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Abstract: The rare flavonoid, patuletin, was isolated from the flowers of Tagetes patula growing in
Egypt. The rarity of the isolated compound inspired us to scrutinize its preventive effect against
COVID-19 utilizing a multi-step computational approach. Firstly, a structural similarity study was
carried out against nine ligands of nine SARS-CoV-2 proteins. The results showed a large structural
similarity between patuletin and F86, the ligand of SARS-CoV-2 RNA-dependent RNA polymerase
(RdRp). Then, a 3D-Flexible alignment study of patuletin and F86 verified the proposed similarity.
To determine the binding opportunity, patuletin was docked against the RdRp showing a correct
binding inside its active pocket with an energy of −20 kcal/mol that was comparable to that of F86
(−23 kcal/mol). Following, several MD simulations as well as MM-PBSA studies authenticated the
accurate binding of patuletin in the RdRp via the correct dynamic and energetic behaviors over 100 ns.
Additionally, in silico ADMET studies showed the general safety and drug-likeness of patuletin.

Keywords: Tagetes patula; SARS-CoV-2 RNA-dependent RNA polymerase; patuletin; molecular
similarity; 3D-Flexible alignment; molecular docking; ADMET; toxicity; MD simulations

1. Introduction

Since the oldest historical records, nature granted humans their primary needs includ-
ing treatments, food, as well as cosmetical products [1,2]. Modern science relates the biolog-
ical activities of natural products to the presence of various sorts of secondary metabolites
such as hydrocarbons [3–5], isochromenes [6], α-pyrones [7,8], diterpenes [9], sesquiter-
penes [10,11], steroids [12,13], and saponins [14–16]. The computational (computer-based
or in silico) chemistry approaches are efficient tools that have been employed to examine
the biological activities of compounds virtually. These approaches have been effectively
utilized in drug design and drug discovery. The computational chemistry methods were em-
ployed to determine the biological activities of natural, synthesized, and semi-synthesized
compounds. The huge advancement that occurred in software in the last decade enabled
researchers to apply the structure–activity relationship principles to precisely predict the
biological activity of a new compound based on its physical and chemical properties. Our
team employed computer-based chemistry strategies to disclose the potential inhibitive
effects of the several secondary metabolites against SARS-CoV-2 that have been isolated
from Asteriscus sp. [17], Monanchora sp. [18], and Artemisia spp. [19–21]. Additionally, we
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presented a well-designed in silico approach to select the most relevant inhibitor compound
among a huge set of compounds and we applied that method to introduce several oppor-
tune anti-COVID-19 compounds from 69 isoflavonoids [22], semi-synthetic compounds [23],
310 natural antivirals [24,25], and 3009 FDA-approved compounds [26,27].

Patuletin is a rare flavonol that has been isolated for the first time from Tagetes patula
in 1941 [28]; then, it was isolated a few times from other plant species such as Eriocaulon
sp. [29] and Urtica urens [30]. Later, patuletin was employed as a chemotaxonomic marker
for Tagetes patula [31]. Despite the rarity of patuletin, it exhibited several promising biologi-
cal activities such as anti-inflammatory [32,33], cytotoxic [34,35], antimicrobial [36], and
neuroprotective [37].

Here in this study, we report the isolation of the rare flavonol, patuletin, from the
flowers of Tagetes patula. Due to being a rare flavonol, its potential effect as a treatment
for COVID-19 was examined. The start point of our work was the chemical structures of
diverse ligands of different SARS-CoV-2 proteins. Our study indicated the great structural
similarity of patuletin and F86, the co-crystallized ligand of RdRp (PDB ID: 7BV2), expecting
an efficient binding to patuletin in the active site of RdRp. This correct binding was
confirmed by applying molecular docking as well as MD simulations and MM-PBSA.

2. Results
2.1. Isolation and Characterization

A total of 2 kg of Tagetes patula L. flowers were extracted with 70% ethanol three times
to afford 210 gm of total extract. The extract was suspended in water and fractionated
against hexane, CH2Cl2, and n-butanol. Then, the butanol fraction was subjected to a silica
gel column to provide 8 different fractions. Fraction 3 was further purified with Sephadex
LH-20 to furnish 110 mg of patuletin (Figure 1). The 1H NMR spectrum of patuletin showed
one singlet aromatic signal at δH 6.54 ppm for H-8 in addition to three other multiplied
aromatic signals resonating at 7.70 ppm d (J = 2 Hz, H-2′), 6.92 ppm d (J = 8 Hz, H-5′),
and 7.56 ppm dd (J = 2 Hz, J = 8 Hz, H-6′). Furthermore, a signal of a methoxy group
was detected at δH 3.79 ppm (s). Additionally, the distinctive chelated proton signal of
the OH of C-5 resonated as a sharp singlet at δH 12.62 ppm (because of the formation of
an intramolecular hydrogen bond (H-B) with the carbonyl group) (see Table 1). The 13C
spectral data indicated the existence of 15 carbon atoms in addition to a methoxy group.
The obtained data was completely consistent with the previously published spectral data
of patuletin [38].
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Figure 1. Patuletin’s chemical structure. Figure 1. Patuletin’s chemical structure.
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Table 1. 1H and 13C data of patuletin (DMSO).

