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Increasing evidence has elucidated that the microbiome plays a critical role in many human
diseases. Apart from continuous and binary traits that measure the extent or presence of a
disease, multi-categorical outcomes including variations/subtypes of a disease or ordinal
levels of disease severity are commonly seen in clinical studies. On top of that, studies with
clustered design (i.e., family-based and longitudinal studies) are popular alternatives to
population-based ones as they are able to identify characteristics on both individual and
population levels and to investigate the trajectory of traits of interest over time. However,
existing methods for microbiome association analysis are inadequate to handle multi-
categorical outcomes, neither independent nor clustered data. We propose a microbiome
kernel association test with multi-categorical outcomes (MiRKAT-MC). Our method is
versatile to deal with both nominal and ordinal outcomes for independent and clustered
data. In addition, it incorporates multiple ecological distances to allow for different
association patterns between outcomes and microbiome compositions to be
incorporated. A computationally efficient pseudo-permutation strategy is used to
evaluate the statistical significance. Comprehensive simulations show that MiRKAT-MC
preserves the nominal type I error and increases statistical powers under various scenarios
and data types. We also apply MiRKAT-MC to real data sets with nominal and ordinal
outcomes to gain biological insights. MiRKAT-MC is easy to implement, and freely available
via an R package at https://github.com/Zhiwen-Owen-Jiang/MiRKATMC with a Graphical
User Interface through R Shinny also available.
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1 INTRODUCTION

The diverse microbial cells including bacteria, archaea, and fungi that colonize the mucosal and skin
environment constitute the humanmicrobiome (Gilbert et al., 2018). It is broadly acknowledged that
the human microbiome and its interaction with the immune, endocrine, and nervous systems are
associated with a variety of illnesses, ranging from inflammatory bowel disease (Ni et al., 2017), to
cancer (Kostic et al., 2013a), and to major depressive disorder (Jiang et al., 2015). A key step in
investigating the relationship between microbiome and human disorders lies in quantifying the
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taxonomic composition. Currently, the most commonly used
method is through the sequencing of the 16S ribosomal RNA
gene, which, as a biomarker, is present in all prokaryotic cells and
reflects the evolutionary distance between distinct genomes.
Computationally, the 16S rRNA sequencing tags can be
assigned into Operational Taxonomic Units (OTU) or
Amplicon Sequence Variants (ASV) as computational
surrogate of microbial taxa (Schloss, 2010; Callahan et al.,
2016). Through sequencing, the microbial community can be
directly quantified, without the need of labor-intensive bacterial
culturing. For instance, the disparity between microbiome
communities from two samples can be assessed via an
ecological distance/dissimilarity metric, such as the UniFrac
distance (Lozupone and Knight, 2005) and the Bray-Curtis
dissimilarity (Bray and Curtis, 1957).

Identifying links between microbiome and diseases is often
achieved by microbiome-wide association studies (MWAS)
(Kostic et al., 2013b), which in turn provide insight into the
biological mechanisms of human health and disease
conditions. The data type of the investigated outcomes
varies from study to study. Typically, samples can be
dichotomized as cases and controls when exploring human
diseases. For example, (Naseribafrouei et al., 2014) discovered
potential correlation between depression and fecal microbiota,
where study participants were classified as depression vs. non-
depression. On the other hand, multi-categorical (nominal or
ordinal) outcomes are also frequently encountered and
investigated in many microbiome studies. For instance,
Scher et al. (Scher et al., 2013) explored the association
between rheumatoid arthritis (RA) and gut microbiota by
recruiting patients with three different categories of
arthritis: new-onset RA, treated RA, and psoriatic arthritis
(PsA). Parikh et al. (Parikh et al., 2020) investigated the
association between Apolipoprotein E (APOE) alleles and
gut microbiome in murine models, where the APOE gene
encodes a major cholesterol carrier protein that supports
lipid transport and injury repair in the brain.
Polymorphism in APOE gene is a major risk for developing
Alzheimer disease. In this study, the APOE gene was coded as a
nominal variable of different genotypes (APOE2 APOE3, and
APOE4). Furthermore, Schirmer et al. Schirmer et al.
(Schirmer et al., 2018) investigated the association between
severity of ulcerative colitis and gut microbiome, where disease
severity was treated as an ordinal variable with four levels:
inactive, mild, moderate and severe.

Association analysis between a host trait and microbiome
compositions can be generally addressed by PERMANOVA
(Anderson, 2001), which partitions the total variation across
the microbiome data cloud in the space of a chosen
dissimilarity measure into multiple directions. PERMANOVA
is able to accommodate both binary and multi-categorical
outcomes, but fails to incorporate multiple distance metrics,
where distinct distances capture distinct underlying association
patterns and therefore are more powerful under different
circumstances. Hence, Tang et al. (Tang et al., 2016) proposed
PERMANOVA-S to incorporate multiple distance metrics into a
single test. However, it is not adequate to multi-categorical

outcomes unless we combine multiple categories into a binary
variable, which potentially leads to significant power loss. An
alternative to PERMANOVA is the family of microbiome
regression-based kernel association tests (MiRKAT) (Zhao
et al., 2015; Wilson et al., 2021). Utilizing the classic mixed
effect models, the MiRKAT approaches summarize the
microbiome structure as a kernel similarity matrix
(constructed through the sample-sample distance metric) and
model it as a random effect. Adjusting for covariates is
straightforward in this framework. The association test is
conducted via a variance component score test with p-value
calculated in multiple ways, including analytical (Chen et al.,
2016; Zhan et al., 2017a), permutation (Koh et al., 2019) and fast
pseudo-permutation approaches (Zhan et al., 2017b). However,
existing MiRKAT tests are not able to accommodate multi-
categorical outcomes.

Beyond population-based studies in which all samples are
independent, nowadays, researchers frequently collect
microbiome data that are clustered or longitudinal in nature.
For instance, Goodrich et al. (Goodrich et al., 2014) collected
stool samples from female twins in the United Kingdom to
investigate the relationship between obesity and gut
microbiome. Flores et al. (Flores et al., 2014) explored the
effect of antibiotic use on temporal variability of the
microbiome diversity and community structure in gut, palm
and tongue. Methods available to address correlated outcomes
in microbiome studies burgeoned in the recent years (Chen and
Li, 2016; Zhan et al., 2018; Zhang et al., 2018; Koh et al., 2019). For
instance, GLMM-MiRKAT (Koh et al., 2019) extends MiRKAT
for continuous, binary and count outcomes in longitudinal
studies. It adopts kernel regression-based generalized linear
mixed models to construct variance component tests and uses
permutations to calculate the p-value. Unfortunately, only
exchangeable clusters which contain identical number of
observations and the same time points can be permuted in
this approach. Thus, the permutation procedure will be very
complicated and inefficient for unbalanced study designs. On top
of that, permutation tends to be computationally intensive when
the sample size increases (especially for studies with multi-
categorical outcomes) or when small p-values are needed for
multiple comparison adjustment. These drawbacks also exist for
PERMANOVA.

