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Abstract

Background: Chromatin boundaries, also known as insulators, regulate gene activity by organizing
active and repressive chromatin domains and modulate enhancer-promoter interactions. However,
the mechanisms of boundary action are poorly understood, in part due to our limited knowledge
about insulator proteins, and a shortage of standard assays by which diverse boundaries could be
compared.

Results: We report here the development of an enhancer-blocking assay for studying insulator
activity in Drosophila cultured cells. We show that the activities of diverse Drosophila insulators
including suHw, SFI, SFIb, Fab7 and Fab8 are supported in these cells. We further show that
double stranded RNA (dsRNA)-mediated knockdown of SuHw and dCTCF factors disrupts the
enhancer-blocking function of suHw and Fab8, respectively, thereby establishing the effectiveness
of using RNA interference in our cell-based assay for probing insulator function.

Conclusion: The novel boundary assay provides a quantitative and efficient method for analyzing
insulator mechanism and can be further exploited in genome-wide RNAi screens for insulator
components. It provides a useful tool that complements the transgenic and genetic approaches for
studying this important class of regulatory elements.

gins, chromatin boundaries are characterized by either
one or both of the following functional properties: their

Background

Chromatin domain boundaries, also known as insulators,

are important for the proper regulation of gene expression
in a wide variety of organisms (for recent reviews of chro-
matin boundaries, see [1-8]). The best-known examples
of chromatin boundary elements include scs and scs',
which delimit the active chromatin domain of the Dro-
sophila hsp70 genes during heatshock [9,10]. Other well-
characterized boundaries include the yeast telomeric and
silent mating type loci boundaries, which restrict the
spread of repressive chromatin, and the mammalian ICR
boundary, which modulates enhancer-promoter interac-
tions in imprinted H19 and Igf2 loci [11-16]. Despite the
diverse genomic contexts and different organismal ori-

ability to block enhancer-promoter interactions when
positioned interveningly (insulator activity, see [17-22]),
and their ability to protect reporter genes from the tran-
scriptional influences from the surrounding genome (bar-
rier activity, [9,23-25]).

The mechanism of boundary activity remains poorly
understood. This is partly due to our ignorance about
their protein components, and a lack of systematic and
comparative analyses of various insulator activities. Cur-
rently, boundary activities are often defined by assays that
are unique to their organism of origin. For example, cell
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culture-based assays have been widely used to characterize
vertebrate boundaries [21,24,26]. In contrast, characteri-
zation of many boundary elements in Drosophila were
carried out in transgenic reporter assays [9,10,18-20,27-
32]. Parallels were frequently drawn between activities
defined in different assays and they could be misleading.

To begin addressing these problems, we developed a cell-
based insulator assay to analyze and compare different
boundary elements from Drosophila, the species where
the most diverse collection of boundaries have been
reported. The assay retains the key aspects of a P-element-
based enhancer-blocking assay we previously used for
investigating insulator function in transgenic Drosophila
embryos [18,33]. It utilizes separate and clearly delineated
enhancer and basal promoter modules, essential for test-
ing enhancer-blocking activity. It contains divergently
transcribed dual reporters, which provide a linked inter-
nal control against silencer effect and off-target effects.
The use of GFP and RFP reporters facilitates the use of flu-
orescence-based quantification of enhancer-blocking
activity. An important and unique feature is the use of P-
element as the transgene backbone, which allows single or
low copy number non-tandem genomic insertions of the
assay transgenes in stable cell lines, providing a more suit-
able genomic and regulatory environment to study chro-
matin boundary function. We validated the novel assay
with multiple Drosophila chromatin boundaries includ-
ing the Gypsy insulator suHw element, the SF1, SF1b,
Fab7 and Fab8 boundaries from the homeotic gene clus-
ters. We further tested RNAi-mediated gene knock-down
with the insulator assay and found that dsRNA against
SuHw and dCTCF, two proteins essential for the function
of suHw and Fabs8, respectively, specifically disrupted the
enhancer-blocking activity of these two insulators [34-
36]. The system provides a rapid, efficient, and quantita-
tive platform for comparing and analyzing diverse bound-
ary elements, for dissecting boundary mechanism
biochemically and for genome-wide RNAi screening of
novel boundary components [37].

