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A B S T R A C T   

Objective: To validate the feasibility of ultrasound in assessing the curative effect of botulinum 
toxin type A (BTXA) in treating hypertrophic scar (HS). 
Methods: Eight healthy New Zealand long-eared rabbits were utilized in the study. Four wounds, 
each measuring 1.0 cm in diameter, were created on both ears of each rabbit. Immediately after 
surgery, each of these wounds received an injection containing a distinct concentration of BTXA. 
On postoperative week 6, scar thickness, vascularity, and hardness were assessed based on high 
frequency ultrasound (HFUS), superb microvascular imaging (SMI), shear wave elastography 
(SWE), Masson staining, and immunohistochemical staining for CD31. 
Results: All wounds healed well, and HSs formed after 6 weeks post-surgery. Scar thickness based 
on HFUS presented a significant decrease with increasing BTXA concentration (p < 0.05), 
aligning with the gross morphology. Simultaneously, scar stiffness, evaluated using SWE, showed 
a significant decrease in accordance with the variation of the collagen volume fraction, which 
refers to the ratio of the collagen positive area to the total area (p < 0.05). Although the 
vascularity index obtained by SMI did not exhibit a statistically significant change across different 
BTXA concentrations, this technique effectively illustrated the microvascular perfusion in HS. 
Immunohistochemical staining for CD31 revealed that BTXA inhibited angiogenesis. 
Conclusion: HFUS and SWE displayed excellent performance in evaluating HS thickness and 
stiffness. SMI showed a good performance in reflecting microvascular signals in HS. These ul
trasound techniques have great potential in assessing the therapeutic effect of BTXA in HS.   

1. Introduction 

Hypertrophic scar (HS) represents a type of pathological scar characterized by persistent hyperplasia in the scar tissue, which 
manifests during the dermal wound healing process [1]. The characteristics of HS are that it displays dermal fibroblast 
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hyperproliferation, collagen overproduction, and excess extracellular matrix deposition resulting from traumatic injuries, deep burns, 
and even acne [2]. It is reported that 17–67 % of patients with traumatic skin injuries and surgical procedures will develop HS on the 
skin [3–5]. HS could not only affect the skin’s appearance and function but also result in psychological stress in millions of patients 
globally [6]. Patients with HSs have to suffer from pain, pruritus, and reduced quality of life [7]. 

Currently, there are a variety of HS treatments, including surgical and nonsurgical resection approaches, such as compression, 
silicone sheet, corticosteroid injection, cryotherapy, laser treatment, intralesional 5-FU injections, and intralesional botulinum toxin 
type A (BTXA) injections [8,9]. The utilization of corticosteroid injections is prevalent in the treatment of scars owing to its notable 
effectiveness [10]. Nevertheless, prolonged administration of corticosteroids may result in complications such as localized skin at
rophy and capillary dilation, with an associated incidence rate reaching as high as 63 % [11]. Additionally, excessive dosages can 
precipitate systemic adverse reactions [12]. In recent years, intralesional BTXA injection has become one of the most promising ap
proaches and increasing numbers of physicians prefer BTXA for HS treatment and prevention, due to its proven ability to inhibit scar 
formation and lack of significant side effects [13]. As is well established, HS primarily results from tension exerted on wound edges. 
BTXA is able to inhibit acetylcholine release into the neuromuscular junction, which could lead to muscle paralysis and consequently 
reduce wound tension [13]. Owing to this mechanism and others, BTXA can be applied not only for the treatment of HS but also for its 
prevention [13]. 

