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Abstract—Current methods for fall risk assessment rely
on Quantitative Gait Analysis (QGA) using costly optical
tracking systems, which are often only available at special-
ized laboratories that may not be easily accessible to rural
communities. Radar placed in a home or assisted living
facility can acquire continuous ambulatory recordings over
extended durations of a subject’s natural gait and activity.
Thus, radar-based QGA has the potential to capture day-
to-day variations in gait, is time efficient and removes the
burden for the subject to come to a clinic, providing a more
realistic picture of older adults’ mobility. Although there
has been research on gait-related health monitoring, most
of this work focuses on classification-based methods, while
only a few consider gait parameter estimation. On the one
hand, metrics that are accurately and easily computable
from radar data have not been demonstrated to have an
established correlation with fall risk or other medical con-
ditions; on the other hand, the accuracy of radar-based
estimates of gait parameters that are well-accepted by the
medical community as indicators of fall risk have not been
adequately validated. This paper provides an overview of
emerging radar-based techniques for gait parameter esti-
mation, especially with emphasis on those relevant to fall
risk. A pilot study that compares the accuracy of estimating
gait parameters from different radar data representations
– in particular, the micro-Doppler signature and skeletal
point estimates – is conducted based on validation against
an 8-camera, marker-based optical tracking system. The
results of pilot study are discussed to assess the current
state-of-the-art in radar-based QGA and potential directions
for future research that can improve radar-based gait pa-
rameter estimation accuracy.
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Impact Statement— Quantitative Gait Analysis (QGA) re-
lies on expensive optical tracking systems in specialized
laboratories, whereas radar-based in-home QGA can cap-
ture daily gait variations, providing more realistic, continu-
ous assessment of mobility.

I. INTRODUCTION

HUMAN gait is an important health indicator, especially
for older adults, who may increasingly experience issues

with balance and stability as a normal part of the aging process.
Monitoring of gait can provide early warning of diseases or
important information on post-treatment recovery. As such, gait
parameter estimation is an important task for any remote health
monitoring system installed either in-home or in an assisted liv-
ing facility in support of aging-in-place. Falls especially remain
a significant threat to the health of older adults: according to the
U.S. Center for Disease Control, each year, roughly 1,800 older
adults suffer fall-related fatalities in assisted living facilities [1].
Thus, fall prevention and fall risk assessments are critical to
preventing debilitating injury and fall-related fatalities.

Falls often occur during walking [2], [3], [4], [5] and although
fall risk is influenced by a variety of intrinsic and extrinsic
factors [6], gait and balance disorders have been consistently
identified as one of the strongest risk factors. Not surprisingly,
many studies suggest that gait features are associated with a
history of falls and are good predictors of prospective falls
[7]. Consequently, standardized gait assessments are commonly
used in the clinical practice guidelines to evaluate and prevent
fall risk [8], [9], [10], [11]. Numerous approaches have been
taken to quantify gait and its relation to falls. Clinical rating
scales usually integrate a cumulative score based on performance
across multiple tasks. Accordingly, they are useful in evaluating
mobility limitations and fall risk, but do not identify the specific
mechanics that are associated with falls. Moreover, they may
lack of discriminant ability, especially in healthy populations
that have not started to fall frequently [12].

Quantitative gait analysis (QGA) may not only provide an
indication of an individual’s risk of falling, but also highlight
specific modifiable gait characteristics that can be targeted with
interventions to reduce the risk of future falls. Gait assessment
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can be altered to increase the level of difficulty (e.g., dual-task
paradigms, turning, backward walking, and walking at a fast
pace). Current methods for fall risk assessment with QGA
rely on gait parameters extracted from optoelectronic motion
capture systems, such as Vicon, which utilize markers on the
participant to accurately estimate the position vs. time of each
marker with multiple cameras. Such optical tracking systems
are currently used in most gait analysis laboratories for both
clinical and research purposes and provide a “gold standard” for
gait analysis [13]. However, reliance on motion-capture based
QGA systems involves expensive equipment, raising the cost of
health care, while not being readily accessible as they are few,
predominantly operated by medical schools in large cities, and
thus distant from rural populations. These barriers can result
in infrequent assessments and delays in diagnosis, especially
for underserved or low-income adults. Moreover, QGA labs
are controlled environments that preclude the assessment of
natural gait: people invariably alter their behavior when they
know they are being observed. This phenomenon is known as
the Hawthorne effect and has been shown to influence gait [14].
For example, in the presence of an observer, limping was less
pronounced and double support time more symmetrical in the
gait of lower limb prosthesis users [15].

As a result, there has recently been great interest in the
development of in-home QGA to enable continuous monitor-
ing of gait in an uncontrolled environment, paving the way
for reduced health care costs, more widespread access to gait
assessments, and improved health outcomes. Both wearable
and camera-based systems have been proposed for fall risk
assessment [16], while radio frequency (RF) sensing – or radar
– is a more recently proposed, emerging modality due to its
ability to operate ambiently and in a non-contact fashion from
a distance without requiring any light [17], [18]. This makes
radar particularly well suited for monitoring in indoor settings,
such as private homes and senior living communities, operating
either in a stand-alone or complementary fashion with wear-
ables, which may be forgotten to be worn, and cameras, which
may not be preferred for ambient use as it may be intrusive of
private moments and spaces. As such, radar can potentially offer
continuous assessments even in sensitive settings without any
burden on the user and operates ambiently without batteries.
The RF emissions of typical radars are safe for humans, with
levels at least 100 times less than that of a typical cell phone.

A radar placed in a home or assisted living facility can acquire
continuous ambulatory recordings over extended durations of a
subject’s natural gait and activity. Radar-based QGA can capture
day-to-day variations in gait, is time efficient and removes the
burden for the subject to come to a clinic, providing a more real-
istic picture of older adults’ mobility. This can aid in identifying
psychological conditions, such as depression, which are marked
by low activity levels, environmental factors that may be a cause
of aberrations in gait, and early warning signs of neuromuscular
disorders and potential fall risk – before a debilitating fall occurs.

