trait mapping in chickpea, pigeon pea,
and groundnut (reviewed by Varshney et al., 2019). In many
such studies, yield was the primary focus followed by disease
resistance. Although higher SNF efficiency correlated with higher
yields, there was little or no emphasis on traits linked to
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improvement in SNF in these studies. Nonetheless, candidate
genes for SNF and significant SNPs have been identified by
GWAS on Pv03, Pv07, and Pv09 chromosomes of common
bean (Kamfwa et al., 2015, 2019). Two of the candidate
genes code for leucine-rich repeat receptor-like protein kinases
that play a key role in signal transduction during nodulation
(Sanchez-Lopez et al., 2011).

The cell wall β-expansins encoded by GmINS1 and GmEXPB2
promote nodule development in soybean (Li et al., 2015,
2018). SNF in Lotus japonicus required the presence of sulfate
transporters (SST1) and certain membrane proteins (Krusell
et al., 2005; Kumagai et al., 2007). Sequencing of red clover
phenotypes differentiating in SNF resulted in the identification
of two genes, ethylene response factor required for nodule
differentiation and molybdate transporter 1 (Trněný et al., 2019).
A study in Medicago truncatula identified several nodulation-
related genes, SERK2, MtnodGRP3, MtMMPL1, NFP, CaML3,
and MtnodGRP3A, which contributed to variations in the
legume–rhizobia symbiosis and nodulation (Stanton-Geddes
et al., 2013). Similarly, GWAS enabled the identification of
several SNPs associated with Ndfa under different environments
in soybean (Dhanapal et al., 2015). This approach identified
11 SNF-related characteristics linked to 20 SNP loci on eight
chromosomes in soybean (Huo et al., 2019). Among these,
three SNP loci located on chromosome Gm17 were associated
with the shoot N concentration while two SNP loci in the
adjacent region were linked to high nodule numbers and
nodule fresh and dry weights. Functional analysis of the
candidate genes involved in legume–rhizobia symbiosis has
been studied by combining GWAS with newly developed gene
disruption technologies such as CRISPR (Curtin et al., 2017). The
transcriptomic analysis provides another high-throughput tool
to relate to a gene function. Using this technique, involvement
of the GmPAP12 gene in nodule development was demonstrated
(Wang et al., 2020a).

The rapid gene sequencing and genome editing tools have
accelerated the progress in functional genomics. These, along
with mutagenesis techniques, have identified about 200 genes
involved in various stages of the symbiotic process in both model
and commercial legume crops (reviewed by Roy et al., 2020).
The repertoire of genes provides a valuable resource for the
breeders who can employ them as markers in MAS, and these
could be edited for an efficient nodulation and nitrogen fixation.
Even though GWAS serves as a powerful tool to assess the
association of genotypic changes with the phenotypes, it presents
limitations when the variants either are at low frequency or have
a small effect size (Korte and Farlow, 2013). For complex traits
such as nodulation, the variants sometimes explain only a small
proportion of the heritability. Given that the environment plays a
pivotal role in determining a phenotype, the missing heritability
could be due to gene–environment interactions. This aspect
of heritability has been addressed through gene–environment-
wide association studies (Thomas, 2010). The genetic diversity
or presence of SNPs in host plant QTLs or genes involved in
SNF is an important determinant of the efficiency and capacity of
SNF. Equally important is the genetics of participating nitrogen-
fixing bacteria, especially the genetic linkages with phenotypic

variations. The genomic studies have significantly broadened our
knowledge in this area (Sablok et al., 2017; Aguilar et al., 2018;
Sánchez-Cañizares et al., 2018).