HS treatment varies depending on its developmental stage, and the occurrence of both over- and undertreatment is prevalent in 
clinical practice. Therefore, the assessment of HS at different stages holds significant importance in its effective management. As is 
widely recognized, pathological examination serves as the definitive method for diagnosing a variety of diseases; however, biopsies 
frequently pose a risk of infection, which can have a negative impact on wound healing outcomes [14]. Therefore, finding noninvasive 
and simple methods to evaluate HSs is required. With the rapid development of medical science, there are various subjective and 
objective methods used to evaluate scars. Subjective approaches are mainly applied in clinics, including the Vancouver Scar Scale 
(VSS), modified Seattle scale, and standardized questionnaire, which are totally clinician- and patient-dependent [15,16]. A large 
number of noninvasive tools are able to provide a more objective and accurate evaluation and monitoring of scars, including der
moscopy [17], laser speckle contrast imaging [18,19], and ultrasound. Although dermoscopy is able to visualize vascular structure, it is 
limited to displaying only the upper layer of tissue [17]. Laser speckle contrast imaging could monitor blood perfusion but without a 
good penetration depth [19]. In recent years, ultrasound has become widely used in dermatological research, involving gray-scale 
ultrasound, color doppler ultrasound, power doppler ultrasound, elastography, and microvessel blood flow imaging. 

Conventional grayscale ultrasound could be employed for a more accurate determination of scar thickness, enabling the assessment 
of both scar height and penetration depth (depth below the surface). Ultrasounds above 20 MHz are considered high frequency ul
trasound (HFUS) [20]. It has a better performance in assessing the thickness of small scars and has been generally used to assess skin 
echogenic changes [21]. It is reported that credible and accurate vascularity measurement could help monitor scar changes and adopt 
targeted interventions to prevent excessive scarring [22]. Color and power doppler were used to detect vascularity in scars [23], which 
had a poor performance in displaying micro-low-speed blood flow signals and could not be applied for quantitative analysis. By 
contrast, superb microvascular imaging (SMI), known as an emerging ultrasound technology, is able to separate low-speed blood flow 
signals from slow mixed clutter signals based on an adaptive algorithm, so as to display the micro-low-speed blood flow signals more 
clearly and completely. SMI has been applied to diagnose and assess the development of many human diseases, including tumors, 
injury, and inflammation among others [24]. It also has the ability to provide a vascularity index (VI) based on automated application, 
which could reflect the proportion of blood flow within the tissue. Therefore, SMI may have a better performance in assessing 
vascularity in HS. Elastography, particularly shear wave elastography (SWE), has been applied in many studies in assessing scar 
stiffness [21,25,26]. It can provide objective quantification of tissue stiffness by using multiple, rapid ultrasound images to capture 
shear-wave propagation away from the region of force excitation based on an ultrasound platform [25]. 

SMI and SWE have been used to evaluate cicatricial plaques in cicatricial alopecia patients and had a good performance in showing 
scar fibrosis and inflammation [27]. However, these two ultrasound techniques have not been specifically applied to scars in the clinic. 
Therefore, we preliminarily validated the effectiveness and credibility of these techniques in evaluating the therapeutic effects of BTXA 
in the early stage of HS formation with animal models. In this research, SMI was employed to evaluate scar vascular perfusion, SWE 
was utilized to assess scar stiffness, and HFUS was employed to measure scar thickness in order to compare the therapeutic efficacy of 
varying concentrations of BTXA on HS. Given that scars primarily consist of excess collagen in distinct nodules, resulting in heightened 
stiffness and reduced elasticity, the collagen content was quantified to validate the precision of SWE in assessing scar hardness [28]. In 
contrast to the wound contraction observed in rodents, skin wounds in rabbit ears predominantly heal through reepithelialization due 
to the strong adherence between the dermis and subcutaneous tissue layer, resulting in hypertrophic scarring similar to that seen in 
humans [29]. Therefore, a rabbit ear scar model was developed for the purposes of this study. Masson’s staining was utilized to assess 
the collagen content of scar tissue through pathological examination in order to validate the efficacy of SWE in assessing scar hardness. 
Additionally, immunohistochemistry was employed to measure CD31 levels as a marker of angiogenesis, providing a more compre
hensive evaluation of the accuracy of SMI technology. To the best of our knowledge, this is the first study to validate the performance of 
SMI in assessing therapeutic effects in HS treatment in the early stage of HS formation. 