Over the past decade, research on gait-related health moni-
toring with radar has focused on classification-based methods
for fall detection [19], [20], [21], [22], gait/activity recognition
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],

[34], aided/unaided ambulation discrimination [35], [36], [37],
or detection of gait abnormalities [38], [39], [40], [41]. How-
ever, there have been fewer works that consider gait parameter
estimation for QGA. On the one hand, many metrics that are
accurately and easily computable from radar data have not
yet been demonstrated to have an established correlation with
fall risk or other medical conditions. On the other hand, the
accuracy of estimated gait parameters that are well-accepted by
the medical community as indicators of fall risk have not been
adequately validated. Often, many works report the accuracy
of the proposed radar-based estimation methods in comparison
to the Kinect sensor or an assortment of web cameras; however,
such markerless systems are more prone to significant estimation
errors and thus offer inadequate assessment and benchmarking
of true accuracy.

This paper provides an overview of emerging radar-based
techniques for gait parameter estimation, especially with em-
phasis on those relevant to fall risk. The results of a pilot
study comparing different radar-based estimation approaches
are provided in conjunction with detailed discussion to provide
comprehensive assessment of the current state-of-the-art and
highlight areas requiring future research.

II. RADAR-BASED GAIT PARAMETER ESTIMATION

The received signal of a typical frequency modulated con-
tinuous wave (FMCW) radar system for the backscatter from
a point target is a time-shifted, frequency modulated version of
the transmitted signal. Thus, the received backscatter, s(t), from
the entire human body can be represented as the superposition
of reflections from each point on the surface of the body,

s (t) =

K∑
i=1

aie
−j[2πf0t+ 4π

λ
Ri(t)] (1)

where f0 is the center transmit frequency, λ is the wavelength,
t is time, Ri(t) is the time-varying range of each point on the
body to the radar transceiver, and ai amplitude for the ith point
as computed from the radar range equation [42],

ai =
Gλ

√
Piσi

(4π)3/2R2
i (t)

√
L

(2)

Here G is the antenna gain, Pi is the transmitter power, σi,
is the radar cross section (RCS) for each point target, and L
represents losses, such as electronic noise.

Nowadays many commercially available radar systems also
have multiple channels, or elements in their antenna array, so
that the received multi-channel RF data stream can be reshaped
into a 3D array: fast-time (number of analog-digital converter
samples) × slow-time (number of pulses) × channel number. If
the radar system has both a vertical and horizontal linear array,
then the resulting RF data stream can be formed into a 4D array
of fast-time, slow-time, vertical and horizontal channels.

Using radar signal processing, various 2D data representa-
tions may be computed [42], [43], [44]: micro-Doppler (μD)
signatures, range-Doppler (RD) and range-Angle (RA) maps.
RD maps are computed by taking a 2D Fast Fourier Transform
(FFT) of the slow-time/fast-time data matrix for a single array
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Fig. 1. Micro-Doppler signatures of a person walking as acquired from (a) 5.8 GHz pulsed doppler (PD) radar, (b) 10 GHz ultra-wide band impulse
radar (UWB-IR), (c) 24 GHz continuous wave (CW) radar, and (d) 77 GHz FMCW radar with 4 GHz bandwidth.

element, while RA maps are found by computing the direction of
arrival (angle) of the radar backscatter using methods such us the
MUltiple Signal Classification (MUSIC) algorithm [45], [46].
Application of MUSIC for each coherent processing interval
(CPI) during which N pulses are transmitted will result in a
time-series of RA maps.

Most works on radar-based QGA derive the estimates from
the radar μD signature [43], a representation of the velocity
of the backscatter from each point of the body as a function
of time. Micro-Doppler signatures are computed by applying a
time-frequency transformation, such as the short-time Fourier
Transform (STFT), across the slow-time samples of the radar
data cube. To ensure that μD signatures are independent of the
subject’s range, cell averaging constant false alarm rate (CA-
CFAR) detection [42] can be applied on RD maps to identify the
range bins that include subject motion. Then, only these detected
range bins are used in the computation of the μD signature.

The frequency, bandwidth and pulse repetition interval (PRI)
of the transmitted signal can affect the accuracy of the gait
parameter estimates derived from μD signatures. The depth res-
olution (Δr) of an FMCW radar reflects the ability of the radar to
differentiate between the radial distance, or slant range, between
two point scatterers and is computed as Δr = c/2β, where c is
the speed of light and β is the transmitted signal bandwidth.
The velocity resolution Δv = λ/(N · PRI), where N is the
number of pulses transmitted over a CPI. Thus, the higher the
transmit frequency of the radar, the shorter the wavelength, and
the smaller the differences in velocity that can be resolved. Note
that range and velocity resolution differ from the size of the range
and velocity bins, which indicate size of each pixel. The size of
a range bin is given by rb = (c/2)ts, where ts is the sampling
interval of the analog-to-digital converter of the radar. The
size of a velocity bin is computed as vb = λ/(2 · PRI ·Nfft),
where Nfft is the number of FFT points utilized. The angular
resolution of a multi-channel radar depends on the beamwidth of
the main lobe of the antenna beam pattern, and can be computed
as θ = Kλ/D, whereK is the beamwidth factor and D is the size
of the aperture. Beamforming techniques [47] can be utilized to
form larger virtual arrays and improve the angular resolution of
a radar.

The impact of different radar transceiver parameters may be
observed from the sample μD signatures shown in Fig. 1 for a

person walking as acquired by four different radars: a 5.8 GHz
pulsed doppler (PD) radar, 10 GHz ultra-wide band impulse
radar (UWB-IR), 2.4 GHz continuous wave (CW) radar, and
77 GHz FMCW radar with 4 GHz bandwidth. The ground
clutter returns, which result from backscatter from stationary
objects/surfaces in the environment, result in a horizontal line at
0 Hz. This is most clearly observed in the 77 GHz μD signature
shown in Fig. 1(d), where the oscillatory characteristics of the
gait cycle in the human return can be clearly visually differen-
tiated from the 0 Hz clutter line. These clutter returns can be
filtered out using a Butterworth low pass filter or techniques
such as Moving Target Indication (MTI) [42], as illustrated with
the signatures of Fig. 1(a)–(c).