In this paper, we propose a new distance-based microbiome
kernel association test for multi-categorical outcomes (MiRKAT-
MC), when samples are independent or clustered. MiRKAT-MC
works for both nominal and ordinal outcomes, through the use of
the generalized logit model (GLM) and the proportional odds
model (POM), respectively. We utilize a fast pseudo-permutation
technique (Zhan et al., 2017b) to calculate p-values. This
approach features several advantages over its potential
competitors: 1) it avoids the complication in designing a
suitable permutation scheme for inference; 2) it is
computationally efficient and much faster than direct
permutations; 3) it controls the type I error and maintains
high statistical power compared to the analytical approach.
For the last point, due to the small sample size and the over-
dispersion in microbiome data, it is quite difficult to approximate
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the MiRKAT test statistics, especially for clustered/longitudinal
data and for outcomes that are not normally distributed.

Another common challenge in distance-based methods lies in
how to select an appropriate ecological distance to construct the
kernel, because the statistical power highly depends on a proper
kernel to capture the underlying association pattern. Attempting
multiple kernels and cherry-picking the smallest p-value yields
inflated type I errors. On the other hand, naively adjusting the
results by Bonferroni correction will reduce the statistical power
substantially, mainly because the individual tests are highly
correlated. We propose an omnibus test that combines the
individual p-values from tests with different kernels through
the harmonic mean procedure (HMP) (Wilson, 2019). The
omnibus test is not necessarily the most powerful one: which
test is the most powerful depends on the true nature of
association, which is unknown prior to analysis. Nevertheless,
our omnibus test is robust regardless of the real association
pattern in that it loses little power compared to the most
powerful one, and is much more powerful than choosing an
inappropriate kernel.

In summary, the goal of this paper is to introduce novel
statistical methods to examine the association between a multi-
categorical outcome (both nominal and ordinal) and
microbiome composition under different study designs (e.g.,
independent design, clustered design). Our major contributions
are two-fold. First, we have cast the association analysis between
a multi-categorical outcome and microbiome composition into
frameworks of generalized logit models and proportional odds
models (with additional random effects accounting for within-
cluster correlations for clustered design). Our second
contribution is proposing a robust p-value calculation
procedure via a novel fast pseudo-permutation technique
(Zhan et al., 2017b), avoiding the complicated and time-
consuming permutation approach yet providing valid
statistical inference. Finally, we provide a free R software to
implement our proposed methods. It is a useful tool for
microbiome researchers to investigate the relationship
between the microbiome community and a multi-categorical
outcome under a wide range of study designs, which was not
readily available before.

2 MATERIALS AND METHODS

To associate microbiome compositions with a multi-categorical
outcome, we build upon generalized logit models (GLM) for
nominal outcomes and proportional odds models (POM) for
ordinal outcomes, and relate the microbiome profile with the
outcome through the flexible semi-parametric kernel machine
regression framework (Zhao et al., 2015). Our proposed
MiRKAT-MC includes MiRKAT-MCN (for nominal
outcomes) and MiRKAT-MCO (for ordinal outcomes). For
both tests, we propose two versions, one for independent
samples and another for clustered/longitudinal samples
through the use of additional random effects in the
generalized logit mixed model (GLMM) or the proportional
odds mixed model (POMM).

2.1 GLM and POM for Independent Data
We first describe the GLM and POM model without considering
the high dimensional microbiome data. Let Yi denote the multi-
categorical outcome with total J categories for the i-th subject.
Here, bmYi is a vector with the j-th element being yji, a binary
variable denoting whether the i-th sample belongs to the j-th
category, i = 1, . . . ,N, j = 1, . . . , J. That is, yji = 1means subject i is
of category j and otherwise, yji = 0. In practice, yji can represent
any mutually-exclusive categorical traits (nominal and ordinal),
such as subtypes of cancers and increasing levels of disease
severity that ∑J

j�1yji � 1. From a probability perspective, Yi

can be considered as from a multinomial distribution with J
categories. Let πj (xi) = Pr (yji = 1|xi) be the conditional
probability that subject i is of category j with ∑jπj (xi) = 1,
where xi denotes the set of covariates that we want to associate Yi

with (such as race, gender and age). If bmYi is nominal, we can set
the last category J as a reference without loss of generalization,
and form the following GLM:

log
πj xi( )
πJ xi( ) � αj + βj′xi, (1)

where j = 1, . . . , J − 1. The left-hand side of Eq. 1 is the logit of a
conditional probability, and each coordinate of βj represents the
increase in log-odds of falling into category j vs. the reference
category J resulting from a one-unit increase in the corresponding
covariate while holding the other covariates constant. This model
simultaneously describes the effects of xi on all outcome
categories in contrast to the reference. In this model,
parameters βj, j = 1, . . . , J − 1 can be different among
categories. If the categories are ordinal, we can utilize the
order information and form the following POM:

logit ]j xi( )( ) � log
]j xi( )

1 − ]j xi( ) � αj + β′xi, (2)

where j = 1, . . . , J − 1, and

]j xi( ) � ∑j
h�1

Pr yhi � 1|xi( ) � π1 xi( ) +/ + πj xi( ).

Here, ]j (xi) is the conditional cumulative probability, and the
corresponding response, defined by ~yji � ∑j

h�1yhi, is called the
cumulative response. The ordinal information is thus utilized in
the way that the original categories enter the groups in a sequence.
In contrast to GLM, β here keeps constant across J − 1 logits and
the intercepts have to satisfy α1 < . . . < αJ−1 in the proportional
odds model.

Finally, we notice that there are other recent attempts to
develop association analysis for multi-categorical outcomes
using multinomial logistic regression (i.e., GLM model (1)),
usually in the context of genome wide association studies (He
et al., 2021; Liu et al., 2021). Despite the shared motivations,
MiRKAT-MC is distinct from existing methods in multiple
aspects. First, none of the existing approaches specifically
models ordinal outcomes and thus MiKAT-MC under POM is
statistically novel. Second, MiRKAT-MC includes options that
utilize GLMM and POMM (described Section 2.2) to
accommodate non-independent data from more complicated
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study designs. Last, our pseudo-permutation approach for
obtaining p-values is novel and tends to outperform the
asymptotic results as in existing methods when sample sizes
are small, which is usually the case in microbiome data.