2. Materials and methods 

This study was reviewed and approved by the Animal Experimentation Ethics Committee of Anhui Medical University (ethics 
number: LLSC20221114). 
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2.1. Materials 

Animals. Eight healthy adult New Zealand long-eared rabbits were obtained from the Anhui Medical University Animal Test Center, 
weighing 2,000–3,000 g, both females and males, were involved in this study. All rabbits were housed by professional breeders in 
standard animal rooms at 23 ◦C ± 2 ◦C, 50%–60 % relative humidity, and >8 h/day of light, with free access to food and water. 

2.2. Methods 

2.2.1. Hypertrophic scar modeling 
The experimental method of the animal model was developed based on our previous study [30]. The rabbits were anesthetized with 

sodium pentobarbital (30 mg/kg). The ventral sides of both ears were cleaned to fully expose the superficial vessels to avoid injury 
during the experiment. Four circular areas of 1.0 cm in diameter and at a 1.5 cm interval were marked on each side of the ventral 
midline of both ears using a circle gauge and methylene blue (Fig. 1). The ears were disinfected three times with iodine complex, the 
full skin was removed aseptically, and the perichondrium of each wound was removed under a light microscope to facilitate prolif
erative scar formation. Finally, the wound was re-sterilized and exposed for BTXA intervention after applying pressure with gauze to 
stop the bleeding. 

2.2.2. BTXA intervention 
After modeling, four wounds were obtained from both ears and were randomly divided in each ear into the 0 U/ml, 5 U/ml, 10 U/ 

ml, and 20 U/ml groups, with a total of 16 wounds in each group. BTXA (Lanzhou Hengli, Lanzhou Biological Company) stored at 
− 20 ◦C was placed at room temperature for 15–20 min and diluted with saline into different therapeutic concentration solutions for 
use. 0 U/ml group was injected with saline. After each rabbit ear was molded, 0.2 ml BTXA (0.05 ml each at 3, 6, 9, and 12 o’clock) was 
injected immediately outside the wound margin. 

2.2.3. Postoperative observation and sampling 
Following surgery, the general condition of the animals was closely observed, and the wound dressing was changed every other 

day. The wound healing and epithelialization time were dynamically observed and recorded. During the initial week, our observations 
were conducted every two days, followed by weekly observations thereafter. After the hypertrophic scar was formed and stabilized at 6 
weeks postoperatively, we first assessed the scar proliferation using ultrasound, then euthanized the rabbits and took scar samples, 
including at least 5 mm of normal skin around the scar, which were immediately fixed in 10 % neutral formaldehyde for subsequent 
staining assessment. 

Fig. 1. Four wounds were obtained after modeling.  
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2.2.4. Ultrasound evaluation 
Prior to the assessment, the hair on both ears was removed with a mild and non-stimulating method. After waiting for 10 min, the 

pad filled with an ultrasonic gel was laid on the scar and the transducer was placed onto the pad. All scars were examined by high- 
frequency ultrasound using a musculoskeletal ultrasonic diagnostic system (Aplio i800, Canon, Japan). During the measurement 
process, it is important to maintain the orientation of the probe parallel to the long axis of the rabbit ear. The image was frozen at the 
thickest point of both the epidermis and dermis layers of the scar. The total thickness of these layers was measured, and the average 
value of three consecutive measurements were calculated. All examinations were performed with the same i24LX8 linear probe at the 
same frequency of 24 MHz, and thicknesses of all the scars at the thickest point were measured by the same physician (L C). Subse
quently, on the basis of gray-scale image, the instrument was switched to the SMI mode and the speed scale was set at 1.2 cm/s. In the 
SMI model, a square of the same size was selected as the region of interest (ROI), with the scar positioned at the center of it. Sub
sequently, the VI, presented as the percentage form, was calculated automatically by the system. SWE examination was undertaken by 
the same experienced sonographer using the Siemens ACUSON Sequoia with a 10L4 linear probe operating at 3–10 MHz. The mea
surement range was set 0.5 m/s-10 m/s. We still maintained the orientation of the probe parallel to the long axis of the rabbit ear and 
activated SWE mode at the thickest part of the scar. Then we established the sampling frame, encompassing both the scars and the 
surrounding normal tissue. After acquiring a stable color-coded square frame, a circular ROI was placed at the scar to measure the 
shear wave velocity (Fig. 2). It was of great significance to ensure that there was no pressure between the probe and skin throughout 
the process. Moreover, in order to reduce the measurement error, every recording was repeated three times by the same experienced 
person, and the value was calculated by averaging these three measurements. 