Results

An enhancer-blocking assay in cultured Drosophila cells
An important consideration in designing a transgene for
testing enhancer-blocking activity is the selection of a pair
of clearly delineated and well-matched enhancer and pro-
moter. For the promoter, we tested the basal promoters of
the hsp70 and evenskipped (eve) genes. The eve basal pro-
moter contains a 42-bp upstream sequence and a canoni-
cal TATA box [38]. It exhibits low basal activity on several
reporter genes but responds robustly to a variety of
enhancers in transgenic Drosophila [39-41]. The hsp70
basal promoter has been used widely to drive various
reporter genes, such as GFP and RFP [42]. For the
enhancer we selected a Cu?*-inducible metal response
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enhancer from the metallothionein gene (MT, [43]). The
enhancer and promoter pair was combined with a GFP
reporter in a P-element backbone (see map of MT-eve-
GFP, Figure 1A) and introduced into Drosophila S2 cells
via transient transfection. Addition of 1 mM Cu?* in the
media resulted in strong induction of the GFP reporter
(upper panels, Figure 1A). Fluorescence-Activated Cell
Sorting (FACS) showed that this corresponded with a 10-
fold increase in the frequency of GFP positive cells when
compared with the no-induction control (bottom panels,
Figure 1A, Figure 1E). GFP induction was not observed in
a control transfection in which the MT enhancer was
absent (data not shown). These results indicate that the
GFP expression is a good indicator for the activity of the
MT enhancer. GFP was also strongly induced from a trans-
gene containing a spacer DNA between MT and eve-GFP
(MT-sp-GFP, Figure 1B). Since the effect of an upstream
enhancer could be mediated from either the forward (MT
-> spacer -> eve-GFP) orientation, or the reverse (MT -> P-
vector -> GFP-eve promoter) orientation along the circular
plasmid, we linearized the transgene at a position distal to
the enhancer and compared the GFP induction using the
linearized plasmids. We found little difference in the effi-
ciency of GFP induction between the two DNAs, suggest-
ing that either the distance between MT and the eve
promoter in the reverse orientation (~5 kb) is prohibitory,
or there might be insulator-like activities in the vector
backbone (data not shown). Next, we tested the ability of
the suHw element, a well-characterized Drosophila
boundary element from the Gypsy retrotransposon, to
block the MT enhancer. The 340 bp suHw element
inserted between MT and the eve-GFP fusion reporter
almost completely blocked the Cu-mediated induction of
the GFP reporter (MT-suHw-GFP, Figure 1C). A similar
enhancer-blocking effect was also seen when the SF1 chro-
matin boundary, a 2.4-kb DNA element from the Dro-
sophila Antennapedia complex, was placed between the
MT enhancer and the GFP reporter (Figure 1E, [31]). In
contrast, the same SF1 insulator, when placed upstream of
the MT enhancer, had little effect on GFP induction (Fig-
ure 1E). These results show that the inhibitory effect of the
insulators depends on their intervening position between
the enhancer and the promoter, a key characteristic that
distinguishes insulators from silencers. We further tested
the insulator activity in another commonly used Dro-
sophila cell line, the Kc cells [44,45]. We found the
enhancer-blocking activity of the suHw element in Kc cells
to be comparable to that observed in the S2 cells (Figure
1F). These results indicate that the suHw boundary is
active in these cultured Drosophila cells.