Comparative genomic studies on a large number of rhizobial
genomes have been conducted to identify the putative proteins
involved in symbiosis (Queiroux et al., 2012; Seshadri et al., 2015).
Some of these proteins are highly expressed in nodules than
in a free-living bacterium. Using a GWAS approach in Ensifer
meliloti strains, the phenotypic variations that most strongly
associated with symbiosis phenotypes were identified and linked
to the genes involved in nitrogen fixation or nodulation (Epstein
et al., 2018). A QTL mapping study in soybean recombinant
inbred lines (RILs) involving a symbiosis with Sinorhizobium
fredii HH103�rhcJ mutant, which resulted in a reduced nodule
number, identified three host genes that might be participating
in the reduction process (Zhu et al., 2019). Another protein,
NopD, which is one of the type III effectors of S. fredii,
influences the expression of two genes associated with two QTLs
(Wang et al., 2020b). These interactions resulted in nodule
phenotypic differences in soybean RILs. The identification of
QTLs, genes associated with them, and SNPs are promising not
only for improving our understanding of host–rhizobia symbiotic
interaction but also for providing vital tools for molecular
breeding of leguminous crops for enhanced SNF efficiency.

RHIZOBIAL–HOST INTERACTION AND
SNF EFFICIENCY
Symbiosis is a highly complex and structured process where
both the host and rhizobial strain contribute in establishing
the latter as a microsymbiont in root nodules (reviewed by
Roy et al., 2020). To enhance the role of legume crops in
agriculture sustainability, ideally there is a need for proficient
symbiotic interaction(s) between the host and rhizobia for a
maximum N output. Rhizobia display host preferences with
varying degrees of specificity while the hosts also favor some
strains over others (Andrews and Andrews, 2017). The host
range of rhizobia is largely determined by nodulating genes with
their counterparts in host plants (Perret et al., 2000). Neither
rhizobial strains that can nodulate all leguminous plants nor any
legume plant known to develop symbiosis with all strains of
rhizobia have been identified. This suggested that the specificity
is controlled through a regulatory mechanism present in both the
host and rhizobial strain. Some legumes display a rigid regime
of symbiotic bacteria preference while others tend to be flexible.
Common bean (Phaseolus vulgaris) and soybean (Glycine max),
for example, can be nodulated by a large number of taxonomically
different rhizobia including members of genus Burkholderia,
while in pea (Pisum sativum) and chickpea (Cicer arietinum)
the symbiosis is restricted to a fairly narrow range of rhizobial
strains (Andrews and Andrews, 2017; Muñoz-Azcarate et al.,
2017; Ramírez et al., 2019; Figure 2).

Both pea and chickpea, and many other agriculturally
important legumes, belong to an inverted repeat lacking clade
(IRLC). This clade is marked by a loss of inverted repeats in the
plastid genome which results in its size variation (Wojciechowski
et al., 2004). All the members of IRLC have indeterminate
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FIGURE 2 | Genetic diversity of rhizobia associated with different crops for biological nitrogen fixation. (A) Common bean. (B) Soybean. (C) Chickpea. (D) Pea. The
phylogenetic trees of 16S ribosomal RNA of the rhizobial species known to nodulate the indicated crop species were constructed in MEGA X (Kumar et al., 2018)
using the neighbor-joining method. Caballeronia zhejiangensis HE983367 displayed in red font in A, C, and D was used as a reference sequence in the analysis; this
rhizobial species does not forge symbiosis with these crops.

nodules and are known to possess a high degree of host
specificity. IRLC members are commonly nodulated by Ensifer,
Mesorhizobium, and Rhizobium spp. but rarely with the members
of Bradyrhizobium, Neorhizobium, and Phyllobacterium genera.
Further, nearly all Medicago, Melilotus, and Trigonella spp. are
nodulated by either Ensifer medicae or Ensifer meliloti, while
Trifolium spp. and members of tribe Fabeae are nodulated by
Rhizobium spp. (ref. in Sprent et al., 2017). There are no reports
of Burkholderia or Cupriavidus symbionts within the IRLC
(Andrews and Andrews, 2017). The specificity of Rhizobium
leguminosarum bv. viciae genotypes with their hosts has been
found to be linked to plant-specific SNP patterns observed
within the nod gene cluster (Jorrin and Imperial, 2015). The
rhizobia–host specificity, among many factors, is determined by
a set of flavonoids produced by hosts. These chemical signals
are perceived by the rhizobial species to produce Nod factors,
which are recognized by the host receptors present on the
root cell membrane, thereby adding another layer of specificity