The torso response is often the body part that results in
the strongest backscatter and may be identified as a reddish
sinusoidal curve in theμD signature. At low frequencies, such as
the 5.8 GHz, the periodicities of the gait cycle are not as clearly
observed as in the higher frequencies. Moreover, the average
velocity of the gait signature appears at lower Doppler shift
frequencies when the transmit frequency is lower. This increases
the likelihood of the clutter returns masking the low frequency
components of the gait signature – an effect that can degrade the
accuracy of gait parameter estimates or gait classification algo-
rithms. While millimeter wave frequency transmissions result in
data with the most evident limb trajectories, higher frequencies
also suffer from more significant atmospheric attenuation, as
may be seen by the inverse relationship between the signal
amplitude ai and frequency (since f = c/λ) captured in (2).

The pulse repetition frequency (PRF), which is the inverse of
the PRI, also determines the maximum Doppler shift that can
be acquired by a radar unambiguously. If the PRF is lower than
the Doppler shift incurred by the maximum speed of movement,
aliasing occurs in which the high frequency parts of the signature
will wrap around to the bottom of the image. Such effects are
highly detrimental to gait analysis algorithms, which typically
rely on capture of unaliased μD signatures.

Note that as the cost of a radar system often depends on
the transmit frequency, bandwidth and number of antenna el-
ements in azimuth and elevation, an important question that
merits further investigation is what the minimum transmission
requirements are to achieve a certain level of accuracy in gait
parameter estimates for QGA in real-world conditions. The
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radar transmission also affects the sample size in each of the
dimensions of the radar data tensor; thus, the transmis-
sion parameters also influence computational complexity and
may be a limiting factor in situations requiring real-time
QGA.

A key limitation of μD-based gait parameter estimation is
that the μD signatures represent the aggregate backscatter from
the entire human body – not a specific body part or joint. This
makes recent advancements in RF skeleton estimation interest-
ing to consider from the perspective of QGA. However, most
RF skeleton estimation methods utilize deep neural networks
(DNNs) to learn a mapping between various types of radar
representations to skeletal key points. Thus, the methods are
very data greedy and have been primarily considered in the
broad context of monitoring activities of daily living – a task
that does not require the same level of estimation accuracy as
gait parameter estimation for QGA. The pilot study presented in
Section IV provides a gold standard comparison of estimation
accuracy from both μD signatures and RF skeletons under a
moderate amount of data. Relevant results from the literature
are discussed next.

A. QGA Using RF Micro-Doppler Signatures

Early works on radar-based gait analysis [48], [49] focused on
the estimation of walking speed by averaging the speed corre-
sponding the strongest (peak) return in the μD signature, which
typically results from torso backscatter. Later, when it was shown
that backscatter from a person could be well approximated by (1)
utilizing superposition [50], [51], biomechanical models – such
as the Boulic walking model [52], which provided parametric
equations and graphs representing body part trajectories and
joint angles – were exploited to estimate the height and speed
of a person walking [53], [54].

While early works did not involve gold standard comparisons,
in 2014, a study [55] was conducted that investigated the esti-
mation accuracy of walking speed and step time, comparing the
estimation accuracy attained over a 17-ft walkway using a 5.8
GHz foot-level and torso-level radar with that of a Vicon-based
optical tracking system. Excellent agreement between radar and
Vicon-based estimates were found for step time estimation using
the foot-level radar; however, for walking speed, the impact of
aspect angle on velocity-estimates was noted as a cause for an
offset between radar and Vicon-based estimates. This offset was
less in the torso-level radar data and more pronounced in the
foot-level radar data. This result is not surprising, considering
that the Doppler shift is proportional to radial velocity, not
absolute velocity.

To mitigate the impact of aspect angle in QGA methods based
solely on μD signatures, researchers have proposed utilizing
radar systems for gait analysis in hallways, which would pre-
clude significant angular deviation from the radar line of sight.
For example, in [56], walking speed, step points, step time, step
length, and step count are estimated from a radar monitoring a 14
m. hallway. Alternatively, [57] has proposed utilizing radar for
walking tests administered by physical therapists, whereby the
subject would walk along a straight path away from the radar,

turn around, and then walk back towards the radar. Analysis
of radar μD signatures was utilized to segment the data into
three segments: an acceleration zone, a measured-gait zone,
and a deceleration zone. The resulting gait speed estimate was
validated against a Vicon motion capture system and found to
have an error of 0.076 m/s.

More advanced signal processing techniques have also been
proposed to track limb motion during ambulation and enable
angle-agnostic μD-based QGA. In [58], a 1-D block processing
method is proposed to use CW radar to track the arm, elbow,
hand, torso, knees, calf or ankle under various types of walking
– walking without hands moving and walking with one arm
or both arms swinging. The maximum speed of tracked body
parts is reported in comparison with that obtained using the
Boulic model. While the method appeared effective in extracting
lower limb motion during ambulation, tracking the hand and arm
movements was less reliable. Aside from CW radar, researchers
have also proposed using Stepped-Frequency CW (SFCW) radar
with a rapid pulse repetition frequency (PRF) to track fast
motions of various parts of the body [59].

Despite the limitations of angular dependence, μD-based
QGA has been shown to have great potential in extracting a
much broader range of gait parameters than just gait speed. In
[60], an ultrawide-band impulse radar (IR-UWB) was used to
estimate not just walking speed, but also step length, cadence,
stride length, step frequency, lower limb orientation, and total
traversed distance. The IR-UWB radar estimates were seen to
correspond well with estimates obtained from the accelerometer
and gyroscopic sensors on a smartphone. Using the peak of
the μD signature as reflective of the trunk velocity profile, [61]
compared the estimation accuracy of stride time, step time, step
length, swing time and stance time for a 24 GHz CW radar and
Vicon systems. A comparison of the impact of having a single
versus multi-channel FMCW radar system on an analysis of gait
variability is given in [62], while also showing the assessment
accuracy in comparison with Vicon data. This work was ex-
tended in [63] to consider step time variability via radar data
acquired over continuous streams of activity data collected in an
unconstrained environment. The continuous data is segmented
and sequentially classified to extract the intervals over which the
subjects are walking. The impact of segmentation accuracy on
step time variability is discussed.