Stably transfected cells contain integrated transgenes in a
chromosomal environment, which more closely resem-
bles the native chromatin environment of boundary func-
tion. Further, P-element-based transposition has been
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Enhancer-mediated GFP activation is blocked by the suHw and the SF1 insulators in Drosophila S2 cells. A.
Induction of S2 cells containing the GFP transgene. Top: a diagram of MT-GFP: key regulatory components shown include: the
MT enhancer (yellow), the evenskipped basal promoter (light blue) and the GFP reporter gene (green). Middle: fluorescence
microscopy images of S2 cell containing MT-GFP before (left) and after (right) induction. Bottom: FACS histogram of unin-
duced (left) and induced (right) S2 cells. X-axes: log scale of GFP level; Y-axes: cells number at indicated GFP level. Red bar:
percentage of total cells with GFP level above 102. B. Induction of S2 containing MT-sp-GFP (grey box). Bottom: FACS histo-
gram of uninduced (left) and induced (right) S2 cells. C-D. GFP induction in S2 cells containing enhancer-blocking transgenes.
Top: a diagram of MT-suHw-GFP (C) or MT- SFI-GFP (D) transgenes. Insulator elements are represented by the red ovals.
Bottom: FACS histogram of uninduced (left) and induced (right) S2 cells. E. Quantitation of GFP induction (l) in S2 cells trans-
fected with insulator-containing transgenes. Number of replicates for each experiment is shown in parentheses. See methods
for calculation of | and standard error of mean (SEM). F. Comparison of enhancer-blocking activity of suHw in S2 and Kc cells.
Bar graph shows percentage of GFP induction in S2 (left) or Kc (right) cells transfected with MT-suHw-GFP (red bars) and MT-
GFP (green bars). Transfection and induction were done in parallel.
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shown to produce predominantly low copy number soli-
tary insertions in stably transfected Drosophila cells [46].
Such an arrangement provides a more native regulatory
environment to study insulator function without trigger-
ing homology-induced transgene silencing observed in
tandem transgene arrangement, or altering the regulatory
stoichiometry of the endogenous chromatin boundary
system, which may contain up to hundreds of boundary
sites dispersed in the genome [47-54]. In addition, stable
cell lines allow careful calibration of the transgene behav-
ior for detecting subtle changes in boundary activity, and
provide consistent cell sources for biochemical studies
and large-scale cell-based screens. We tested the enhancer-
blocking assay in stably transfected S2 cells. In transfec-
tions using the reporter transgenes alone, frequency of
GFP positive cells reduced from 12-25% at two days post
transfection to 0.02-0.1% 4-5 weeks after transfection.
We co-transfected S2 cells with GFP transgene and
pTurbo, a P element transposase encoding plasmid, at
10:1 and 100:1 weight ratios. We found that P-trans-
posase dramatically improved the frequency of stable
integration of GFP reporter transgene in unselected cell
populations. For example, the mean frequency of GFP
positive cells is 6.5% 25-42 days post transfection (repli-
cate n = 3), which is much higher than those without
pTurbo. Although the mean induced GFP level is lower
than transiently transfected cells due to the reduction in
the transgene copy number, we still observed a 3-4 fold
higher GFP induction in cells containing MT-GFP than
those containing MT-suHw-GFP in unselected cell popu-
lations. These results indicate that the suHw insulator is
active as integrated in these cultured Drosophila cells.

Dual-reporter assay for boundary activity

In order to assay for insulator activity, it is important to
control for changes in the non-insulator components of
the assay system that could affect reporter expression. An
internal reference reporter within the same cell allows
rapid and quantitative assessment of enhancer-blocking
activity, especially in high throughput applications. We
generated a control transgene containing the dsRed fluo-
rescent protein (RFP) gene driven from the hsp70 pro-
moter and the MT enhancer (MT-RFP, Figure 2A[42,55]).
Cotransfection of the MT-GFP and MT-RFP plasmids pro-
duced cells doubly positive for GFP and RFP upon induc-
tion (the upper right quadrant, Figure 2A, [R:G] in Figure
2D). The ratio between the induced levels of GFP and RFP
did not change when MT-RFP was cotransfected with MT-
sp-GFP, which contains a spacer DNA between the MT
enhancer and the eve promoter (Figure 2B, [R:G-spacer]| in
Figure 2D). However, when MT-RFP was cotransfected
with MT-suHw-GFP, a transgene containing the suHw ele-
ment between the MT and the eve-GFP reporter, the level
of GFP was dramatically reduced compared to that of RFP
(Figure 2C, [R:G-suHw] in Figure 2D). We concluded that
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the RFP transgene serves as an independent readout for
the activity of the MT enhancer and the state of transcrip-
tional activity in the cell. The ratio between the induced
level of GFP and RFP is a good indicator of the boundary
activity.