(Broughton et al., 2000; Wang et al., 2018; Roy et al., 2020). Nod
factors are composed of a β-1,4–linked N-acetyl-glucosamine
backbone with functional groups attached to the reducing and
nonreducing termini (Geurts and Bisseling, 2002). The IRLC
legumes, which are known to possess high specificity with
symbiotic bacteria, have a stringent requirement of the Nod
factors with unsaturated fatty acyl chains (Debellé et al., 2001).
A very high specificity within IRLC legumes is associated with
a greater N fixation efficiency on the basis of per unit carbon
utilized (Oono and Denison, 2010; Kereszt et al., 2011). In
contrast, common bean which is a promiscuous host to rhizobial
strains is considered as a weak nitrogen fixer compared to other
grain legumes (Muñoz-Azcarate et al., 2017).

A better understanding between the host and its rhizobial
partner or host–rhizobia specificity provides a gateway for an
efficient symbiosis and nitrogen output. The genetic diversity of
rhizobia in the soil offers opportunities for a range of mutualistic
interactions. The environmental factors, soil management
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practices, and cultivation history significantly influence the
genetic diversity (Kaschuk et al., 2006; Mothapo et al., 2013; Yan
et al., 2014). Almost each member of the rhizobial community
tends to exploit its genetics to forge a symbiotic relationship with
the available hosts. Because the competitiveness and N2 fixing
efficiency are independent traits, there is a high probability that
more competitive rhizobia with poor-performing capability will
colonize the host along with others, and their proportion in
the colonized population will be an important determinant of
SNF efficiency (Burghardt et al., 2018). As a counter mechanism,
the host displays an ability to sanction the nonperforming
symbionts by cutting off the nutrient supply (Westhoek et al.,
2017), but what level of nonperformance triggers this mechanism
is not understood. Such an action is expected to have a cost,
both in terms of resources and time. Therefore, it may not be
advantageous for the host to sanction every bacterium which
is not the best performing. This may explain in part why a
very high specificity in IRLC legumes is associated with more
efficient N2 fixation compared to promiscuous legumes. Further
understanding on specificity and competitiveness should provide
cues for developing elite strains with optimized symbiotic output.

A breakthrough research has enabled the simultaneous
measurement of rhizobial competitiveness and N2 fixation in
nodules (Mendoza-Suárez et al., 2020). The studies indicate
that introduction of modified strains for improved SNF
efficiency and other symbiotic characteristics face a tough
competition for their performance from the native strains
(Goyal et al., 2021). An indigenous rhizobia can dilute or
even abolish the positive effect of an inoculant (Dwivedi
et al., 2015). A study with six different legume species
inoculated with superior N2-fixing strains proved ineffective
over native soil rhizobia to enhance N2 fixation (Singleton
and Tavares, 1986). Similarly, the commercial inoculants did
not provide a significant benefit in nodulation and crop yield
over native strains (Nyaga and Njeru, 2020). Exceptionally, the
native strains outperform commercial strains for N2-fixation
effectiveness in different legume crops (Ouma et al., 2016;
Koskey et al., 2017; ref. in Mendoza-Suárez et al., 2020).
The nonnative inoculants face competition from the native
strains and may be unable to maintain their superiority.
Rhizobial populations vary from highly beneficial to ineffective
in natural and agricultural soils, and the community-level effects
seem to favor the persistence of ineffective rhizobia (Pahua
et al., 2018). It is known that the microbial communities
cause an either favorable or unfavorable environment for
specific rhizobia in the rhizosphere, thus creating unequal
opportunities for the strains (Han et al., 2020). These studies
underscore the importance of native strains for developing
more competitive or better-performing inoculants since nodule
occupancy by the natives tends to be significantly higher
(Irisarri et al., 2019). In view of these observations, an SNF
improvement program faces challenges in developing and
deploying superior inoculants in crop production systems each
having a unique ecosystem. Nevertheless, the drag due to
a mix of poor-performing strains presents an opportunity
to maximize the nodule occupancy with efficient strains for
an efficient SNF.