While these aforementioned works focused on estimation
based on the trunk profile, other works have proposed the estima-
tion of gait parameters from the envelopes of the μD signatures.
The envelopes represent the speed of maximum (forward or
backward) movement on the body, which is typically caused
by the movement of the feet. Thus, without explicitly tracking
the feet, several researchers [64] have estimated a broader range
of gait parameters by extracting envelopes of the toe, ankle
and knee from the μD signature: stride time, stance time, flight
time, step time, cadence, stride length, step length, maximal foot
velocity, maximal ankle velocity, maximal knee velocity, and
time instant of maximal knee velocity. Based on comparisons
against a 3D motion capture system with 12 infrared cameras,
radar-based estimates were found to match well for most of
the gait parameters extracted. Furthermore, it was proposed that
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symmetry (or asymmetry) in the micro-Doppler signature could
be characterized as an indicator of gait abnormality [39].

Similarly, simulation-based studies [65], [66] have proposed
extraction of twelve different gait metrics from the torso profile
and envelopes of the μD signature, including 1) mean body
velocity (gait speed), 2) degree of variation in body velocities, 3)
maximum body velocity, 4) minimum body velocity, 5) mean leg
velocity in swing phase, 6) degree of variation of leg velocities in
swing phase, 7) maximum leg velocity, 8) minimum leg velocity
in swing phase, 9) mean leg velocity in stance phase, 10) degree
of variation of leg velocity in stance phase, 11) maximum leg
velocity in stance phase, and 12) minimum leg velocity. These
metrics were then utilized to categorize participants as fallers or
non-fallers.

Subsequently, a study [67], [68], [69] experimentally val-
idating these simulation results was conducted by recruiting
older adults aged 65 and above, who are able to walk without
assistance of another person or walking aide, from a senior day
care center and rural community center. The participants were
given a questionnaire about their fall history within the past
year, based upon which they were divided into one group of
non-fallers (19 people, mean age 78.8) and fallers (14 people,
mean age 82.5). Participants were then asked to walk for 10
meters, during which time their gait was measured using a
micro-Doppler radar. Four gait parameters (1, 5, 6, 10) were
extracted from the micro-Doppler signatures and used to classify
participants as fallers or non-fallers with an accuracy of 78.8%.
In another study [68], [69] involving 74 older adults aged 75
years and above, a subset of these radar-based gait parameters
(1, 5, 6, 7, 9, and 10) were also shown to correlate well with the
results of four cognitive function tests – the Mini Mental State
Examination (MMSE), Digit Symbol Substitution Test (DSST),
Scenery Picture Memory Test (SPMT), and Verbal Fluency Test
(VFT) – and were used to classify participants according to high
/ low cognitive function.

More recently, automation of the Timed Up and Go (TUG)
test, which is an established, standardized test used in clinical
practice for assessing mobility and fall risk, has been proposed
using radar. In [70], an ultra-wide band (UWB) radar was utilized
to segment and estimate the stride length during execution of a
TUG test, comparing the accuracy of radar estimates against
those acquired from sensors placed in the insole of a shoe.
This study found that the risk scores obtained using an insole
containing three force sensors and y-axis of acceleration were
comparable to that attained using a single radar and two force
sensors. In another study [71], also using UWB, measurements
of walking duration, turning duration, and gait speed acquired
during a TUG test were shown to correlate well to measurements
acquired from a video-based system.

In 2023, the first radar-based system to fully automate the
TUG test measurements was proposed [72] in which data from
a CW Doppler radar was processed to segment the continuous
data steam according to “transfer” and “walk” phases as well as
“walk” and “turn” phases. Afterwards, gait parameters, such as
the number of steps, step time, gait cycle duration, swing time,
average walking speed, cadence, TUG walking speed duration,
TUG duration, step time, and stride length were computed from

the radar micro-Doppler signature. The study was conducted
on 26 healthy subjects, aged between 22 and 60, who performed
three TUG trials at slow, normal and fast speed, leading to a total
of 9 trials per subject. Data was acquired simultaneously from
the CW radar and a Vicon motion capture system to validate
radar-based measurements. High correlation coefficients were
obtained for the torso speed, limb oscillations, initial and final
indices of the TUG phases and extracted gait parameters. As
such, this work represents the first to show experimental results
indicating the feasibility of automating TUG tests using radar.

B. QGA Using Joint RF Data Representations

Although μD-based QGA has the benefit of being applicable
to any kind of radar, including the lowest-cost, least complex
CW radars, the limitations brough by aspect angle dependency
and the increasing availability of multi-channel RF transceivers
at lower and lower costs has driven research into QGA based
on joint RF domain representations, such as the radar data
cube, which captures not just velocity information, but also
information about range and angle as a function of time. Tech-
niques such as multi-dimensional principal component analysis
(PCA) have been proposed for exploiting the radar data cube for
activity recognition [73] and fall detection [74]. In [75], a joint
domain multi-input, multi-task learning (JD-MIMTL) network
is proposed that takes not just stacked snapshots of μD, but also
range-Doppler and range-Angle maps as input to identify when
a person is walking and subsequently extract the torso velocity
and acceleration to assess gait variability.

In [76], a FMCW radar is used to track subjects [77] as they
move freely in the home, extracting the stable phase of walking
intervals (which excludes acceleration and deceleration phases),
so as to monitor the gait speed of 50 participants, with and
without Parkinson’s disease, for up to a year. The study showed
that at-home gait speed, as estimated using radar, strongly cor-
relates with gold-standard assessments of Parkinson’s disease,
such as the Movement Disorder Society-Sponsored Revision of
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
part III sub-score and total score.

Beyond just estimation of gait speed and torso profile, several
studies have also exploited the range, angle and velocity infor-
mation of the radar to improve limb tracking. For example, [78]
separately recognized the legs in the range-Doppler map and
extracted the range and velocity profile for each leg. Using these
profiles, stride time, stance time, flight time, step time, cadence,
maximum foot velocity and its interval were estimated. A new
metric, the Gait Asymmetry Indicator (GAI), computed as

GAI =

∣∣∣∣MFVR

MFVL
− 1

∣∣∣∣ (3)

where MFVL and MFVR represents the maximum foot veloc-
ity of the left (L) and right (R) legs, respectively, was proposed
to detect gait abnormality. The results were validated through
comparison with Inertial Measurement Unit (IMU) data over 15
participants in 4 scenarios (walking, running, left leg limping,
and right leg limping) using the intraclass correlation value,
which showed good agreement except for flight time.
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Another study [79] utilizing synthetic range-Doppler versus
time data simulated from a skeletal model proposes trajectory
tracking using Kalman filtering and weighted joint nearest
neighbor algorithm for data association. Trajectory tracking
accuracies ranging of as much as 99.6% is reported, while the
estimates of kinematic gait features – such as step length, stride
speed, stride frequency, gait phase, step length symmetry, phase
symmetry, acceleration time constant of forearms, and skewness
of thighs – are reported to have 91.9%–93.8% accuracy. While
limb tracking techniques show promise, the accuracy of current
methods on real radar data has not yet been adequately evalu-
ated. Advancement of more effective methods for limb tracking
remains an open area of research.