Next, we created a dual-reporter construct that contains
both GFP and RFP reporters in divergently transcribed ori-
entation driven by the eve promoter and the hsp70 basal
promoter, respectively. The MT enhancer is inserted
between the two promoters (2xR, Figure 3A). This trans-
gene allows both GFP and RFP reporters to be present in
the same cells, with the same copy number and at the
same genomic location, thereby providing a necessary
control for interpreting insulator activity in stably trans-
fected cells. Cells transiently transfected with the 2xR dual
reporter transgene showed strong induction of both GFP
and RFP expression (Figure 3B). The magnitude of GFP
induction appeared slightly higher than that of RFP under
the same detection and compensation conditions used in
the cotransfection (Figure 3B). We also noticed that the
level of GFP induction was slightly reduced by the inser-
tion of a spacer DNA (Figure 3C, and 3D, see methods for
calculation of ratio of GFP and RFP induction (R)). How-
ever, a known insulator SF1 inserted between the MT
enhancer and the eve-GFP reporter caused a significantly
greater reduction in the GFP/RFP induction ratio than the
spacer control (Figure 3C, D).

Diverse Drosophila boundaries function in S2 cell assay
In order to establish the general efficacy of the cell-based
insulator assay, we tested several Drosophila boundary
elements in the dual reporter assay. They include suHw,
SF1, SF1b, a sub-element of SF1, Fab7 and Fab8 (Figure
3D, [27,31,36,56-58]). In transiently transfected S2 cells
all tested insulators effectively reduced the MT activation
of the GFP reporter when compared with that of RFP (Fig-
ure 3D). We also tested Fab8 inserted in both orientations
between MT and GFP, and both significantly blocked the
MT enhancer (forward orientation: R = 31% of no insula-
tor control, reverse orientation: R = 42%). These results
indicate that the 2xR transgene is suitable assay vector for
diverse insulators.

Probing boundary function using RNAi

Although Drosophila has the most diverse insulator pro-
teins identified so far, functional tests of all known insu-
lator proteins on all insulator elements have not been
systematically carried out. A goal of developing a cell-
based insulator assay is to use RNAi-mediated gene
knockdown to identify and characterize protein compo-
nents of insulators. Double-stranded RNA (dsRNA)
induces powerful interference of gene activity in Dro-
sophila in a cell-autonomous and isoform-specific fash-
ion. It has been the predominant agent for RNA-
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Enhancer-blocking assay using two reporter transgenes. Reporter expression in S2 cells cotransfected with separate
RFP and GFP transgenes. A. Left, diagrams of MT-RFP (top) and MT-GFP (bottom). Right, FACS chart of GFP and RFP induc-
tion in S2 cells cotransfected with both transgenes. Level of GFP or RFP is shown in logarithm scale (Y or X axis, respectively).
The lower-left quadrant contains cell with both GFP and RFP levels <80 (double-negative cells); and the top-right quadrant
contains cells with both GFP and RFP levels >80. Percentage of cells indicated at the corner in each quadrant. B. Induction of S2
cells cotransfected with MT-RFP and MT-sp-GFP, which contains a spacer (grey box) between MT and the eve promoter.
Right: FACS chart of GFP and RFP induction in S2 cells cotransfected with both plasmids. C. Induction of S2 cells cotransfected
with MT-RFP and the MT-suHw-GFP, which contains the 340-bp suHw element (red oval) between MT and the eve promoter.
Right: FACS chart of GFP and RFP induction in S2 cells cotransfected with both plasmids. D. Relative induction level (I') of the
RFP (red bars) and GFP (green bars) in cotransfection experiments in Panels A-C, see Methods).

interference both in vivo and in cell culture studies in Dro-
sophila [59]. Our insulator assay supports the activity of
diverse Drosophila insulators in a more native regulatory
environment and should provide a more suitable system
for studying the transacting components of boundary
function.