ENVIRONMENTAL FACTORS
AFFECTING SNF

Environmental factors have profound effects on rhizobial
diversity, which is determined by the adaptability of microbial
species to the prevailing conditions (Voung et al., 2017; Koskey
et al., 2018). Environmental stress, which affects both the host
and rhizobial response, leads to reduction in SNF efficiency
(Laranjo and Oliveira, 2011). The magnitude of reduction
depends on how the bacteria live, thrive, and survive under those
environments given that the dynamics of stress changes rapidly
under combined extremes of temperature, salinity, drought, soil
pH, pesticides, or nutrient deficiency (Hungria and Vargas, 2000).
The prominent factors that influence the symbiotic process are
discussed below (Figure 3). Genetic improvements of strains for
better adaptation to a specific stress have been recently reviewed
(Goyal et al., 2021).

Temperature
Temperature significantly affects the host–rhizobia interactions
and determines geographical distribution of strains and their
ability to nodulate (Hungria and Vargas, 2000). Each legume–
rhizobia combination tends to display specificities for an optimal
performance (Igiehon et al., 2019). For many rhizobia, the ideal
temperature range is 25–30◦C, but the strains are known to fix
nitrogen between 30 and 42◦C in arid and semiarid conditions
(Dwivedi et al., 2015). Temperature in these regions, especially
those with sandy soils, can touch 60◦C. Bacterial survival is

FIGURE 3 | Prominent factors affecting the symbiosis and efficiency of
biological nitrogen fixation.
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key for a symbiotic process when favorable conditions return.
Strain adaptation to high temperatures has been observed for
certain rhizobial species, although these are usually associated
with reduction in nodule weight, number, and nitrogenase
activity leading to decreased N fixation (Baldani and Weaver,
1992; Rodrigues et al., 2006; Ormeño-Orrillo et al., 2016).
Downregulation of the nodC gene has been observed at higher
than optimal temperatures (Shiro et al., 2016), whereas a
complete abolition of nodulating ability could be due to curing
of the plasmids contributing to N fixation (Hungria and Franco,
1993). Further, significant variations have been observed among
different host–rhizobial interactions at low temperature. In
pigeon pea (Cajanus cajan) and cowpea (Vigna unguiculata)
Bradyrhizobium symbioses, the N fixation ceases below 21◦C
(Marsh et al., 2006), while in soybean the complete inhibition
of nodulation occurs below 10◦C (Matthews and Hayes, 1982).
However, some strains display greater resiliency by fixing N even
at 4◦C (Yuan et al., 2020). Low temperature reduces secretion
of the flavonoids involved in signaling of nodule formation,
which also could contribute to poor N fixation by the rhizobia
(reviewed by Wang et al., 2018). A substantial decrease in
the level of genistein was noted below 17.5◦C (Zhang and
Smith, 1996). Application of genistein and daidzein stimulated
the nodulation and nitrogen fixation under a low-temperature
regime (Broughton et al., 2003). Along with reduction in
flavonoids at low temperatures, a decline in the excretion of nod
factors was also observed in Rhizobium leguminosarum bv. trifolii
(McKay and Djordjevic, 1993) and Bradyrhizobium (Zhang
et al., 2002). Overall, these studies indicate that stress-induced
impairment in the signaling mechanism leads to slower or
inhibition of nodule formation (Lira et al., 2015). The molecular
changes in response to temperature stress are discussed in detail
elsewhere (Alexandre and Oliveira, 2013; da-Silva et al., 2017).