2.2 GLMM and POMM for Clustered/
Longitudinal Data
Similarly, we first describe the GLMM and POMM models
without considering the complex microbiome data. Suppose
cluster i has mi observations. Let Y ik � (y1ik, . . . , yJik)′
represent the multi-categorical outcome of the k-th
observation in cluster i, i = 1, . . . , n, k = 1, . . . , mi and N �∑n

i�1mi be the total number of observations in the study.
Following notations in the previous section, let πj (xik|bji) = Pr
(yjik = 1|xik, bji) and setting the J-th category as reference, the
GLMM for clustered/longitudinal data can be written as:

log
πj xik|bji( )
πJ xik|bji( ) � αj + xik′ βj + uik′ bji, (3)

where xik � (xik1, . . . , xikq)′ denote covariates and βj �
(βj1, . . . , βjq)′ are corresponding regression coefficients, uik is
the design matrix for the random effect term bji. We introduce
bji to model correlations among observations within cluster i of
category j. The model definition is completed by specifying the
distribution of the random effect bji ~ N (0,Gj), where the
variance-covariance matrix Gj for the j-th category is
unstructured. We also allow bji to be correlated across
categories.

The corresponding POMM for ordinal outcomes is as follows:

logit ]j xik|bi( )( ) � αj + xik′ β + uik′ bi. (4)
Onemain difference betweenmodels (Eqs. 3, 4) lies in model (Eq.
4) restricts bi to be identical across category comparisions, and
thus bi ~ N (0,G) with a fixed variance-covariance matrix G.
Here, we essentially assume that the random effects across the
ordered categories are the same, which guarantees in proportional
odds. Specifically, for a fixed cluster i, the random effect bi has
identical value across different categories j. But for different
clusters i and i′, bi and bi′ may be different and both have
normal distribution N (0,G). The variance-covariance matrix
G is unstructured as well. The same constraints for αj and β as in
model (Eq. 2) also apply in the POMM model (Eq. 4).

2.3 Microbiome Association Analysis Under
Models for Multi-Categorical Variables
We extend the previous described models to incorporate the
complex microbiome data. For independent data, let z i �
(zi1, . . . , zip)′ be the composition of p OTUs for sample i
(subject to appropriate normalization and transformation). We
relate the multivariate outcome to the microbiome community
and the covariates with the following model

ηji � αj + xi′βj + hj z i( ), (5)

for i = 1, . . . , N, j = 1, . . . , J, where η = g (·) and g (·) is a link
function. For GLM, g (πji) = log (πji/πJi), πji = E (yji|hji), and hji = hj
(zi); for POM, g (]ji) = log{]ji/(1 − ]ji)}, ]ji � E(~yji|hji) is the
conditional mean of the cumulative response ~yji. hj (·) are
unknown real functions corresponding to the effects of
microbiome on the j-th category. For POM, hj (·) are identical
across categories, and αj and βj are subject to the constraints
described in model (Eq. 2).

For clustered studies, let yjik be a binary variable denoting
whether the k-th observation of the i-th cluster belongs to the j-th
category, where k = 1, . . . ,mi, i = 1, . . . , n and j = 1, . . . , J. We let
N � ∑n

i�1mi be the total number of observations. z ik �
(zik1, . . . , zikp)′ represent p OTUs for the k-th observation in
the i-th cluster. The mixed effect model proceeds as

ηjik � αj + xik′ βj + uik′ bji + hj z ik( ), (6)
where ηjik = g [E (yjik|bji, hjik)], hjik = hj (zik), and g (·) is the same
link function as model (Eq. 5). To illustrate our methodology, we
here give some specific examples of the random effects uik. When
uik = 1, bji is the random intercept which can be assumed
normally distributed ~ N (0, gjj). When uik � (1, tik)′, where
tik is the time for the k-th observation in the i-th cluster (for
longitudinal studies), bji � (bji1, bji2)′ denote the random
intercept and random slope with a bivariate normal

distribution N (0,Gjj), where Gjj � gjj11 gjj12

gjj21 gjj22
( ). Usually,

Gjj is specified as “unstructured” in generalized linear mixed
effect models, providing much flexibility to capture cluster
specific correlations. Again, for POMM, αj, βjm, and bji are
subject to the constraints described in model (Eq. 4), and hjik
(·) should be identical across categories.

Our primary goal is to test the null hypothesisH0: h1 (·) = . . . =
hJ−1 (·) = 0 in Eq. 5, 6. One feasible approach is to develop such a
test leveraging the kernel machine regression-based association
analysis framework (Zhao et al., 2015). Through the critical
connection between kernel machine regression and mixed
models (Liu et al., 2007), h � (h1, . . . , hJ−1)′ can be considered
as random effect with mean 0 and variance K*. We assume that
each hj � (hj1, . . . , hjN)′ for independent data (or hj �
(hj11, . . . , hj1m1, hj21, . . . , hjnmn)′ for clustered data) is
independent and is of the same (multivariate) distribution. In
such a case, K* = IJ−1 ⊗ τK, where IJ−1 denote (J − 1)-th order
identity matrix, τ is an unspecified constant, K is an N × N kernel
matrix, and ⊗ denotes Kronecker product. Following (Zhao et al.,
2015), the kernel matrix can be easily constructed by a specific
ecological distance matrix D

K � −1
2

IN − 1N1N′
N

( )D2 IN − 1N1N′
N

( ), (7)

where 1N is a vector of 1’s and IN is the identity matrix.
Typical distance measures for microbiome data include the

Bray-Curtis dissimilarity, the weighted, unweighted or
generalized UniFrac distances (Lozupone and Knight, 2005).
The kernel matrix defined by Eq. 7 measures sample-pairwise
similarities. Using this transformation, ecological information
(e.g., taxonomic or the phylogenetic relationship between taxa)
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encoded in the distance D is preserved in K, and thus in the
functions of microbiome effect hj (·)’s (which are assumed to be in
the space spanned byK). As demonstrated in previous studies, the
embedding of such ecological information may boost statistical
power for detecting an underlying association under many
scenarios (Zhao et al., 2015). Here, we first focus the simpler
case in which a single distance (e.g., Bray-Curtis dissimilarity) is
considered. Omnibus test utilizing multiple kernels will be
described later in this session.