Position δ 1H δ 13C Position δ 1H (J = Hz) δ 13C

2 - 147.1 10 - 103.3

3 - 135.6 1′ - 122.1

4 - 176.2 2′ 7.70 d (J = 2) 115.8

5 - 152.0 3′ - 145.4

6 - 131.0 4′ - 147.9

7 - 151.6 5′ 6.92 d (J = 8) 115.1

8 6.54 (s) 93.9 6′ 7.56 dd (J = 2, J = 8) 120.3

9 - 157.3 O-CH3 3.79 (s) 60.3

2.2. Molecular Similarity

Our key point in this investigation is the co-crystallized ligand. The co-crystallized
ligand is a molecule that can bind efficiently with a particular protein and crystallize
it [39]. The structure–activity relationship rules indicate that any two compounds that have
a resemblance in chemical structures, are expected to show similar biological activities
through binding with the same receptor [40]. The molecular similarity study describes
and compares the whole structures of the reference compound as well as the examined
compound, using descriptors such as steric, topological, electronic, and/or physical char-
acteristics [41]. Accordingly, a molecular similarity study was conducted to compare the
chemical structure of patuletin with those of nine co-crystallized ligands of vital proteins
of SARS-CoV-2 (Figure 2). Our aim is to investigate the structural similarity that may be
associated with the binding affinity. Accordingly, we utilized a 2D molecular similarity
assay to examine the similarity.

The structural similarity between patuletin and the considered ligands was checked
by applying the software, Discovery studio. The subsequent structural characteristics
were investigated and compared in patuletin and the examined ligands; molecular weight
(M-W) [42], partition coefficient (ALog p) [43], H-B donors (H.B-D) [44], H-B acceptors
(H.B-A) [45], molecular fractional polar surface area (MFP-SA) [46], number of rotatable
bonds (N-RB) [47], number of rings (N-R) and aromatic rings (N-AR) [48]. The outputs
indicated the existence of a great degree of structural similarity between patuletin and the
co-crystallized ligand F86, of RdRp, (PDB ID: 7BV2) (Table 2 and Figure 3).

Table 2. Structural properties of patuletin with the co-crystallized ligands.

Compound ALog p M-W H.B-A H.B-D N-RB N-R N-AR MFP-SA Minimum
Distance

F86 −1.502 371.243 11 5 4 3 2 0.612 0.758059

Patuletin 1.614 332.262 8 5 2 3 2 0.448 0.00

PRD_002214 2.453 680.791 8 5 18 3 2 0.273 1.5254

GWS 2.171 218.295 2 1 3 2 1 0.179 1.44878

X77 2.622 403.477 4 2 6 4 3 0.22 1.19065

VXG 0.711 233.263 3 1 2 2 1 0.237 1.31639

1N7 0.231 631.884 8 6 12 4 0 0.256 1.46363

SAM −4.254 399.445 9 4 7 3 2 0.483 1.015

Y95 3.084 390.435 3 4 4 3 3 0.283 0.911118

XT7 3.873 504.687 5 5 9 5 3 0.224 1.35497
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2.3. Flexible Alignment

To substantiate the obtained results, a 3D-Flexible alignment of patuletin with F86
was directed. The result revealed the general good overlapping. Interestingly, as shown
in Figure 4, patuletin showed the same spatial orientation as F86. In detail, the pyro-
catechol moiety of patuletin showed the same orientation as the 4-aminopyrrolo [2,1-
f ][1,2,4] triazine moiety of F86. Additionally, the 3,5,7-Trihydroxy-6-methoxy-4H-chromen-
4-one moiety of patuletin exhibited close orientation to the ((2R,3S,4R,5R)-5-cyano-3,4-
dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate moiety of F86.
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2.4. Docking Studies

To investigate the binding interactions of patuletin with the RdRp’s active pocket,
docking studies were performed using F86 as a reference. The binding free energy (∆G)
between patuletin and RdRp’s active pocket, besides to the correct binding mode were the
factors of evaluation.

At first, verification of the docking process was carried out through the re-docking
procedure for F86 against the active pocket of RdRp. The the validity of the docking process
was confirmed as the obtained RMSD value between the generated pose and the original
one was 1.61 ◦A (Figure 5).
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Figure 5. Superimposition of docked F86 (green) and the original one (pink) in RdRp’s active pocket.