pH
Certain agricultural practices and industrial pollution tend to
make the soil acidic with a negative impact on crop productivity.
An acidic soil with pH below 5.5 is considered poor in
quality, which exacerbates the metal ion toxicity. These factors
affect the growth and symbiotic characteristics of rhizobia,
thereby influencing their distribution, survival, and nodulating
ability (Ferguson et al., 2013; Lira et al., 2015). The sensitive
strains in acidic soils are compromised for N fixation, which
can significantly affect the legume production unless fertilized
(Hungria and Vargas, 2000). A reduced secretion of flavonoids
and Nod factors appears to be responsible in part for the
lower number of nodules under acidic conditions (McKay and
Djordjevic, 1993). Considerable structural change in the profile
of Nod factors occurs when the pH is lowered from neutral
to acidic (Morón et al., 2005). In general, low pH does not
favor the growth of rhizobia, but there is a wide variation
across different strains in response to pH. Some strains of
Mesorhizobium ciceri found to be moderately acidophilic prefer
a pH range of 5–7 for their growth (Laranjo and Oliveira, 2011).
Another study on Rhizobium tropici, Rhizobium cellulosilyticum,
Rhizobium taibaishanense, and Sinorhizobium meliloti found that
certain strains were able to grow at pH 4, indicating their

adaptability to environmental fluctuations (Igiehon et al., 2019).
Rhizobia employ mechanisms related to decreased membrane
permeability, internal buffering, and prevention of metal ion
toxicity to maintain ideal intracellular pH (Ormeño-Orrillo
et al., 2016). The acid-tolerance response involves multiple
genes spanning intracellular signaling to metabolic adjustments
(Draghi et al., 2016), which presents challenges in strain
improvement for acid tolerance.

Salinity
It is estimated that 40% of the available land surface area is
affected by salinity and desiccation, thereby severely limiting
the productivity potential of crops. Both bacteria and plants
experience adverse effects of salinity, reducing thereby the
availability of water and causing water deficiency or desiccation.
Salinity stress has significant consequences on the survival,
colonization, and nodule activity of rhizobia (Vriezen et al.,
2007; Brígido et al., 2012). A differential response of rhizobial
strains to salt tolerance is an indication of their evolutionary
fitness to the environment (Burghardt, 2020). Bradyrhizobium
strains are among the most sensitive to a high-salt environment
followed by Mesorhizobium, while Rhizobium and Sinorhizobium
are relatively more tolerant (Laranjo and Oliveira, 2011; Brígido
et al., 2012). The increased concentration of low molecular weight
solutes is one of the several mechanisms observed in salt-tolerant
strains (Dong et al., 2017; Furlan et al., 2017). To increase the
biosynthesis of trehalose, the M. ciceri strain was modified to
improve tolerance to salt as well as symbiosis with the host
(Moussaid et al., 2015). Similarly, a salt-tolerant Bradyrhizobium
strain accumulated more trehalose, proline, and betaine, among
other compounds, which led to higher number of nodules, plant
dry weight, and nitrogen level (Dong et al., 2017). Salt stress may
diminish the capacity of bean root exudates to induce nod genes
for producing lipochitooligosaccharides (Nod factors), while it
did not change the pattern of flavonoids (Dardanelli et al., 2012).
In another study with a salt-tolerant strain R. tropici CIAT 899,
induction of nod genes and production of Nod factors were
observed even under high concentrations of salt (Guasch-Vidal
et al., 2013). An RNA-seq analysis of R. tropici CIAT 899 under
salt stress revealed that nodulation genes were expressed in the
absence of flavonoids (Pérez-Montaño et al., 2016). Moreover,
the same set of symbiotic genes was upregulated in the presence
of both a Nod-factor inducer apigenin and salt. These studies
suggest the presence of different dynamics of flavonoid-nod
factor signaling in salt-sensitive vs. salt-tolerant strains.