We first tested the effect of RNAi-mediated gene knock-
down on the suHw insulator. SuHw, a zinc-finger protein,
is critical for the suHw insulator activity [34,35]. S2 cells
transiently transfected with 2xR-suHw transgene were
incubated for 96 hours with culture media containing
dsRNAs against SuHw (Figure 4, [34,35,60]). These cells
were then induced by Cu?+ and analyzed for reporter
expression. To assess the extent of SuHw knockdown,
duplex semi-quantitative RT-PCR were performed using
primers against the mRNAs of SuHw, and those of Actin
88F as an internal control (left panel, Figure 4B, D). Cells
treated with dsRNA-SuHw showed a moderate reduction

in the level of SuHw mRNA when compared to untreated
control cells (Figure 4B, also see Figure 4D for quantita-
tion of SuHw mRNA knockdown). To validate the knock-
down at protein level, we used Western blot to compare
the SuHw protein level in dsRNA-treated cells to that in
untreated control cells. We observed a significant reduc-
tion of SuHw in the dsRNA-treated cells (Figure 4C, D for
quantitation of SuHw protein knockdown). Such differ-
ential knockdown in mRNA and protein levels has been
previously observed in RNAi experiments [61]. The treat-
ment of dsSRNA-SuHw coincided with a dramatic increase
in the GFP/RFP ratio when compared with the untreated
control (Figure 4E). This change is consistent with the key
role SuHw plays in the enhancer-blocking activity of the
insulator. Loss of insulator activity was not observed
when these cells were treated with dsRNAs against dCTCF
or GAF, two other proteins implicated in the function of
Drosophila Fab8 and SF1/Fab7 insulators, respectively
(Figure 4B, D, [31,36,58]). We also tested SuHw knock-
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down in cells transfected with Fab8-containing trans-
genes. Comparable reduction in the SuHw mRNA resulted
in little or no change in the GFP/REFP ratio in these cells
(Figure 4B, D-E). These results demonstrate the specificity
of the SuHw protein to the suHw insulator. It is important
to note that the dsRNA-treated cells, including those used
in SuHw, dCTCF or GAF knockdowns, appeared normal
and indistinguishable, other than the level of reporter
expression, from the untreated control cells during the
duration of the experiment.

We next focused on the role of dCTCF, a recently identi-
fied component of the Drosophila Fab8 insulator [36].

The dCTCF gene encodes the ortholog of the vertebrate
CTCF, which is required for the enhancer-blocking activity
of almost all vertebrate boundaries known to date
[2,36,62-64]. It contains multiple zinc fingers, a shared
structural feature with the SuHw protein, and was found
to localize at a large numbers of sites in the Drosophila
genome [50,52,65]. S2 cells were transfected with dual-
reporter transgene containing the Fab8 insulator and
treated with dsRNA-dCTCF. Reporter induction was
examined in treated cells and compared with untreated
controls. Treatment of dsRNA-dCTCF elicited a severe
reduction of the dCTCF mRNA (Figure 4B, D). This
resulted in a dramatic loss of insulator activity of Fab8,
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RNAIi -mediated disruption of insulator function in the S2 assay. A. Diagram of 2xR transgenes used in RNAi knock-
down tests. B. RT-PCR assessment of SuHw, GAF and dCTCF transcript level in S2 cells containing 2xR-insulator transgenes.
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ard in kilodalton (KD); middle lane, untreated cells; and right, dSsSRNA-SuHw-treated cells. Arrowhead points to the position of
SuHw at ~145 KD. Asterisk indicates a non-specific band reactive to the antibody. D. Summary of mRNA and protein reduc-
tion in the RNAi-mediated knockdown. N indicates the number of replicate of RT-PCR used in the assessment. E. Changes in
GFP/RFP ratio as a result of knockdown (untreated cell = 100%). The dsRNA used in the knockdown is indicated below the
bar graph. Number of replicates is indicated in parentheses.
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shown by the 230% increase in the GFP/RFP induction
ratio compared to the untreated control (Figure 4E). How-
ever, a similar reduction in dCTCF resulted in little or no
effect on the enhancer-blocking function of suHw (Figure
4B, D-E). Our results indicate that dCTCF is likely to be a
dedicated component of the Fab8 class insulators. The
efficient knockdown of the dCTCF-dependent insulators
in the Drosophila cell could be utilized as a model for
studying the vertebrate CTCF-dependent boundary path-
ways. These results further suggest that multiple inde-
pendent classes of boundaries, exemplified by the Gypsy
(suHw) type with the dedicated SuHw factor, the SF1 or
Fab7 type, which depends on the Drosophila GAF pro-
tein, and the Fab8 type, facilitated by dCTCF, carry out
boundary functions in Drosophila [31,35,36,58,66,67].