To develop the distance-based kernel association test, we
further translate association analysis working model (Eqs. 5,
6) into matrix language. For independent data,

η � Xβ + h, (8)
where η � (η11, η12, . . . , η1N, . . . , ηJ−1,1, . . . , ηJ−1,N)′,

X � IJ−1 ⊗
1 x1′
..
. ..

.

1 xN′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, β � (α1, β1′, . . . , αJ−1, βJ−1′ )′, h �

(h11, h12, . . . , h1N, . . . , hJ−1,1, . . . , hJ−1,N)′ is distributed as
multivariate normal with mean zero and covariance matrix K*
= IJ−1 ⊗ τK. Hence, testingH0: h = 0 is equivalent to testingH0: τ =
0, which can be accomplished by a variance component score test.
The mathematical derivation of the variance component score
test can be found in Supplementary Section 1.1 of the online
Supplementary Material. In brief, the test statistic for h = 0 in
(Eq. 8) is

Q1 � y* − Xβ̂( )′WK*W y* − Xβ̂( ), (9)
where y* is a working response vector, W is a working weight
matrix, and β̂ is the estimated coefficients under the null. For
GLM, y* � Dπ(y − π̂) + Xβ̂, where Dπ = zη/zπ, π̂ is a vector of
fitted values returned by the null model η = Xβ. W �
(DπVπDπ)−1 and Vπ is the variance-covariance matrix of the
multinomial distribution evaluated at π. For POM,
y* � D](~y − ν̂) + Xβ̂, where D] = zη/zν. W � (D]V]D])−1,
where V] is the variance-covariance matrix of the cumulative
probability ν.

For clustered study design, we write model (Eq. 6) in matrix
notations

η � Xβ + Ub + h, (10)
where each component has three levels - category, cluster, and
observation, except for β and b. Please refer to Supplementary
Section 1.2 of the online Supplementary Material for details of
the model structure. Similarly, by applying pseudo-likelihood
approach (Wolfinger and O’connell, 1993), the test statistic is

Q2 � y* − Xβ̂( )′Σ−1K*Σ−1 y* − Xβ̂( ), (11)
For GLMM, y* � Dπ(y − π̂) + Xβ̂ + Ub̂, π̂ is a vector of fitted
values returned by the null model η =Xβ +Ub, and β̂ is a vector of
estimated coefficients of the fix effect, b̂ is a vector of predicted
values of b. Σ =W−1 + UG*U′, whereW−1 = DπVπDπ, and G* is a
(J − 1) × (J − 1) block matrix with entries In ⊗Gjh, j, h = 1, . . . , J −
1. For POMM, y* � D](~y − ν̂) + Xβ̂ + Ub̂,W−1 =D]V]D] andG*
is a (J − 1) block diagonal matrix with entries In ⊗Gjj.

2.4 p-Value Calculation
While deriving the test statistics for Q1 and Q2 is relatively
straightforward in the pseudo-likelihood framework (as
detailed in Supplementary Section 1 of the online
Supplementary Material), obtaining their null distributions
to calculate p-values is never an easy task. A major challenge
lies in that classic asymptotic results in the likelihood
framework tend to be inaccurate due to the relatively small
sample size in microbiome studies (e.g., less than few hundred)
and the over-dispersion in microbiome data (Chen et al., 2016).
Small-sample correction procedures are available within
relatively easier models such as the linear regression models
or linear mixed model in literature (Chen et al., 2016; Zhan
et al., 2017a; Zhan et al., 2018; Zhan et al., 2021). Yet, such an
attempt in the more-complicated models (e.g., GLM, POM,
GLMM, and POMM) considered in the current paper does not
work out due to mathematical complexities of these models
(e.g., canonical links are often unavailable or very complicated
in such models). To this end, we resort to a pseudo-
permutation strategy (Zhan et al., 2017b) to obtain accurate
p-values in finite samples.

Briefly, the null distribution of all permutations of the test
statistic can be approximated by the Pearson type III density,
which is achieved by matching the first three moments. This
strategy leads to a fast p-value calculation since we only need to
use the matched Pearson type III density for p-value calculation
without the need to draw real permutations (Zhan et al., 2017b).
Essentially, we observe that the test statistics Q1 and Q2 can be
reformulated as the trace of the product of two kernels matrix: a
kernel matrix for outcomes (KY) and a kernel matrix for
microbiome data (K in Eq. 7). Here we still assume that the
kernel matrix for microbiome data is identical across multiple
categories. Therefore, we use K instead of the original K* = IJ−1
⊗K in test statistics Q1 (Eq. 9) and Q2 (Eq. 11). In the proposed
framework, let the weighted residual  = W (y* − Xβ) for
independent data or  = Σ−1 (y* − Xβ) for longitudinal data.
The outcome kernel will be KY � ~~′, where ~ � (1, . . . , J−1) is
an N × (J − 1) matrix, where j is the weighted residuals for the j-
th category. Originally,  � Vec(~) is a vector of length N (J − 1),
where Vec (·) denotes the operator that transforms a matrix into a
column vector by vertically stacking the columns of the matrix.
We refer the readers to previous publications for further details of
p-values using the Pearson type III distribution (Zhan et al.,
2017b).

Finally, recall that p-values of tests using different microbiome
kernels could vary greatly depending on whether the kernel of
choice captures the true underlying association pattern. To this
end, we propose an omnibus test that first conducts individual
tests using one of the kernels (Bray-Curtis, UniFrac, weighted
UniFrac etc). And then combines these individual p-values
(corresponding to different microbiome kernels) using the
harmonic mean p-value (HMP) procedure (Wilson, 2019) for
an omnibus p-value, based on which to conclude our inference of
statistical association. This approach tends to be robust: it loses
little power compared to when the best kernel (which is unknown
in practice) is used and gains substantial power compared to
when a poor choice of kernel is used.
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3 RESULTS

3.1 Simulation Studies
3.1.1 Design of Simulations
We conducted comprehensive simulations to evaluate empirical
type I error of MiRKAT-MC when there is no true associations,
and statistical powers under different association patterns. For
both independent and clustered study designs, microbiome
compositions were simulated similarly as in previous studies
(Zhao et al., 2015). Briefly, we first fitted a Dirchlet-
multinomial distribution to a real upper-respiratory-tract
microbiome dataset (Charlson et al., 2010), which contains
856 OTUs for 60 samples, and estimated the mean and
dispersion parameters. We then used these estimated
parameters to generate microbiome read counts via the
Dirchlet-multinomial distribution. We intended to investigate
what the most powerful kernel is when the causal OTUs are with
or without phylogenetic relationships, and whether the
abundance matters.