C. QGA Using RF Skeletons

The task of tracking limbs through micro-Doppler data en-
counters obstacles due to human motion’s intricate and dynamic
properties, where distinguishing between overlapping signals
and the slight movements of minor limbs poses accuracy chal-
lenges. Yet, the potential of leveraging high-dimensional RF
data (spanning range, angle, and Doppler) for radar-based pose
estimation in limb motion tracking is promising. Progress in
signal processing and machine learning, particularly with the in-
tegration of Convolutional Neural Networks (CNNs), enhances
accuracy and the capacity to detect minor movements, bringing
non-invasive, real-time limb tracking closer to reality.

Initially explored with the proposal of RF-Capture [80] in
2015, radar-based human skeleton estimation utilizes 5.4 to 7.2
GHz FMCW signals via an antenna array to detect coarse body
part positions, subsequently reconstructing a human figure by
piecing together these detected parts. In 2018, RF-Pose3D [81]
advanced this framework by employing a T-shaped 12-element
antenna array for FMCW signal transmission and reception
at a 6.3 GHz center frequency and 1.8 GHz bandwidth. This
system feeds range-azimuth and range-elevation heatmaps into
a Resnet-based encoder neural network, coupled with 12 camera
nodes capturing RGB video to collect label key points from
OpenPose for training a region proposal network (RPN) and
a ResNet-architecture CNN. This network focuses on RF data
from individual persons to extract 3D skeletons from regions
of interest, reporting average localization errors of 4.2, 4.0,
and 4.9 cm in the x, y, z axes, respectively, with OpenPose
estimated key points. Despite its groundbreaking demonstration
of RF skeleton estimation’s feasibility, the method’s reliance
on over 17 million data samples and 16 hours of recordings
underscored its significant data and computational demands,
limiting practical application.

In 2020, mmPose [82] was proposed, which predicted more
than 15 joints using two specially oriented IWR1443 radars.
This method, feeding point clouds into a bifurcated CNN, did
not utilize the radar’s Doppler and signal intensity data, leading
to jitter in skeleton animation. Attempts in 2022 with additional
filters [83] sought to reduce jitter for a more stable skeleton rep-
resentation but did not fundamentally enhance accuracy. In 2021,
another approach, MARS [84], was proposed, which employed
IWR1443 radar and standard software for point cloud data,

including Doppler and intensity information, reporting average
MAE of 5.8cm accuracies in 19-point predictions compared to
Microsoft Kinect v2 camera estimates. They further investigated
joint angle estimation from the predicted skeleton and reported
the average MAE of MARS in estimating left elbow angle, right
elbow angle, left knee angle, and right knee angles are 12°, 13°,
7°, and 6°, respectively.

In recent years, there has been a significant surge in pub-
lications focused on mm-wave-based human pose estimation
[85], [86], [87], [88], [89], [90], [91], [92], [93]. Generally,
these studies employ radar-generated range-azimuth and range-
elevation heatmaps, with some also incorporating radar point
clouds, as data inputs for training their deep neural network
(DNN) models. For validating their findings, the bulk of these
studies have predominantly leaned on either the Kinect system
or the multi-camera-based OpenPose model for ground truth.
This approach presents substantial challenges in the realm of
RF skeleton estimation. On one hand, the Kinect system, when
employed as a benchmark for ground truth, is problematic due
to its considerable errors in skeleton tracking. One study [94]
showed that Kinect tends to provide an oversimplified version of
the actual skeleton, with its estimates often deviating from those
obtained through marker-based tracking methods. On the other
hand, systems employing multiple cameras, such as OpenPose,
introduce their own complexities. While Kinect’s limitations
stem from its inherent technology, the use of OpenPose, which
relies on a multi-camera setup, is cumbersome and less practical
for deployment. Furthermore, reliance on OpenPose has been
shown [95] to introduce specific inaccuracies, including consis-
tent biases in the estimation of knee and ankle joints, and relative
biases in trunk and hip joints, in comparison to the estimations
derived from optoelectronics motion capture systems, a more
precise skeletal tracking method.

Hence, current QGA using RF skeleton has been limited to
only estimating the skeleton coordinates. These efforts are con-
strained by key challenges, including the poor elevation angular
resolution of the available off-the-shelf RF sensors, inappropri-
ate use of Kinect for ground truth due to significant estimation
errors, the impracticality of bulky multi-camera systems, and
inaccuracies introduced by relying on the OpenPose model.
Moreover, the dependency on complex, data-intensive models
necessitates the exploration of more efficient models requiring
less data, crucial for enabling practical skeletal estimation on
mobile computing platforms.

III. PILOT STUDY

To evaluate and compare different radar-based QGA tech-
niques, a pilot study was conducted in which both radar and
motion capture data were simultaneously acquired from par-
ticipants who walked back and forth in an indoor lab at the
University of Alabama.

A. Experimental Design and Data Collection

Five healthy, right-foot males (25.6 ± 1.9 years, 70.6 ±
17.5 kg, 1.75 ± 0.093 m) completed the experiment. All partici-
pants i) had no known history of neurological or musculoskeletal
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Fig. 2. Experimental setup during data acquisition.

disorders; ii) were naïve to the experimental conditions; iii) had
a normal or corrected-to-normal vision. Study procedures were
approved by the Institutional Review Board at the University
of Alabama under Protocols #18-06-1271, #21-10-5055 and
#23-04-6553.