Discussion

We have developed a novel cell-based assay for studying
insulator function in Drosophila. We show that despite
their diverse genomic origins and distinct cis- and trans-
components, the Drosophila suHw, SF1, Fab7 and Fab8
elements function as potent enhancer-blockers in the
Drosophila cells. This finding suggests that chromatin
boundary represents a basic cell function that is shared by
diverse tissues. We further combined the cell-based insu-
lator assay with RNAi-mediated gene knockdown to sys-
tematically test the requirement of SuHw and dCTCF in
the function of several Drosophila insulators. We showed
that RNAi-mediated knockdown of SuHw and dCTCF spe-
cifically disrupted the function of the suHw and Fab8
boundaries, respectively, thereby validating the functional
specificity of the assay. Our results suggest that multiple
independent pathways in Drosophila mediate insulator
function [31,35,36,58,66,67]. This is in contrast with the
pivotal role the CTCF protein plays in the enhancer-block-
ing activities in vertebrates.

Cell culture assays have several important advantages that
complement studies using in vivo system. The homogene-
ous cell populations in these assays can be used in bio-
chemical and cell biological analyses. They allow more
efficient and quantitative assessment of reporter readout
from a large number of individual cells. Insulator activity
has previously been demonstrated in Drosophila cells,
our system has improved the assay with several novel fea-
tures [68,69]. First is the use of P-element-based transgene
vector, which is known to mediate single to low copy
number, non-tandem genomic integration of the assay
transgenes [46]. This would provide more native genomic
and regulatory environment for studying chromatin
boundary function. Large numbers of stably transfected
cells with randomly integrated transgenes also provide a
broader sampling of the genomic environment, a feature
that can be exploited to examine boundary activity in
blocking chromosomal position effect. The second

http://www.biomedcentral.com/1471-2199/9/109

improvement is the use of divergently transcribed dual
reporters, which provides a linked readout to control for
the "off-targets" effects on the non-insulator components
in the assay system, such as enhancers, promoters, report-
ers, the state of general transcription or other cellular func-
tions that impact the reporter readout. It should also
provide an important control for the chromosomal posi-
tion effect near the transgene integration site in stably
transfected cells. The use of fluorescent protein reporters
further allows rapid and quantitative FACS assessment of
the enhancer-blocking activity, a feature particular impor-
tant in high-throughput applications. We have now estab-
lished the activity of multiple Drosophila insulators and
the efficiency of RNAi-mediated gene knockdown in our
assay, which should facilitate biochemical dissection of
insulator function and genome-wide high throughput
RNAI screens for novel boundary components [37].

As most cell-based systems, the enhancer-blocking assay is
limited in its application by potential tissue or develop-
mental stage incompatibilities of the insulator and the
cell. Studies have suggested that certain chromatin bound-
aries, such as Fab7 and SF1, are composed of distinct insu-
lator activities that function in different tissues and/or
developmental stages [70], Roy and Cai, unpublished).
Although we have documented the functionality of sev-
eral Drosophila insulators in S2 and Kc cells, both derived
from embryonic cell lineages, other insulators may not
function in these two cell lines [71]. In addition, cultured
cells may have, over the course of many passages, lost the
physiological stoichiometry of relevant DNA or protein
components, resulting in impaired function of certain
insulators. Furthermore, the dynamic regulation of insula-
tor activity in response to developmental and physiologi-
cal cues would depend on the context of the whole
animal. Therefore, the cell-based insulator assay we pre-
sented here provides a useful tool that complements the
transgenic and genetic approaches for studying this
important class of regulatory elements.