3.1.1.1 Independent Data
We considered simulations when there are three categories (J = 3)
and when there are five categories (J = 5). Data from each sample
was simulated independently, according to following model

ηji � αj + 0.5 × xi1 + 0.5 × xi2 + β × scale ∑
a∈A

z ia⎛⎝ ⎞⎠, (12)

where i = 1, . . . ,N and j = 1, . . . , J − 1. We set the sample size N =
80 or 200 for when J = 3, and N = 150 or 300 when J = 5. We
simulated both nominal and ordinal outcomes, using appropriate
link functions of η. For nominal data (GLM), αj = −2, and for
ordinal data (POM), αj = j − 4. xi1 is a Bernoulli variable with
probability of 0.5, whereas xi2 is a standard normal variable with
mean 0 and variance 1. A is a set of outcome-associated OTUs
among the p OTUs in the community. β = 0 for type I error
simulations, for which the choice ofA doesn’t matter. scale is the
operation that standardize the data to be mean 0 and variance 1
across all the samples.

For statistical power evaluation, we considered three scenarios.
Under the first two scenarios, causal OTUs (in A) were selected
from clusters of related taxa on a phylogenetic tree. In specific, we
first partitioned the simulated OTUs into 20 clusters through the
partitioning-around-medoids (PAM) algorithm based on the
corresponding phylogenetic tree. For scenario 1, we randomly
chose a common cluster of the OTUs as the causal OTUs. For
scenario 2, we chose the rarest cluster as the causal OTUs. For
scenario 3, we picked the 10 most abundant OTUs without
consideration of phylogenetic information. These three
scenarios correspond to situations in which the weighted
UniFrac, unweighted UniFrac and the Bray-Curtis distances
are expected to be the most powerful, respectively. For
scenarios 1 and 3, β = 0.6, 0.8, 1.2, 1.6, 2.0, and β = 2, 4, 6, 8,
10 for scenario 2.

For each scenario, we employed the weighted UniFrac (Kw),
the unweighted UniFrac (Ku), the Bray-Curtis (KBC) and a
generalized UniFrac kernel with the parameter of 0.5 (K5) for

association testing. We also conducted the omnibus test by
combining the p-values from all individual tests. To obtain
convincing results, we generated 10,000 replicates to estimate
the empirical type I errors and 2,000 replicates for statistical
powers. Statistical significance was established under the nominal
level of α = 0.05 for all the simulation studies.

3.1.1.2 Clustered Data
We simulated two scenarios to assess MiRKAT-MC when data is
clustered. We simulated a family based study and a longitudinal
study. For family-based data, we included only a random
intercept in the model to capture the correlation between
samples, while for longitudinal data, both a random intercept
and a random slope of time were involved in the model. We set
the number of clusters n = 30 or 60 for three categories (J = 3), and
n = 50 or 100 for five categories (J = 5). We simulated data under
an unbalanced design: i.e., clusters may have a different number
of observations. To achieve this, n/2 of the clusters have three
observations and the other n/2 of the clusters have four
observations. In this way, the total numbers of observations
are N = 105 (n = 30) and N = 210 (n = 60) when J = 3 and
N = 175 (n = 50) and N = 350 (n = 100) when J = 5. Within each
cluster, the outcome category may vary over observations; e.g., in
longitudinal studies, a person may be of one disease category at
one time point and of a different disease category at a different
time point.

The following model was utilized to simulate the data

ηjik � αj + 0.5 × xik1 + 0.5 × xik2 + uik′ bji + β × scale ∑
a∈A

z ika⎛⎝ ⎞⎠,

(13)
where i = 1, . . . , n, j = 1, . . . , J − 1, and k = 1, . . . , mi. The
definition of the parameters η, αj, β xik1, xik2,A and scale function
are identical to the counterparts in model (Eq. 12). The same
three scenarios of choices of A were considered for power
assessment. When the model included only a random
intercept, uik = 1 and bji was generated from ~ N (0, gjj),
where gjj � 1

4, 1, 4 being the variance, respectively. When
considering both a random intercept and a random slope of
time, uik � (1, tik)′ and bji was simulated from N (0,Gjj), where
Gjj � gjj11 gjj12

gjj21 gjj22
( ). We set gjj11 � gjj22 � 1

4, 1, 4, respectively,

and gjj12 = ggg21 were determined by 1
2gjj11. Thus, the correlation

between the random intercept and the random slope was fixed at
1
2. The generation of random effect bji was different for GLMM
and POMM. Specifically, for a fixed cluster i, for GLMM, we
generated a new random vector of bji for each category j from the
above distribution. For the ease of data generation, we keptGjj the
same across categories and did not consider correlation of bji
between categories for nominal data. However, as we discussed in
model (Eq. 3), GLMM enjoys the freedom of different Gjj and
correlated bji across different categories. In contrast, for POMM,
we generated a new random vector of bi only once for each cluster
i and then plugged the same bi in model (Eq. 13) for different
categories.
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3.1.2 Simulation Results
Empirical type I error rates of MiRKAT-MCN (for nominal
outcomes) and MiRKAT-MCO (for ordinal outcomes) for
independent data are reported in Table 1. As seen in the
table, the empirical type I errors (at α = 0.05) of MiRKAT-
MC are all very close to the expected level. Empirical type I error
rates under different mixed models for clustered data are reported
in Supplementary Tables S1–S4 (Supplementary Section 2.1,
online Supplementary Material), which also show well-
controlled type I errors for both nominal and ordinal outcomes.

Figure 1 shows the statistical powers of MiRKAT-MC using
independent data with three categories. The results with five
categories using independent data are in Supplementary Figure
S1 (Supplementary Section 2.2, online Supplementary
Material). We observe that the tests with weighted UniFrac,
unweighted UniFrac, and Bray-Curtis kernels are most powerful
for scenarios 1, 2, and 3, respectively, regardless of whether the
outcome is nominal or ordinal. However, the tests with Bray-
Curtis kernel produced very little power in scenario 2, and the
tests with unweighted UniFrac showed little power in scenario 3:
the statistical power are close to their expected type I error. This is
due to the differences in the true association signals that each of
the kernels is designed to capture. The weighted UniFrac kernel is
most powerful to capture signals that are dominated by common
taxa in a cluster on a phylogenetic tree, while the unweighted
UniFrac kernel shows its strengths when rare OTUs in a
phylogenetic cluster determine the association (Chen et al.,
2012). In contrast, the Bray-Curtis kernel is more appropriate
when the outcome is associated with a set of OTUs with high
abundance without referring to a phylogenetic tree. The Omnibus
test considering all four kernels is robust. For example, among the
tests using single kernels, only Bray-Curtis kernel shows
significant powers under scenario 3. Yet, the omnibus test is
still able to detect the association.