2.2.5. Immunohistochemical staining for CD31 
For immunohistochemistry, following staining and incubation, the paraffin sections were sealed using neutral gum, and images 

were obtained. Image J software was used for image quantization analysis. The average optical density (AOD) was measured to reflect 
the concentration of the target protein per unit area. AOD = integrated optical density/positive area. 

2.2.6. Masson’s trichrome staining and collagen volume fraction (CVF) measurement 
Following the ultrasound evaluation, Masson staining was performed using the Masson staining kit (cat. B022, ebiogo). Following 

staining, the sections were placed under a microscope (OLYMPUS CX41) to observe the collagen proliferation of each group of scars. 
Quantitative analysis was normally performed by calculating the CVF using Image J software. Five fields of view were randomly 

Fig. 2. Shear wave elastography images of hypertrophic scars. The median values of shear wave velocity and Young’s modulus were automatically 
displayed on the image. The square on the right of the picture represents the sampling frame, and the circle represents the region of interest. 

L.-l. Cao et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e34723

5

selected under a light microscope at 200 × magnification, and the average CVF of the five fields of view was taken as the final result. 
CVF = (collagen positive area/total area) × 100 %. 

2.2.7. Statistical analysis 
The quantitative data were presented as mean ± standard deviation. Statistical analyses were performed using one-way analysis of 

variance with SPSS software 25.0. Bonferroni test was used for post hoc multiple comparisons, and p < 0.05 was considered to 
demonstrate statistical significance. 

3. Results 

3.1. Changes of wounds and general observation of HSs 

In our study, all wounds healed well. As shown in Fig. 3, local protuberance on the wound surface 12 days after operation was a sign 
of HS formation. Six weeks after surgery, the wound healed completely and a bulge appeared in the center of the scar, but the bulge did 
not extend beyond the edge of the scar. 

3.2. Thickness evaluation of HSs based on high frequency ultrasound on treatment with different BTXA concentrations 

The total thicknesses of both epidermis and dermis layers of the scar in different groups were measured (Fig. 4a). The mean 
thicknesses of the groups were 4.25 ± 0.12 mm, 3.87 ± 0.14 mm, 3.41 ± 0.12 mm, and 2.59 ± 0.13 mm in the 0 U/ml, 5 U/ml, 10 U/ 
ml, and 20 U/ml groups, respectively (Fig. 4b). Differences between groups were statistically significant after post hoc multiple 
comparisons (p < 0.05). 

3.3. HS evaluation based on SMI on treatment with different BTXA concentrations 

The VI obtained by SMI could reflect the microvessel density (Fig. 5). However, in the present study, there was no significant 
difference between all groups (p > 0.05). 

3.4. HS evaluation based on SWE on treatment with different BTXA concentrations 

The values of shear wave velocity of different groups were measured (Fig. 6a). The mean values of the shear wave velocity of the 
groups were 3.31 ± 0.32 m/s, 2.72 ± 0.25 m/s, 2.10 ± 0.28 m/s, and 1.55 ± 0.15 m/s in the 0 U/ml, 5 U/ml, 10 U/ml, and 20 U/ml 
groups, respectively (Fig. 6b). There was statistical significance between groups after post hoc multiple comparisons (p < 0.05). 