The RF data were acquired using a Texas Instruments (TI)
IWR2243 Cascade radar, operating in the 77 GHz–81 GHz
frequency band with 12 Tx and 16 Rx antennas, positioned at
the start of the walkway at about 1 meter height and aligned
with the direction of walking, as shown in Fig. 2. The TI radar
was configured to utilize Time Division Multiplexing (TDM) to
create 192 virtual Multi-Input Multi-Output (MIMO) channels.
Out of these, 58 elements overlap in the azimuth plane, leaving
only 86 non-overlapping channels designated for azimuth virtual
antennas. Regarding the elevation, there are 7 elevation planes
comprise an aperture size of 6 λ/2. However, within this aper-
ture, 3 planes are empty, and only 4 active elements/channels
are allocated for elevation measurements. Additionally, there
are 44 redundant elements in the elevation that do not comprise
aperture larger than 6 λ/2, therefore remain unused. Here λ is the
wavelength of the transmitted signal. Fig. 3 illustrates the virtual
antenna array for this radar. Each radar chirp was comprised
of 256 analog-to-digital converter (ADC) samples, with a total
of 128 chirp-loops per frame being transmitted. Consequently,
the raw ADC data was organized into range-azimuth (256x86),
range-elevation (256x7), and range-Doppler (256x128) planes.

Participants walked for five minutes at self-selected speed up
and down a 6-meter walkway. A total of 41 reflective markers
(MRKs) were attached to the whole body to record 3-D posi-
tion data with an 8-camera motion capture system at a sample
frequency of 100 Hz (NEXUS software and VERO infra-red
Cameras, Vicon Motion Systems). To establish basic synchro-
nization between the two recording systems, we initiated record-
ings simultaneously with a voice command while participants
performed a fast "air punching" movement, clearly detected
by both systems. Subsequently, we identified the radar frame

displaying this rapid movement from the radar range-Doppler
maps. Similarly, we pinpointed the frame in the Vicon skeleton
data showing the hand punching forward. By aligning these
two frames, we synchronized the two systems. Given that the
radar operates at 10 Hz and Vicon operates at 100 Hz, we down
sampled the Vicon frame to match the radar frame rate, ensuring
we have a ground truth Vicon frame for each radar frame.

B. RF Skeleton Estimation Under Limited Data

In this work, we consider RF skeleton estimation when a
limited amount of data is available for training. To quantify the
estimation uncertainty due to the trained deep neural network
(DNN) utilized for skeleton estimation versus other sources of
estimation error, such as the resolution of the RF sensor or
real-world effects, such as multipath reflections, we compare
the skeleton estimation accuracy obtained when using simulated
(SkelS) versus real (SkelR) RF data. In particular, we synthesize
[96], [97], [98] the expected radar return using (1) and (2), where
the time-varying ranges Ri to the ith point are derived from
the concurrently acquired Vicon motion capture measurements.
When generating the simulated data, we deliberately restricted
ourselves to using only 20 azimuth antenna elements/planes
instead of the full 86 elements found in the real radar. This choice
was made because the azimuth angular resolution in the real data
is already quite high, enabling the deep neural network (DNN)
model to effectively learn from it. Consequently, we reduced the
number of azimuth antenna elements in the simulation to avoid
generating an overwhelming amount of data. Conversely, we
used 7 elevation planes with a 6 λ/2 aperture, ensuring no empty
elements. This provides finer angular resolution in elevation
compared to the real data’s 4 elevation channels. Pre-training
with this higher-resolution data helps set DNN weights at favor-
able local minima, improving feature representation learning
during fine-tuning with coarse-resolution real data.

To reduce the dimensionality of both the measured and simu-
lated RF data so that the resulting DNN for skeleton estimation
is less complex and requires less data for training, we developed
a ‘max per range bin’ and ‘max per angle bin’ method to
capture the main features from the RF heatmaps. As the name
suggests, this process finds the maximum intensity value at each
range/angle bin to capture the variations of the return signal’s
strength over range and angle bins. This approach offers several
benefits: first, it enables the representation of a 2D heatmap
with just two vectors. For example, a 256x256 range-azimuth
heatmap can be condensed into a 256x2 size array. Here, one vec-
tor represents the maximum per range bin (256x1), and the other
captures the maximum per azimuth angle bin (256x1), markedly
simplifying the challenge of managing extensive data matrices in
DNNs. Consequently, for a set comprising both range-azimuth
and range-elevation heatmaps, the result is a compact array
sized 256x4. Second, this approach accurately maintains the
gross velocity information by correctly capturing the movement
of the target’s peaks from one frame to the next. Third, as
the dimensionality of the data is reduced, it enables a simpler
neural network to effectively extract the necessary informa-
tion for determining range, azimuth, and elevation. Thus, after
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Fig. 3. Virtual antena array for TI AWR 2243 cascade radar.

aggregating all frames, the data’s total size becomes 27,408
x256x4. This is subsequently reshaped to 2,284x12x256x4 to
incorporate the time dimension, the size of which was deter-
mined through empirical methods.

Next, a lightweight 3D CNN + Long Short-Term Memory
(LSTM) model is designed to capture both the temporal and
spatial characteristics for predicting the 3D coordinates of 14
skeleton joints. The architecture is comprised of a 3D convo-
lutional layer, followed by batch normalization, max pooling,
dropout, and two bi-directional LSTM layers. It culminates
in a time-distributed dense layer equipped with 42 neurons
(reflecting 14 joints times 3 coordinates per joint) and employs
a linear activation function.

The Huber loss function [99]

Lδ (y, f (x)) =

{
1
2 (y − f (x))2, for |y − f (x)| ≤ δ,

δ |y − f (x)| − δ2

2 , otherwise
(4)

is utilized for model optimization. It offers robust regression
by being less affected by data outliers compared to the squared
error loss. The Huber loss switches between Mean Squared Error
(MSE) for small prediction errors and Mean Absolute Error
(MAE) for large prediction errors, with the switch occurring at a
specified threshold, delta (δ). When the prediction error is within
the delta range, it utilizes MSE, which penalizes small errors
more heavily and aids in fine-tuning the model’s predictions. If
the error exceeds delta, indicating a potentially large or outlier
error, it uses MAE, which treats all errors linearly, thereby
reducing the impact of outliers. This creates a more robust model
by combining the sensitivity of MSE to small errors with the
outlier resistance of MAE for large errors. For this key point
regression model, δ=1 was used.