Methods

Construction of DNA plasmids used in S2 and transgenic
embryo insulator assays

The EGFP open reading frames were amplified by PCR
using pEGFP-N3 (Clonetech) as templates, and subse-
quently inserted between BamHI and Pstl sites replacing
the lacZ ORF in the pCAsPeR-eb-lacZ construct [38,40].
To make the double reporter construct (pCA-2xR), the
DNA fragment containing the 128 bp hsp70 promoter
fused to the RFP coding region was amplified from pRed
Stinger (kindly provided by S. Barolo), subcloned into
pCRII TOPO vector and then inserted between the Nsil
and EcoRV sites of pCA-EB replacing the mini-white gene.
The Metallothionein (MT) enhancer was cloned by PCR.
Primer sequences will be provided upon request (below
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same). The MT enhancer was placed into pCA-eve-GFP
upstream from the promoter or between the divergently
transcribed reporters in pCA-2xR. The spacer element, SF-
1, SF-1/b, suHw, Fab7 and Fab8 were purified as Notl frag-
ments and inserted into a Notl site between the MT
enhancer and eve-GFP in the single- and double-reporter
constructs.

S2 cell culture and transfection

Drosophila Schneider's Line 2 (S2) cells were maintained
in HyQ SFX-Insect serum-free medium (HyClone) at
25°C. Cells were sub-cultured every 10 days. The DNAs
used for transfection were prepared using the Qiagen Plas-
mid Mini Kit. For transfection S2 cells were sub-cultured
3-5 days before transfection, 5 x 105 cells in 1 ml medium
were aliquoted into each well of a 12-well plate. After cells
had attached to the bottom of the well, they were gently
washed once with 1 ml of fresh medium and soaked in 0.5
ml of transfection cocktail (1 pg of assay construct and 2.5
pl of Cellfectin reagent in 0.5 ml medium). For stable
transfection, pTurbo plasmid containing the P-element
transposase was mixed with the assay construction at a
ratio of 1 to 10. The transfection cocktail was replaced
with fresh medium after 5 hour of incubation. Cells were
normally induced with 1 mM CuSO, 24 hours after trans-
fection except in the RNAi experiments.

Imaging and flow cytometry

Fluorescence microscopy and flow cytometry analysis
were done 24 hours after induction. Images of the cells
were taken with an Olympus DP10 digital camera
attached to a Zeiss Axioplan 2 fluorescence microscope.
Fluorescence Activated Cell Sorting was performed using
FACSCalibur flow cytometer (Becton Dickinson Immu-
nocytometry Systems). Briefly, cells were wash off the
plate, spun down and resuspended in sterile PBS. Fifty
thousand cells were analyzed for each sample. Fluores-
cence was excited at 488 nm. The photomultiplier detec-
tion voltages were set at 400 V for FL1 and 375 V for FL2.
Data analysis was done using the Flojo software. Green
fluorescence was detected with FL1 530/30 BP filter; red
fluorescence was detected with FL2 585/42 BP filter. For
MT-GFP transgenes, the fold of induction in Figure 1E is
calculated as below: I = [% of GFP positive cells (>10) x
mean GFP fluorescencel;,quceq/[%0 of GFP positive cells
(>10) x mean GFP fluorescence],,inquceq- The relative level
of induction of the reporter genes in cotransfection exper-
iments in Figure 2D is calculated as below: I' = (/i) x
100%, (i = positive cells % x positive cells mean fluores-
cencel;,quced/ [POSItiVe cells % x positive cells mean fluo-
rescence] ninduceds aNd i,y 18 the nearest high integer if the
highest i value of all cotransfection experiments. The ratio
of relative level of induction (R) of the two reporter genes
in the dual reporter experiments in Figure 3D and Figure
4E is calculated as below: R = {[|GFP cells % x GFP cells

http://www.biomedcentral.com/1471-2199/9/109

mean fluorescence];, yuc.q/[GFP cells % x GFP cells mean
fluorescence] ninduced s/ { [RFP cells % x REP cells mean flu-
orescencel;, jceq/ [RFP cells % x RFP cells mean fluores-
cence] ninduced s - FOT all quantitation graphs, the error bar
is calculated as: SEM = standard deviation (SD)/square
root [replicate number (N)].