Drought
Lack of moisture in soil for extended time periods causes
drought and affects plant growth and development as well as
microbial activities. Under drought conditions, a decrease in
nodule number, biomass, and nodule-specific activity resulted
in a substantial reduction in biologically derived nitrogen
acquisition (Serraj et al., 1999; Marquez-Garcia et al., 2015).
A precise mechanism of reduction in nitrogenase activity was
not deciphered, but a limiting supply of photosynthates for
the nodule and loss of leghemoglobin were considered as
playing a role (Serraj et al., 1999). Drought stress altered the
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morphology of legume roots and accelerated the senescence of
nodules in soybean (Kunert et al., 2016). Exogenous application
of a Nod factor under drought conditions led to a higher
cytokinin level in plant organs and coincided with increased
nodule number and nodule-specific activity (Prudent et al.,
2016). Other studies have indicated that drought induces similar
changes in both determinate- and indeterminate-type nodules
(Gil-Quintana et al., 2015). The differences in gene expression
were attributed to different nodule types (Sańko-Sawczenko et al.,
2019). Dehydration of the cell membrane causes damage to
the lipid bilayer, and this can jeopardize the bacterial survival
during drought (Bushby and Marshall, 1977). A slow rate of
desiccation that led to accumulation of osmoprotectants was
found to improve rhizobia survival for a longer time period
(Antheunisse et al., 1981). A correlative study demonstrated that
the nodules of drought-tolerant soybean cultivar accumulated
higher levels of trehalose, proline, and betaine compared to
the susceptible cultivar (Furlan et al., 2017). Likewise, a double
mutation in ostA and treY genes impaired the accumulation of
trehalose and increased the vulnerability of a R. leguminosarum
bv. trifolii strain to desiccation (McIntyre et al., 2007). These
studies highlight the importance of osmoprotectants in drought
tolerance. Furthermore, extreme water status, i.e., excess of
water in waterlogged conditions, also severely impairs nodule
activity and N fixation (see a review by Pucciariello et al., 2019).
A study on the role of nitric oxide homeostasis revealed that a
mutation in a single domain of hemoglobin in Bradyrhizobium
diazoefficiens conferred protection to symbiotic nitrogen fixation
during flooding in soybean plants (Salas et al., 2020).

Metals and Pesticides
The Industrial Revolution significantly contributed to heavy
metal contamination of the soil, affecting microbial activities and
influencing their diversity and population. The most common
metals contaminating the soil are lead (Pb), cadmium (Cd),
arsenic (As), zinc (Zn), chromium (Cr), copper (Cu), mercury
(Hg), and nickel (Ni) (Li et al., 2019). Although Cu, Ni, Co, and
Zn are required as micronutrients, at high concentrations they are
toxic to plants and microorganisms. Similarly, aluminum (Al),
which is the most abundant metal in Earth’s crust, causes toxicity
under acidic conditions (Bojórquez-Quintal et al., 2017). Below
pH 5.0, Al exists in its trivalent form (Al3+), which exerts its
toxic effect on many aspects of the rhizobia/legume symbiosis,
consequently impairing the nitrogen fixation process (reviewed
by Jaiswal et al., 2018). An excessive level of Al under low
pH conditions reduced nitrogenase activity by as much as 50%
in addition to biochemical changes in the nodules during the
Phaseolus vulgaris–R. tropici CIAT899 symbiosis (Mendoza-Soto
et al., 2015). The prominent mechanisms of Al toxicity mitigation
in rhizobia include induction of efflux pumps, reduction in
Al uptake through synthesis of siderophores, production of
exopolysaccharides, and synthesis of citric acid (Artigas Ramírez
et al., 2018; Jaiswal et al., 2018). Heavy metal contamination of
the soil has negative effects on plant growth and development
as well as symbiotic activity (DalCorso, 2012). In a peanut–
Bradyrhizobium sp symbiotic interaction, 10 µM Cd reduced
both the nodule number and the N content (Bianucci et al.,

2013). Similarly, the contamination of Cu in soil reduced the
nodule number in common bean, causing a shift in rhizobial
communities that were tolerant to Cu (Laguerre et al., 2006).
Chromium, which naturally occurs in its two predominant ionic
states, Cr+6 and Cr+3, causes a very strong oxidative stress
resulting in adverse effects on symbiotic interactions (Stambulska
et al., 2018). Induction of antioxidant defense is one of the
mechanisms Rhizobium deploys against metal-induced oxidative
stress. Metal-tolerant rhizobia cause an efflux of metals. An
interference in a dmeF gene that plays a role in metal efflux led
to the tolerant strains of R. leguminosarum bv. viciae to become
susceptible to Ni and Co toxicity (Rubio-Sanz et al., 2018). The
other strategies include extracellular immobilization, periplasmic
allocation, cytoplasmic sequestration, and biotransformation
of toxic products to overcome the metal stress (Cardoso
et al., 2017, 2018). The mechanisms could be specific to a
stress type or may involve a broader approach of reverse
phosphorylation for adjustment of several cellular processes
(Lipa and Janczarek, 2020).