Table 2 shows the empirical type I error for our proposed
methods when the data are clustered. Again, type I errors are well
controlled to their nominal level. The statistical powers for
simulations when data is clustered are presented in
Supplementary Figures S2–S5 (Supplementary Section 2.2,
online Supplementary Material). Under three categories,
Supplementary Figure S2 corresponds to models with
random intercepts, while Supplementary Figure S3 presents

models with both random intercepts and random slopes.
Similarly, Supplementary Figure S4 corresponds to models
with random intercepts with five categories; Supplementary
Figure S5 is about models with both random intercepts and
random slopes with five categories. The conclusions are similar to
those of independent data. In addition, we observe that given a
simulation scenario, a choice of kernel and an effect size, when the
variance of the random effect (elements inGjj in Eq. 13) increases,
the statistical power decreases. It is because with the increase of
the random effects, the within-cluster correlation increases,
leading to a lower effective sample size.

3.2 Real Data Analysis
3.2.1 Associations Between Antibiotic Exposure and
Gut Microbiome in Non-Obese Diabetic Mice in a
Longitudinal Study
In the original study (Livanos et al., 2016), 555 non-obese diabetic
mice were randomly assigned to three groups with each group
exposed to distinct patterns and doses of antibiotics. The mice that
were born to the same female and that were of the same sex
constituted a cluster and each cluster received the same
treatment. The first group (51 clusters, 203 mice) received sub-
therapeutic continuous (STAT) antibiotic exposure, the second
group (42 clusters, 167 mice) received therapeutic-dose pulsed
(PAT) antibiotic exposure, and the last group (47 clusters, 135
mice) was not exposed to antibiotics and served as the control group
(Hu et al., 2020). Microbiome data from fecal, cecal or ileal samples
were collected longitudinally for each cluster by sacrificing a mouse,
at 3, 6, 10, and 13 weeks from the start of the experiment (week 0).
The number of observations per cluster varied from 2 (i.e., at week 3
and 6) to 4 (i.e., at week 3, 6, 10, and 13).

The goal of this application is to test the association between
treatment groups (STAT, PAT or control) and gut microbiome.
Here, we exclusively analyzed the fecal samples, leaving 499
samples from 140 clusters over time. The gut microbiome was

TABLE 1 | Empirical type I error rates of MiRKAT-MC for independent data with
three-categories.

MiRKAT-MCN MiRKAT-MCO

N = 80 N = 200 N = 80 N = 200

Kw 0.0463 0.0465 0.0440 0.0470
Ku 0.0436 0.0491 0.0487 0.0492
KBC 0.0488 0.0468 0.0469 0.0449
K5 0.0479 0.0518 0.0476 0.0466
HMP 0.0502 0.0475 0.0461 0.0455

N denotes the sample size. Kw, the weighted UniFrac kernel; Ku, the unweighted UniFrac
kernel; KBC, the Bray-Curtis kernel; K5, the generalizedUniFrac kernel with parameter 0.5;
HMP, the omnibus test using harmonic mean p-value test.

TABLE 2 | Empirical type I errors of MiRKAT-MC for clustered data with a random
intercept and a random slope model with three-category outcomes.

n = 30 (N = 105) n = 60 (N = 210)

g 0.25 1 4 0.25 1 4

MiRKAT-MCN

Kw 0.0498 0.0492 0.0467 0.0478 0.0496 0.0484
Ku 0.0521 0.0533 0.0486 0.0449 0.0508 0.0478
KBC 0.0519 0.0542 0.0494 0.0522 0.0478 0.0497
K5 0.0527 0.0516 0.0521 0.0521 0.0468 0.0505
HMP 0.0514 0.0533 0.0472 0.0465 0.0478 0.0488

MiRKAT-MCO

Kw 0.0500 0.0473 0.0474 0.0449 0.0498 0.0457
Ku 0.0486 0.0506 0.0487 0.0483 0.0483 0.0538
KBC 0.0535 0.0507 0.0487 0.0453 0.0493 0.0485
K5 0.0519 0.0471 0.0489 0.0476 0.0501 0.0486
HMP 0.0495 0.0467 0.0481 0.0452 0.0483 0.0475

n indicates the number of clusters while N is the number of total observations. g denotes
the variance of random effects. The definition of Kw, Ku, KBC, K5, and HMP is the same as
Table 1.
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profiled from each sample and the raw sequence data is available
on the Qiita database (study ID 10508). Specifically, the V4 region
of the bacterial 16S rRNA gene was PCR amplified, followed by
performing paired-end sequencing of the amplicon library. We
reprocessed the pre-joined and trimmed sequencing data through
DADA2 pipeline in R (Callahan et al., 2016). As a result, the
amplicon sequence variant (ASV) table was constructed. After
removing chimeras identified by consensus across samples, the
table contained 3031 ASVs. The ASV table was rarefied to an
equal depth of 5,000 for each sample. We then assigned taxonomy
based on Ribosomal Database Project’s (RDP) training set 16, and
constructed a phylogenetic tree using R package “phangorn”
(Schliep, 2010). The tree was rooted by specifying the middle
tip (i.e., 1515) as the outgroup. We calculated the UniFrac
distance based on the rooted tree and the rarefied ASV table
with the “GUniFrac” R package (Chen et al., 2012).

Here we first visually checked the relationship between gut
microbiome composition and antibiotic treatment groups under
different dissimilarity measures with PCoA plots (Figure 2). All
499 fecal samples are included in the plot, although they might be
collected at different time points. Microbiome composition of the
PAT group is clearly separated from that of the STAT group and
that of the control group, under weighted UniFrac distance,
generalized UniFrac distance and Bray-Curtis dissimilarity.
However, under unweighted UniFrac distance, it is hard to
distinguish the microbiome compositions of three treatment
groups since they are clustered at two areas.