Among other hyperparameters, a learning rate of 0.0021,
batch size of 32, and the model was trained for 80 epochs. The
training was conducted using a leave-one-out approach, which
was applied across the data from all subjects. On average, each
subject’s data consisted of approximately 5,600 pairs of radar
frames. For every frame, the model was designed to predict 42
key points.

Initially, the model was trained and tested with simulated
data with a leave-one-subject-out method, resulting in Mean
Absolute Errors (MAE) of 3.15 cm for the medio-lateral (ML)
axis, 4.37 cm for the vertical (V) axis, and 1.4 cm for the
antero-posterior (AP) axis. Subsequently, when this model pre-
trained using simulated data was further refined (fine-tuned)
using measured radar data, the MAEs increased to 5.63 cm
for the ML axis, 7.30 cm for the V axis, and 7.81 cm for the

AP axis. After predicting the RF based skeleton trajectories for
all subjects, we increased its sampling rate to 100 Hz using
linear interpolation. This adjustment was made to align the RF
based skeleton trajectories with the original frame rate of the
Vicon system, which operates at 100 Hz. It’s worth noting that
interpolation wasn’t necessary for the Vicon data itself, given its
native sampling rate of 100 Hz.

Fig. 4(a) illustrates the 3D trajectories of the midpoint be-
tween the hips, left ankle, and right ankle extrapolated from the
simulated radar data (SkelS), the actual radar data (SkelR), and
the motion capture data (MRK) during four laps of a representa-
tive subject’s trial. Fig. 4(b) illustrates the reconstructed skeleton
from the three measurement systems for a single time frame.

It’s important to note that, for this application, minor misalign-
ment between the RF and Vicon trajectories wasn’t a significant
concern. Our focus was primarily on gathering discrete gait
parameters, such as step time and step length, by considering the
time difference between corresponding points in each system.

C. Data Analysis for Gold Standard Comparison

High-frequency related noise was removed from position data
estimated with markers’ coordinates (MRK), RF skeleton from
real data (SkelR), and RF skeleton from simulated data (SkelS)
by low-pass filtering at 10 Hz (zero-lag, fourth-order Butter-
worth low-pass filter). For MRK, heel strikes were estimated by
finding the farthest anterior position of the heels position relative
to the sacrum. For SkelR and SkelS, heel strikes were estimated
by finding the farthest anterior position of the ankles position
relative to the mid-point of the hips. Step length was estimated
as the absolute distance in the AP direction of the ankle markers
from heel-strike to heel-strike.

The μD signature was computed as in our previous works
[62], [63]. The trunk radial velocity (VRF) was estimated by
finding the peak μD signature intensity, which indicates the
highest reflected energy. Indeed, it can be assumed that the
strongest signal in theμD signature is due to the trunk motion, as
the trunk comprises the largest radar cross-section of the body.
High-frequency noise was removed by low-pass filtering VRF

data at 5 Hz [61]. Trunk acceleration was calculated as the first
derivative of VRF using a central finite difference method. Heel
strikes were estimated by finding the zero-crossing points of the
trunk acceleration curve, after low-pass filtering at 2 Hz [100].
The absolute value of VRF was subdivided into steps. Step length
was estimated as the area under the curve of VRF over a step
cycle.
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Fig. 4. (a) Representative trajectories of the left ankle, right ankle, and midpoint of the hips along the Antero-Posterior (AP), Medio-Lateral (ML),
and Vertical (V) axes for the three measurement systems. (b) Frontal and sagittal views of the 3D skeleton reconstruction of the three measurement
systems for a single time frame. Motion capture (MRK, red line), Skeleton from simulated radar data (SkelS, blue line), and Skeleton from real radar
data (SkelR, black line).

Fig. 5. (a) Stride Time (ST), (b) Step Length (SL), (c) ST Variability (STV), and (d) SL Variability (SLV) obtained for Markers (MRK), RF micro
doppler (µD), RF skeleton from real data (SkelR), RF skeleton from simulated data (SkelS). Bars refer to the standard error.

For each run, the middle 5 steps were included in the analysis
to ensure a steady walking state. For all methods, step time was
computed as the time interval between consecutive heel strikes.
Then, step time (ST), step length (SL), and their variabilities
(STV, SLV) were defined as the mean and the coefficient of
variation of all accounted steps over the five minutes of walking.
The coefficient of variation was computed as the percentage
of the ratio between standard deviation and mean value. Dif-
ferences between the MRK method and the three types of RF
methods were expressed as mean of the differences (MD), mean
percent difference (MPD), and 95% ratio limits of agreement
(LOA). LOA was calculated as 1.96 times the standard deviation
of MPD. |MPD+LOA| values >50% were interpreted as poor,
10%–50% as moderate, 5%–10% as good, and< 5% as excellent
agreement [101].

D. Results

Fig. 5 shows the mean and standard deviation of the outcome
variables extracted from each measuring system (i.e., MRK,

μD, SkelR, SkelS). Table I reports the summary metrics for the
differences between the gait parameters extracted with MRK
and each RF method.

Independently by the RF method used, ST showed excellent
agreement (|MD|<0.007s; |MPD+LOA|<3.3%) with the μD
method overestimating ST while both skeleton methods slightly
underestimating ST. SL showed good agreement when estimated
with the μD (|MD|=0.068m; |MPD+LOA|=8.9%), and excel-
lent agreement when estimated with the SkelR and SkelS meth-
ods (|MD|<0.010m; |MPD+LOA|<2%). The μD method un-
derestimated SL while both skeleton methods slightly overesti-
mated SL. STV showed poor agreement when estimated with the
μD and SkelS methods (|MD|<10.8%; |MPD+LOA|>52.0%)
and moderate agreement when estimated with the SkelR method
(MD=12.3%; |MPD+LOA|=17.8%) with values obtained with
RF methods systematically larger than those obtained with
the MRK method. Noticeably, SkelS showed the lowest abso-
lute error (MD=8.85%) but resulted in poorer agreement due
to a larger standard deviation. For all methods, SLV showed
moderate agreement (|MD|<23.7%; |MPD+LOA|<37.6%),
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TABLE I
CONCURRENT VALIDITY

with values obtained with RF methods systematically larger than
those obtained with the MRK method.

IV. DISCUSSION

The aim of this study was to provide an overview of emerging
radar-based techniques for gait parameter estimation, the results
of a pilot study in which we compared the accuracy of different
radar-based QGA techniques, and a discussion to highlight areas
requiring future research.