Regarding F86, it exhibited a binding free energy value of −23.71 kcal/mol. Com-
pound F86 exhibited five H-Bs, six hydrophobic interactions (H-I), and three electrostatic
interactions (E-I). The 4-aminopyrrolo [2,1-f ][1,2,4] triazine moiety oriented to the 1st pocket
of the active site forming two H-Bs with Urd10. In addition, it formed six H-I with Urd20,
Ade11, Arg555, and Val557. Additionally, it formed an electrostatic attraction with Arg555.
The sugar moiety formed two H-Bs with Ser757 and Asp623. The phosphate derivative
moiety formed one H-B with Arg555, and two E-Is with Asp760 and Arg555 (Figure 6).
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The binding mode of patuletin showed a binding free energy value of−20.30 kcal/mol.
The pyrocatechol moiety was oriented into the first pocket of the receptor to form two H-Bs
with Cys622 and Thr680. In addition, it was incorporated in two E-Is with Cys622 and
Asp623. Furthermore, the 3,5,7-Trihydroxy-6-methoxy-4H-chromen-4-one moiety formed
five H-Bs with Urd20, Urd10, and Arg555. In addition, it formed three H-I with Urd20 and
Ade11. Additionally, it formed two electrostatic attractions with Arg555 (Figure 7).
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2.5. In Silico ADMET Analysis

In order to prevent late drug withdrawals, the analysis of the ADMET properties of
any new compound should be conducted early in drug discovery. Despite the fact that
various in vitro studies can investigate ADMET properties, in silico studies are still more
advantageous given the limitations of cost, time, effort, and strict regulations regarding
animal lives [49]. The ADMET profile of patuletin was determined using discovery studio
against remdesivir, F86, as a reference.

As Figure 8 illustrates, patuletin displayed a very low potential to penetrate the BBB.
Patuletin presented a good aqueous solubility as well as moderate intestinal absorption
levels. The ability of patuletin to inhibit the cytochrome P450, CYP2D6, and to bind to
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the plasma protein were predicted as non-inhibitory and less than 90%, respectively. The
results of remdesivir were similar to those of patuletin except for the poor absorption level.
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Figure 8. ADMET study of patuletin and remdesivir.

2.6. In Silico Toxicity Studies

The in silico approach has had an essential contribution in toxicity, prediction through
drug development in order to avoid ethical regulations, resource availability, as well as
time-wasting in usual in vitro and in vivo studies [50]. The purpose of in silico toxicity
prediction is to predict toxicity using the structure–activity relationship (SAR) through
comparing basic chemical structural properties of the molecules with the structures of
thousands of compounds of known safety and toxicity [51].

Seven models of toxicity were predicted to patuletin using discovery studio against
remdesivir, F86, as a reference (Table 3). The examined models are: Ames prediction (A-C),
carcinogenic potency in rats (R-TD50), rat maximum tolerated dose (R-MTD), Rat Oral LD50
(R- LD50), chronic LOAEL in rats (R- LOAEL), eye, ocular, irritation model (O-Ir), and skin
irritation model (S-Ir).

Table 3. Toxicity (predicted) of patuletin and remdesivir.

Test Patuletin Remdesivir

A-C Non-Mutagen Mutagen

R-TD50 (mg/kg) 7.45837 1.01218

R-MTD (g/kg) 1.05597 0.234965

R- LD50 (g/kg) 0.902102 0.308859

R- LOAEL (g/kg) 0.188616 0.0037911

O-Ir Mild None

S-Ir Mild Mild
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2.7. MD Simulations

A molecular docking study is an in silico study that can reveal a ligand’s exact location
inside a protein based on its structure. However, docking studies have the disfavor that
they describe the interaction of proteins as a rigid (fixed) unit disregarding the confor-
mational changes in the protein and ligand structures after binding [52]. Contradictory,
the MD simulations experiments can provide a thorough understanding of how proteins
behave at a cellular and atomic level as well as how their structure changes over time [53].
Accordingly, MD simulations can be used to describe exactly ligands’ effects on protein
conformation from both dynamic and energy perspectives [54]. As a result of the interaction
of a compound inside a protein’s active site, structural changes have occurred [55]. The
RdRp’s active site is a complex of active polymerase protein (composed of amino acids) and
nucleotides triphosphate [56]. The obtained conformational changes have been explored as
RMSD for RdRp (protein and nucleotides), patuletin, and the patuletin–RdRp complex in
order to evaluate the stability of the patuletin–RdRp complex after binding. Intriguingly,
low RMSD values were recorded with no major fluctuations in the patuletin–RdRp complex
as well as its single components (Figure 9A).
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The flexibility of the patuletin–RdRp complex was examined in terms of RMSF to
predict the degree of fluctuation of RdRp in the MD simulation experiment. Stimulatingly,
the binding of patuletin did not cause significant changes in the RdRp flexibility (Figure 9B).