To show the performance of MiRKAT-MCN on independent
nominal data, we selected samples at week 3 only. All 140 clusters
hadmicrobiome data available. By setting treatment groups as the

dependent variable and adjusting for gender of mice, we observed
very significant association between gut microbiome and the
antibiotic treatment groups using weighted, unweighted, and
generalized UniFrac kernels, Bray-Curtis kernel, and the
omnibus test (all p-values < 0.0001). To better show the
performance of the proposed model, and since the sample
sizes of microbiome studies are usually smaller, we randomly
subsampled 90 samples from the 140 samples at week 3. The
down-sampled data consisted of 41 male and 49 female mice, and
there were 36, 22, and 32 mice in the STAT, PAT and control
groups, respectively. With the reduced sample size, all tests,
including the tests using each of the kernels and the omnibus
test, identified significant association between microbiome and
antibiotic treament, with all p-values less than 0.0001, except for
when using the unweighted kernel (p-value = 0.01).

We also applied MiRKAT-MCN for clustered data to this
study. Similarly, we randomly selected 30 clusters with 105
samples (17 male and 13 female mice clusters) from the
original dataset for analysis, where there were 15, 6, and 9
clusters in STAT, PAT, and control group, respectively. We
applied MiRKAT-MCN for clustered data to evaluate the
association between antibiotic treatment and microbiome,
adjusting for sex and time (in weeks), and accounting for the
cluster-specific correlation through a random intercept and a
random slope of time. Again, we employed the same kernels as
above and the omnibus test for analysis. Apart from the test using
the unweighted UniFrac kernel with p-value only 0.03, all other
tests were highly significant with p-values less than 0.001.

These two analyses indicate that antibiotic exposure during
early life did alter the microbiome composition in non-obese

FIGURE 1 | Statistical powers of MiRKAT-MC for independent data with three categories. Scenario 1:A = A randomly selected common cluster among 20 clusters
by PAM; Scenario 2:A = The rarest cluster among 20 clusters by PAM; Scenario 3:A = 10 most abundant OTUs. Kw, the weighted UniFrac kernel; Ku, the unweighted
UniFrac kernel; KBC, the Bray-Curtis kernel; K5, the generalized UniFrac kernel with parameter 0.5; HMP, the omnibus test using harmonic mean p-value test. (A)
MiRKAT-MCN with 80 total samples; (B) MiRKAT-MCO with 80 total samples; (C) MiRKAT-MCN with 200 total samples; (D) MiRKAT-MCO with 200 total
samples.
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diabetic mice, no matter we stared at the week 3 or inspected over
time. Moreover, the disparities of p-values by using different
kernels, although all significant, suggest that the antibiotic use
may have affected the relative abundance of OTUs, because the
unweighted UniFrac kernel, which only accounts presence/
absence of taxa and gives higher weight to rare taxa, provides
the least significant result.

3.2.2 Associations Between Obesity and Gut
Microbiome in a Family-Based Study
A study was conducted by Goodrich et al. (Goodrich et al., 2014)
to investigate the role of host genetics on gut microbiome, and
their impact on host phenotype, such as the body mass index
(BMI). Fecal samples were collected from families in the
United Kingdom. The V4 region of 16S rRNA gene was
sequenced to identify the microbiome composition. The raw
data was downloaded from the European Bioinformatics

Institute (EBI) with accession numbers ERP006339 and
ERP006342. We used QIIME (version 1.9.0-dev) (Caporaso
et al., 2010) to assign the sequencing tags to 7,365 non-
singleton OTUs at 97% similarity using the reference-based
OTU-picking approach, and to generate a rooted phylogenetic
tree. All samples were rarefied to 10,000 counts per sample before
calculating the distance measures.

For this analysis, we focused on 311 samples from 145
monozygotic twin pairs. All the twins were female, aged from
27 to 83 with an median age of 63. In order to compare the
performance of different methods, we treated the BMI as
continuous, binary, three-category ordinal and three-
category nominal data, and applied CSKAT (Zhan et al.,
2018), GLMM-MiRKAT (Koh et al., 2019), MiRKAT-MCO
and MiRKAT-MCN for each outcome type, respectively.
CSKAT was developed for microbiome association analysis
of clustered/longitudinal study for continuous outcomes while

FIGURE 2 | The two-dimensional PCoA plots depicting microbiome composition for different antibiotic treatment groups under various dissimilarity measures. All
499 fecal samples are included in the plots. PAT, therapeutic-dose pulsed antibiotic exposure; STAT, sub-therapeutic continuous antibiotic exposure. The crosses
denote the centroid of points of each treatment group. (A) W.UniFrac: weighted UniFrac distance; (B) U.UniFrac: unweighted UniFrac distance; (C) G.UniFrac(0.5):
generalized UniFrac distance with tuning parameter a = 0.5; (D) Bray-Curtis: Bray-Curtis dissimilarity.
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GLMM-MiRKAT was for the similar association analysis for
binary and count outcomes, respectively. For binary outcome,
we classified the study participants into a non-obese (248
samples) and an obese group (63 samples) based on BMI <
30 or BMI ≥30. For the three-category outcome, we classify
study participants into normal (BMI < 25), overweight (25 ≤
BMI < 30), and obese (BMI ≥30) groups, where there were
147, 101, and 63 samples in each group, respectively. We can
treat the three categories as nominal or ordinal when applying
MiRKAT-MC. For all the analyses, we assessed the
microbiome-BMI (or BMI category) association, adjusting
for age and including a twin-level random intercept to
capture the within-twin-pair correlations due to common
genetic, biological and other environmental factors. The
weighted, unweighted, generalized UniFrac distance and the
Bray-Curtis distance were used to construct kernel functions
based on Eq. 7. The test statistics of CSKAT and GLMM-
MiRKAT followed the original papers, but we used the same
technique as MiRKAT-MC to calculate p-values, in order to
ensure comparability.

Figure 3 compares the microbiome Shannon index across the
three BMI categories. The decreasing trend of Shannon index
from the normal category to the obese category implies that
higher BMI may reduce the microbiome diversity. The results of
association analyses are shown in Table 3, where the smallest
significant p-value of each kernel across four methods is bolded.
At the first glance, all the individual tests provided significant
association at type I error of 0.05 except when the weighted
UniFrac kernel was used. The omnibus test also provided
significant association. However, MiRKAT-MCO gave the
smallest p-values when using the unweighted UniFrac, the
generalized UniFrac and the omnibus test. MiRKAT-MCO
was always more powerful than MiRKAT-MCN in this
analysis, which is reasonable because MiRKAT-MCO utilized
the order information in data. Both MiRKAT-MCO and
MiRKAT-MCN were more powerful than GLMM-MiRKAT
except when the weighted UniFrac kernel was used, for which
none of the methods was significant. Our results are also
consistent with the conclusion of the previous study (Zhan
et al., 2018) that the unweighted UniFrac kernel and the Bray-
Curtis kernel were most suitable for this dataset.