Pesticides that are predominantly directed at pathogenic
microbial pests could also target the beneficial rhizobial
species. A few limited studies do not rule out the adverse
impact on the symbiotic activity. One of the earlier studies
noticed a harmful effect of Captan and Thiram (TMTD) on
nodulation in soybean (Chamber and Montes, 1982). Expanding
the evaluation to more fungicides such as Apron, Arrest
75W, Crown, and Captan showed a toxic effect on rhizobial
survival to varying degrees with negative consequences on
nodulation in chickpea (Kyei-Boahen et al., 2001). Crown
and Captan reduced nodulation, %Ndfa, and shoot dry
matter. Seed application of Thiram and P-Pickel T also had
detrimental effects on rhizobial survival and nodulation in pea
(Rathjen et al., 2020). In general, many of the organochlorine
pesticides, agrichemicals, and environmental contaminants
reduce root nodules, lower the rates of nitrogenase activity,
and affect plant yield (Fox et al., 2007). In view of the
global use of pesticides exceeding 4 million tons per year,
more ecological studies are required to assess their impact on
agriculture sustainability.

Biotic Stress
Pests and diseases can potentially cause substantial yield losses,
and such harmful effects extend beyond crops to nitrogen-
fixing rhizobia. Nematodes, in particular, were found to
interfere with the soybean–rhizobia symbiosis and decreased
nodule number and size (Hussey and Barker, 1976). In
another study, the soybean root infection by Pratylenchus
penetrans similar to field infestation severely affected nodulation,
density of viable bacteroids in nodules, and N fixation by
B. japonicum (Elhady et al., 2020). A prior infection by
soybean mosaic virus also adversely impacted nodulation
in soybean (Andreola et al., 2019). Activation of plants’
defense mechanism in P. vulgaris in response to a generalist
hemibiotrophic plant pathogen, Colletotrichum gloeosporioides,
was accompanied with a reduced nodule number by the rhizobia
(Ballhorn et al., 2014).
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FUTURE PERSPECTIVES

In recent years, a significant progress confined to select
commercial grain legumes has been made in the identification
of QTLs that determine the symbiotic process and N fixation.
The adoption of such information in breeding programs
depends on recognizing SNF as an important part of agriculture
sustainability. Effective and low-cost synthetic versions of
N are likely to be a deterring factor till the associated
environmental issues become compelling enough to consider
environment-friendly options. The strength and effectiveness
of identified QTLs would contribute to their incorporation
into breeding efforts. More studies on QTLs with expansion
and involving other legume crops would strengthen them as
candidates of SNF trait.

A varied degree of rhizobial–host preference, which in part
is determined by the presence of reciprocal symbiotic genes
in host plants, and the environments dictate the symbiotic
process and its performance. Consequently, it sets the limit of
N amount which can be accrued in a symbiotic relationship.
The existing knowledge along with robust soil microbiome
profiles can be used to optimize the host–rhizobia interactions,
particularly when new legume crops are introduced into the
soil and environment. Unraveling the molecular basis of a
negative correlation with rhizobial promiscuousness and N
fixation efficiency or vice versa should greatly help in improving
the symbiotic N outcome. It is also important to note that
recombinant DNA technology has contributed in developing

the novel strains (germplasm) that are more adaptive to a
given environment and have improved efficiency of SNF. The
challenges from the native rhizobial microflora notwithstanding,
such strains can be integrated for better N output but will
require undertaking more ecological studies to allay the fears of
genetically modified organisms. In addition, to protect the scope
of SNF in N use sustainability, the application of pesticides as an
integral agricultural practice needs to be carefully monitored.
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