The radius of gyration, Rg, which describes the RMSD of a weighted mass unit of
RdRp’s atoms from their mass center, provides accurate information about the 3D changes
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in the enzyme alongside its compactness. The degree of fluctuation, Rg value, during
simulation time is inversely proportional to compactness and stability. Captivatingly,
the patuletin–RdRp complex Rg was found to be less than the starting time (Figure 9C)
indicating a good degree of stability.

The interaction of the patuletin–RdRp complex with the circumferential solvents was
also computed by SASA during the simulation time. Engagingly, the SASA values of the
patuletin–RdRp complex were lower than the starting period (Figure 9D), which implies a
reduction in the surface area and, subsequently, higher stability.

It is clear that H-bonding is a critical factor in stabilizing the patuletin–RdRp complex,
so MD simulation experiments were conducted to indicate that the highest number of
conformations of the complex formed three H-Bs (Figure 9E).

The conformational changes that occurred because of the binding of patuletin to RdRp
were examined during the first and 100th nanoseconds of the MD run as explained in
Figure 10. It was confirmed that conformational changes have occurred in the patuletin–
RdRp complex, as well as the binding stability and integrity of the patuletin–RdRp complex
were indicated as patuletin was bonded perfectly to the RdRp’s active pocket through the
100 ns of the run.

2.8. MM-PBSA

As we mentioned, the RdRp’s active site is a complex of active polymerase protein and
nucleotides triphosphate [56]. The average free binding energy of both types of bindings
(patuletin–amino acids and patuletin–nucleotides) was based on MD trajectories from the
last stable 20 ns of MD production run at a time interval of 100 ps. Figure 11A presents the
average free binding energy of patuletin–amino acids of RdRp showing a very low binding
free energy of −25 KJ/mol (−6 kcal/mol). Additionally, the binding energy remained
stable throughout the examination run time indicating the accurate binding of the complex.
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Next, the total binding free energy of the patuletin–amino acids of RdRp was analyzed
in order to establish which of the amino acid residues participated most in the binding
with patuletin. Three amino acids (Figure 11B) of the polymerase residues contributed
more than −5 KJ/mol (−1.2 kcal/mol) regarding the binding energy and were considered
essential (vital) residues.

The average free binding energy of patuletin–nucleotides is illustrated in Figure 12A.
Interestingly, the average free binding energy of patuletin–nucleotides of RdRp showed a
very low binding free energy of −120 KJ/mol (−28.7 kcal/mol). Additionally, the binding
energy was stable among all the examination run times showing the precise binding of
the complex.

Next, the total binding free energy of the patuletin–nucleotides of RdRp was ana-
lyzed in order to establish which of the nucleotides participated most in the binding with
patuletin. Five nucleotides (Figure 12B) of the RdRp contributed more than −5 KJ/mol
(−1.2 kcal/mol) regarding the binding energy and were considered vital nucleotides.
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3. Materials and Methods
3.1. Isolation of Patuletin

Extraction, isolation, and identification of patuletin were addressed scrupulously in
the supporting data (Supplementary Materials).

3.2. Molecular Similarity

Molecular similarity of patuletin was accomplished using Discovery Studio 4.0 [24,57]
and was addressed scrupulously in the supporting data.

3.3. Docking Studies

Docking of patuletin against RdRp was accomplished using MOE2014 and outputted
files were visualized using Discovery Studio 4.0 software [58–60] and were addressed
scrupulously in the Supporting Data.

3.4. ADMET

ADMET patuletin was accomplished using Discovery Studio 4.0 [61,62] and was
addressed scrupulously in the Supporting Data.
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3.5. Toxicity Studies

Toxicity prediction of patuletin was accomplished using Discovery studio 4.0 [63–65]
and was addressed scrupulously in the Supporting Data.

3.6. MD Simulations

MD simulations of the patuletin–RdRp system were accomplished using the web-
based CHARMM-GUI [66–68] and were addressed scrupulously in the Supporting Data.

4. Conclusions

This study presented the isolation and characterization of the rare flavonoid, patuletin,
from the flowers of Tagetes patula growing in Egypt. Patuletin exhibited a high degree of
structural similarity with F86, the ligand of SARS-CoV-2 RdRp. This similarity was verified
by a 3D-Flexible alignment study. A molecular docking study indicated the excellent
binding of patuletin inside the active pocket of RdRp with an energy of −20 kcal/mol that
was almost the same as that of F86 (−23 kcal/mol). Then, five MD simulation studies, over
100 ns, confirmed the accurate binding of patuletin in RdRp via the correct dynamic and
energetic changes. Additionally, in silico ADMET studies indicated the general safety and
drug-likeness of patuletin.

Supplementary Materials: Full method, spectral data and toxicity report can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11141886/s1.
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