4 DISCUSSION

Multi-categorical outcomes, both nominal and ordinal, are
increasingly common in biological and biomedical research
over recent years. Investigating the subtle microbiome
composition differences among multiple subtypes of a disease
provides a broad view of microbiome variation. It is typically a
first step to a further study of microbiome functionality and other
related topics. Additionally, clustered designs, as a supplement to
population-based studies, have become very popular recently
when researchers are interested in dynamic variations or the
variations among related individuals. While the toolbox for
analyzing data collected from population-based studies is
plentiful, methods for analyzing these clustered data are

FIGURE 3 | The boxplot of Shannon index across BMI categories in
United Kingdom twins study. Normal: BMI < 25; Overweight: 25 ≤ BMI < 30;
Obese: BMI ≥30. The circle on each box denotes the mean of Shannon Index
in that category.

TABLE 3 | p-values of testing for the BMI-microbiome association in
United Kingdom twins dataset using different methods and kernels.

CSKAT GLMM-MiRKAT-Binary MiRKAT-MCO MiRKAT-MCN

Kw 0.1455 0.1750 0.2223 0.3268
Ku 0.0036 0.0182 0.0014 0.0033
KBC 0.0012 0.0021 0.0016 0.0015
K5 0.0278 0.0370 0.0194 0.0264
HMP 0.0036 0.0075 0.0030 0.0040

The bold value is the smallest significant p-value across four methods given the kernel/
method. The definition of Kw, Ku, KBC, K5, and HMP is the same as Table 1.

TABLE 4 | Computation efficiency of MiRKAT-MC. Each result is the average time
of one association test averaged from running 100 replicate association tests.

MiRKAT-MCN (s) MiRKAT-MCO (s)

Independent data

J = 3 N = 80 0.0150 0.0139
N = 200 0.0914 0.0796

J = 5 N = 150 0.0978 0.0426
N = 300 0.7627 0.2568

Longitudinal data

J = 3 n = 30 (N = 105) 6.438 2.844
n = 60 (N = 210) 6.672 2.994

J = 5 n = 50 (N = 175) 11.964 4.758
n = 100 (N = 350) 26.328 15.252

For longitudinal data, both random intercepts and random slopes of time are included in
the null models. TheweightedUniFrac kernel was applied without loss of generalization. n
denotes the number of clusters, whereas N is the total sample size. All the computation
was conducted on aMacbook Pro (15-inch, 2019) laptopwith 2.3 GHz 8-Core Intel Core
i9 processor and 16 GB memory, without using parallel or other speed-up strategies.
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underdeveloped. To fill these research gaps, we proposed
MiRKAT-MC for testing for association between multi-
categorical outcomes and microbial community compositions
for both population-based and clustered/longitudinal studies.

Our major contributions in this paper are two-fold. First, we
have successfully used the generalized logit model and the
proportional odds model to enable direct association analysis
between multi-categorical outcomes and microbiome
compositions, without the need of combining categories or
conducting pairwise comparisons. Existing approaches either
compare two categories at a time and then conduct multiple
testing correction, or combine multiple groups into a single
category and compare it to the baseline. The pair-wise
comparison approach tends to lose power due to the burden
of multiple comparison. In addition, combining multiple groups
into a single category can lead to substantial power loss when the
microbiome effects on the categories are in opposite directions.
However, when we have more than two categories, MiRKAT-MC
can incorporate the heterogeneity in microbiome data and
compare all non-reference categories to the reference category.
Comparing to the potential alternative approach that first
compares each pair of categories followed by multiple
comparison adjustment, MiRKAT-MC would be much more
powerful. Moreover, the new association analysis framework in
the proportional odds model is extremely appealing for ordinal
outcome data, as none of the existing approaches takes advantage
of the order information in this particular type of data. Second, we
have adapted a fast pseudo-permutation strategy previously
developed under linear models to more complicated GLM(M)
and POM(M) to achieve efficient and accurate p-values
calculation. Unlike the ascendants which calculate p-values
through either asymptotic distribution or direct permutation
among exchangeable clusters, MiRKAT-MC controls type I
error perfectly, even when the sample size is small, yet avoids
the time-consuming and complex permutation.

As a non-parametric distance-based method, MiRKAT-MC
comes with some limitations. First of all, the choice of distance
metrics is subjective and could impact its performance. To this
point, we propose to conduct analysis using multiple kernels/
distances, generate multiple p-values and combine them via the
harmonic mean approach (Wilson, 2019). Secondly, like other
community level analysis of microbiome (Anderson, 2001; Zhao
et al., 2015; Tang et al., 2016; Koh et al., 2019), MiRKAT-MC
aggregates information across all taxa to form a community
level test. This usually serves as the first step in understanding
microbiome-phenotype relationship. However, these
approaches do not provide insight on which taxa are driving
the overall association. Thirdly, we used microbiome beta-
diversity to define our distance/kernel matrix, which is
convenient and proven useful. Many beta-diversities have
been proposed and widely used in microbiome studies, which
capture distinct characteristics of the underlying association
pattern (see (Plantinga et al., 2017)). However, recent literature
indicated that the structure of microbiome community may
vary even when their diversities and compositions are
comparable. In that context, if we are able to develop a
sample-to-sample distance matrix that captures the

important structure variations, such distance can be easily
incorporated into our framework. Developing a kernel/
distance for subtle structural differences in microbiome
communities can be an interesting scientific endeavor,
however, it is beyond the scope of this paper.

Computational efficiency of MiRKAT-MC is investigated and
reported in Table 4. MiRKAT-MC is extremely fast when dealing
with independent data. When data is clustered, the
computational time increases substantially, mainly because of
the increased time in fitting the null GLMM/POMM in the
presence of random effects. Nevertheless, the computational
time for MiRKAT-MC is very manageable even with clustered
data. Given that most microbiome studies are relatively small in
sample size, for three-category data, MiRKAT-MC can usually be
accomplished in 0.1 s for population-based studies with sample
size less than 200, and in 7 s for clustered studies with total sample
size less than 210.

In summary, we propose MiRKAT-MC, a microbiome
regression association test for multi-categorical outcomes with
independent and clustered study designs. The proposed methods
show well controlled type I errors and high power over multiple
scenarios through extensive simulations and better performance
than competitors in real data analyses. It is easy to use and fast to
compute. We believe that MiRKAT-MCwill enrich the toolbox of
researchers to conduct microbiome research with multi-
categorical outcomes.
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