3.5. Evaluation of HS angiogenesis based on CD31 staining 

Images of immunohistochemical staining for CD31 in the different groups were displayed in Fig. 7a. The mean AOD values of 
different groups were 0.52 ± 0.04, 0.49 ± 0.03, 0.38 ± 0.03, and 0.17 ± 0.04 in the 0 U/ml, 5 U/ml, 10 U/ml, and 20 U/ml groups, 
respectively (Fig. 7b). Differences between groups were statistically significant after post hoc multiple comparisons (p < 0.05). 

3.6. BTXA inhibited collagen proliferation with increasing concentration 

Images of Masson staining in the different groups were displayed in Fig. 8a. The mean values of the CVF (%) of the groups were 
76.38 ± 2.03, 68.77 ± 2.28, 56.58 ± 1.86, and 45.83 ± 1.90 in the 0 U/ml, 5 U/ml, 10 U/ml, and 20 U/ml groups, respectively 
(Fig. 8b). Differences between groups had statistical significance after posterior comparisons (p < 0.05). 

Fig. 3. Changes of hypertrophic scar in rabbit ears.  
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4. Discussion 

By using rabbit ear scar models, our experiment evaluated the performance of ultrasound in assessing the curative effect of BTXA in 
treating scars. We observed a decrease in both scar thickness and shear wave velocity of scars with an increase in treatment con
centration (p < 0.05), consistent with the general observation and pathological results. SMI could clearly display the microvascular 
perfusion in the scar. 

Fig. 4. High-frequency ultrasound results of the different groups. a Hypertrophic scar thickness in the 0 U/ml (A), 5 U/ml (B), 10 U/ml (C), and 20 
U/ml (D) groups. b Hypertrophic scar thickness in the different groups. Compared with the 0 U/ml group, all differences were statistically sig
nificant (****p < 0.001). 

Fig. 5. Scar vascularity is shown and the vascularity index was calculated automatically based on superb microvascular imaging. The blood flow 
signal can be seen in the superb microvascular imaging as a bright white area. 
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HS evaluation is important for assessing therapeutic effects, which would be of benefit in guiding further treatment and promoting 
HS prognosis. Therefore, finding noninvasive methods that could provide a reliable HS evaluation is significant. Ultrasound is one of 
the first-line examination techniques in clinical settings, which could provide noninvasive high-resolution imaging of skin and sub
cutaneous tissues. In recent years, rapidly developing ultrasound techniques, including SWE and SMI, have shown promise in offering 
more comprehensive information about scars. To the best of our knowledge, this study represents the first attempt to validate the 
performance of these techniques in assessing the therapeutic effects of HS treatment in the early stages of HS formation. Moreover, 
scars were examined histologically in this study, enhancing the objectivity of evaluating the accuracy of the ultrasound. 

Scar thickness is an important component of scar evaluation. However, existing methods for evaluating scar tissue thickness have 
some limitations. For example, VSS is subjective, resulting in high variabilities in evaluation. Moreover, its hierarchical assessment 
method may not be sensitive enough when minor changes in scar thickness occur. For example, when scar thickness is reduced from 5 
mm to 3 mm, the score may remain unchanged. By contrast, HFUS is more sensitive to subtle changes. A previous study, which 
compared scar thickness before and after treatment in 22 patients using HFUS, showed a more significant improvement in scar 
thickness after treatment compared with VSS [23]. This confirmed the high sensitivity of HFUS in the assessment of scar thickness. 
Although histological evaluation via biopsy could display different layers of normal skin and scars, such a method is invasive and not 
practical for clinical application. As a noninvasive and objective approach capable of creating valid and reproducible results in scarred 
tissue, HFUS has been recommended in recent studies for the assessment of scar thickness [31]. 