RNAi and RT-PCR

To synthesize double-strand RNA for the RNA interference
experiment, linearized cDNA plasmid or PCR product for
the target proteins were used as templates for in vitro tran-
scription reaction. The SP6 and T7 MEGAscript transcrip-
tion kits (Ambion) were used to generate sense and anti-
sense RNA strands. The two strands were then annealed
and quantitated before use. The dsRNA-SuHw was synthe-
sized from a ¢cDNA clone generously provided by Jim
Kodonaga, or a PCR fragment amplified with the primers
5'AGGAAAAGAAGGGCAAGCTGC3' and
5'AGCATATGTCCTTCITCTCC3'. The dsRNA-GAF was
synthesized from a cDNA clone generously provided by
Sally Elgin, or a PCR fragment amplified with the primers
5 TAATACGACTCACTATAGGGACCAAGACCAACTGATT
GCC3' and
5'TAATACGACTCACTATAGGGCCTITTGTCCITCGCTCT
TG3'. The dCTCF ¢DNA plasmid was purchased from
ATCC. For RNAIi experiment, cell transfection was per-
formed as described above. 24 hours after transfection,
cells were washed off the plates and aliquoted into 12-
well plates at 3 x 105 cells/well. Double-strand RNA was
delivered to the cells either by transfection using Cellfec-
tin reagent or by soaking the cells in ds-RNA containing
medium. Cells were induced by addition of 1 mM Cu2+
72-96 hours after RNAi treatment. 24 hours after induc-
tion, cells were harvested for FACS analysis and total RNA
extraction using TRIZOL reagent (invitrogen). RT-PCR
analysis was performed to assess the effectiveness of the
RNAi knockdown. The isolated RNAs were used as tem-
plates in RT-PCR reactions using the Qiagen OneStep RT-
PCR kit. The following primers were used to detect tran-
scripts: 5'GGAAAACACAGCCCGAAACA3' and
5'CCTCATCCGTCAGCTGCTCT3' for Su(Hw); 5TGTC
ACAATGGTCTGCTGTTGT3',  5'GTATCGGCAATCCAA
TTGITG3' for GAF;; 5'AGTACAGCCACCAATAAATCC
ATC3',  5'CTTCGTCTACGGTATAGTCCGACA3'  for
dCTCF; 5'GATGGTGTCTCCCACACCGT3' and
5'CGATCGGCAATACCAGGGT3' for actin 88F. A semi-
quantitative multiplex RT-PCR was performed for each
treatment with the primers for the transcript of the target
gene and the primers for actin 88F as an internal control.
The ratio of target gene primers to the actin 88F primers
was determined empirically. Equal weight of RNA tem-
plate was used for all RT-PCR reactions. Changes in GFP/
RFP ratio due to the RNAi knockdown is calculated as
below: C = {|GFP cells % x GFP cells mean fluores-
cence|pai treated/ [GFP cells % x GFP cells mean fluores-
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cence|ynireated s/ {[RFP  cells % x RFP cells mean
fluorescence]pyai treated/ [RFP cells % x RFP cells mean flu-
Orescence]untreated } :

Western blot analysis of the SuHw protein

S2 cell transiently transfected with 2xR-suHw transgene
and treated for 72-96 hours either with dsRNA-SuHw or
control media. Half million cells were harvested, lysed by
boiling in 4x sample buffer and fractionated on 8% Poly-
acrylamide-Bis gel with prestained molecular weight
standard. Proteins were transferred and immobilized to
PVDF membrane and incubated with a primary rabbit
anti-SuHw antibody generated against a 20-aminio acid-
polypeptides (KFSALVALKKHRRYHTGEKP). The anti-
body was preabsorbed against 0-18 h Drosophila
embryos before use. A secondary anti-rabbit-AP conjugate
is from Sigma. Colorimetric visualization of SuHw pro-
tein were done using BCIP/NBT tablet (Sigma). Digital
image analyses were performed using the Image] software.
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