In our study, scar thickness significantly decreased with increasing BTXA concentration, which was in accordance with the general 
scar observations. Moreover, this method presented good consistency throughout our measurements. In future clinical work, HFUS 
could be employed to assess scar thickness to evaluate therapeutic effects. 

Vascularity is a significant parameter associated closely with scar maturation [32,33], and several earlier studies demonstrated that 
BTXA could inhibit angiogenesis [34]. Therefore, we evaluated the therapeutic effect of BTXA by assessing vascularity. In a previous 
study, researchers attempted to construct three-dimensional images of blood vessels in the HS to clarify the vascular patterns based on 
pathological and histological examinations [35]. However, using this invasive evaluation tool in clinics is unrealistic. Additionally, 
numerous subjective vascularity measurement scales are used to evaluate vascularity, offering only a preliminary and subjective 
impression of scar vascularity [23]. In contrast to measurement scales, ultrasound is more objective and has been increasingly used for 
noninvasive vascularity evaluation. Previous studies, for instance, utilized color Doppler and power Doppler for scar vascularity 
evaluation [23,36]. However, these two techniques are unable to clearly display micro-low-speed blood flow signals or provide 
quantitative analysis. By contrast, SMI outperforms in assessing micro-low-speed blood flow and providing the VI to realize quanti
tative assessment. It has been widely used in superficial tissues and organs, achieving great progress in recent years [24]. 

In a previous study, CD31 was validated as a marker protein expressed on the surface of vascular endothelial cells, which has been 
widely used to quantify angiogenesis [37]. Therefore, we utilized this index to reflect the density of angiogenesis in HS, further 
substantiating the validity of SMI. In our study, CD31 expression decreased with increasing BTXA concentration. However, the VI 
obtained based on SMI showed no significant difference between the groups, possibly due to the following reason. The wounds were so 
superficial that the use of a pad was required, which caused unavoidable pressure during VI measurements. Consequently, the tissues 
close to the pad presented interference signals of vascularity. These interference signals were taken into account as blood flow signals 
in the calculation of VI, which might lead to uncertainty in the measurement. During our evaluation, we tried to draw the ROI 

Fig. 6. Shear wave elastography results of different groups. a Shear wave elastography images of HSs after measurement in the 0 U/ml (A), 5 U/ml 
(B), 10 U/ml (C), and 20 U/ml (D) groups. b The mean values of the scar shear wave velocity in the different groups. Compared with the 0 U/ml 
group, all differences were statistically significant (****p < 0.001). 
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manually to avoid containing too many non-target areas. But we found it difficult to draw the ROI accurately because the scars were so 
small. Although the expected results were not achieved, we found that SMI could clearly show the microvascular perfusion in the scar 
and present microvascular distribution of the lesion area in real time. Therefore, if we could avoid the generation of interference 
signals, it is possible that the value of VI could be used to evaluate the vascularity of scars quantitatively. In the future study, we will 
optimize our experimental and measurement methods to verify this possibility. 

Scars consist of excess collagen, which leads to increased hardness and diminished elasticity. According to a previous study, 
improved elasticity is regarded as an objective parameter indicating successful treatment [28]. Elasticity detected by ultrasound is an 
effective and reliable objective reflection of scar stiffness [36]. SWE is an ultrasound technique for evaluating tissue stiffness. An earlier 
study indicated that the shear wave velocity measured by SWE in burn scar patients could be used to assess scar severity [25]. 
Moreover, SWE has been proven to be a useful indicator in predicting keloid activity [36]. 

In the inflammatory and proliferative stages during scar formation, collagen gradually deposits around the microvessels [38]. BTXA 
was proven to reduce extracellular matrix synthesis, including collagen [39]. Therefore, monitoring the changes of collagens in HS is 
beneficial to evaluate the therapeutic effect of BTXA. Masson staining could display the collagen fibrils in scars, but this method is 
invasive. The excess collagen in scars could lead to increased hardness and diminished elasticity [36]. In our study, the elasticity 
evaluation image revealed that HSs were harder than normal skin, whereas they became softer with increasing BTXA concentration. 
Moreover, the collagen expression levels displayed a good correlation with the shear wave velocity measured by SWE, which also 
demonstrated that the value of shear wave velocity could indirectly reflect the collagen content. In a previous study, DeJong H et al. 
utilized SWE to measure shear wave velocity of hypertrophic burn scars and found high correlations between the velocity and VSS 
pliability sub-scores [25]. This is consistent with our findings. In contrast to most previous studies, we validated the accuracy of SWE 
with Masson staining, and SWE has an advantage over VSS in that VSS mainly relies on the subjective experience of clinicians. This 
result demonstrated that SWE has a good performance in evaluating the therapeutic effect of BTXA in HS. 

VSS is the most commonly used scar assessment method within the clinical area. Compared to the scar thickness evaluation in the 

Fig. 7. Angiogenesis evaluation in hypertrophic scars based on CD31 staining. a Images of immunohistochemical staining for CD31 in the different 
groups. Arrows indicate positively stained vessels. (A) 0 U/ml group, (B) 5 U/ml group, (C) 10 U/ml group, and (D) 20 U/ml group. b Quantitative 
analysis of CD31 expression in the different groups. Compared with the 0 U/ml group, all differences were statistically significant. (**p < 0.01; 
****p < 0.001). 
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scale, the thickness of the scar measured by HFUS can provide a more accurate assessment of the total thickness of the dermis and 
epidermis of the scar. SWE could assess the hardness of scars quantitatively, that is the flexibility in the VSS, which could quantify the 
subjective parameters. SMI has shown great potential in the assessment of the intravascular perfusion of scar, which could clearly 
display the intravascular perfusion of scar. What is more, SMI could provide the vascular index by its own algorithm to evaluate the 
vessel density quantitatively. These ultrasound techniques have the advantages of convenience, non-invasiveness, and economy, and 
have great potential in evaluating the curative effect of scar. 

This study had several limitations. First, the sample size and the wound size of this study were small, which may have induced 
avoidable bias. Second, scar evaluations were not conducted at different time intervals. Because pathological sections had to be ob
tained from every model after evaluation, a time-course would have demanded a large number of rabbit models. Third, other elas
tography techniques, such as instantaneous elastography, were not utilized for comparative analysis. Lastly, our study did not include a 
comparison with normal tissue. In future research, the sample size should be increased, and studies should concentrate on more 
noninvasive quantitative indicators based on ultrasound and investigate whether they have linear relationships or other functional 
relationships with pathological and immunological analyses. Comparative studies between scar and normal tissue are also recom
mended to understand whether treatments with different concentrations of BTXA are closer to normal tissue properties or are over- 
treatments. In addition, we would attempt to establish a multimodal imaging system based on multimodal ultrasound parameters, 
which may provide better performance. 

5. Conclusion 

Finding methods that are both noninvasive and objective to evaluate the therapeutic effects on scars is crucial for achieving better 
management. Our study demonstrated the potential of HFUS, SMI, and SWE in evaluating HS vascularity and stiffness. HFUS and SWE 
displayed excellent performance in assessing the therapeutic effects of BTXA, and SMI could show microvascular perfusion in HS. 
These ultrasound techniques have tremendous potential in evaluating therapeutic effects on HS, enabling targeted interventions based 
on the evaluation. Timely adjustment of treatment based on objective assessments during scar management could reduce the 
occurrence of both over- and undertreatment. Nonetheless, further studies are still required to obtain more detailed insights. 
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(D) 20 U/ml group. b The mean value of the CVF in the different groups. Compared with the 0 U/ml group, all differences were statistically sig
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