Depending on the available technology, gait variables asso-
ciated with fall risk can range from very simple to complex.
Most radar-based gait parameters estimation studies focused
on estimating gait speed [55], [56], [61], [64], [102]. Perhaps,
gait speed is the most common and simple outcome sensitive to
pathology and can be considered as the final common expression
of locomotor control [103], with higher risk for falls associated
with slower self-selected walking speed. However, gait speed
cannot reveal the underlying impairments and measurement of
spatio-temporal and biomechanical parameters of gait are useful
to augment diagnostic capabilities. The gait pattern in older peo-
ple at higher risk for falls is usually stiffer, less coordinated, and
characterized by poorer postural control, shorter stride length
and height, wider step width, and greater propensity of landing
flatfoot.

After gait speed, step time is the spatio-temporal parameter
that most radar-based studies tried to estimate. The results from
this study and other studies show that excellent agreement in
average step time recognition is achieved between RF and the
Vicon systems [55], independently by the RF processing tech-
nique. To the best of our knowledge, few radar-based studies
have attempted to validate step length estimation [55], [61].
However, both estimated step length by multiplying step time
by the average walking [61] or treadmill [64] speed. Both
studies reported small estimation errors of about 2-3%. Instead,
we proposed to estimate step length by directly calculating
the distance between ankle markers when reconstructing the
skeleton or integrating the approximated trunk velocity curve
over a step when using the μD. When attempting to estimate
spatial components of gait, we observed an underestimation
of the average step length of about 13% when using the μD
method. Using either of the RF skeleton methods significantly
improved the estimation performance. Using SkelR, we obtained

an overestimation of only 2% of step length. When using SkelS,
estimation can be further improved to 1% of error. It should
be taken into account that estimating spatiotemporal parameters
using body point locations allow researchers to estimate a large
number of spatio-temporal parameters such as step width, joint
angles, and others.

Although the significant differences in the gait pattern of fall-
ers and non-fallers, few quantitative studies have found measures
of gait that can predict fall risk. A promising method to assess
fall risk is the evaluation of gait stability parameters derived
from biomechanics and dynamical systems theories [104], [105],
[106], [107]. Briefly, repetitive motor tasks, like walking, can be
treated as a nonlinear dynamic system where variables have a
cyclic behavior and recur iteratively with almost the same pattern
during the temporal evolution of the task. This pseudo-periodic
behavior can be exploited to quantify gait variability and nonlin-
ear analysis. Alternatively, from a biomechanical point of view,
dynamic stability can be defined as a measure of the distance
between the center of mass and the base of support [108], [109],
[110]. Features describing the variability and complexity of gait
are the most sensible in assessing fall risk, as compared with
standard quantitative measures of gait [111], [112], [113], [114].

Accurate estimation of gait parameters at each gait cycle is
fundamental to estimate gait dynamics. In radar research, this
has been attempted in a few studies [55], [56], [61], [64], [115],
but they did not systematically analyze gait variability. To the
best of our knowledge, our group has been the first to evaluate the
performance of RF sensors in estimating gait stability [62], [63],
[71]. The pilot study in this work reveals that both micro-Doppler
and skeleton estimation-based RF data analysis methods result in
measures of variability that show poor to moderate agreement
and overestimations of about 100% with respect to the Vicon
system. To put this in perspective, it should be noted that previous
studies that determined the concurrent validity of gait variability
measures obtained with inertial sensors [101], [116], [117],
[118], [119] also showed that IMU-based measures have poor
to moderate validity [120].

Although the small sample of young participants limited the
power of the statistical tests and the generalization of our results
to other populations at risk of falling, the pilot study was intended
to provide an initial comparison of radar-based techniques for
gait analysis and inform the reader about the current limitations
of radar technology and the relationship between the specific
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radar hardware and accuracy. Even if this preliminary study did
not provide real evidence that the system could properly identify
signature gait characteristic of faller vs. non faller, the analysis
of healthy young adults is the first step in developing a base
for further studies on vulnerable populations. Future studies
will focus on fall-prone older adults with diagnosed balance
problems.

Next, we discuss the limitations of the specific commercially
available radar used in the pilot study and aspects of current
estimation techniques that adversely affected the accuracy of
gait variability measures.

Hardware Limitations: The TI IWR2243 Cascade radar has
the advantage of high angular resolution in the azimuth direction
due to the ability of exploiting TDM to form a large 192 element
virtual array – the more the number of virtual array elements, the
finer the angular resolution. However, TDM requires multiple
sweeps, which greatly increases the time required to form the vir-
tual array (also known as a coherent processing interval, or CPI)
and lowers the overall sample rate. In the pilot study, while the
Vicon had a data rate of 100 Hz, the radar was operated at a data
rate of just 10 Hz. Our results show that this rate is too low for
adequate assessment of gait variability. Furthermore, it should be
noted that the TI IWR2243 Cascade radar is able to achieve high
angular resolution in just the azimuth direction: with only a few
array elements in elevation, the elevation resolution is extremely
poor. In depth, the 4 GHz bandwidth of the TI IWR2243 Cascade
radar results in 3.75 cm depth resolution. Our results show
that the accuracy of estimating skeletal key points is correlated
with the radar’s resolution; thus, the best accuracy was obtained
in estimating position along the azimuth – the direction along
which the radar had the highest resolution. Ideally, the optimal
radar for gait parameter estimation would have both a low CPI,
high bandwidth, and a large number of physical array elements
in both the azimuth and elevation. Such a radar, however, results
in such a large amount of data from the resulting 4D radar tensor
that real-time processing on the edge becomes challenging. To
resolve this dilemma in automotive applications, radar design
companies have developed RF-system-on-a-chip (RF-SoC) that
integrates the RF transceiver circuits with memory blocks, mi-
croprocessors and digital signal processing as a complex single-
chip system. However, automotive RF-SoCs typically generate
real-time point clouds, and do not provide developers access to
the raw radar I/Q data required for computation of the micro-
Doppler signature or accurate skeleton estimation. Moreover,
there is a cost versus performance trade-off in commercially
available radar sensors – the larger the antenna arrays and greater
the bandwidth, the higher the resolution and performance, but
also the greater the cost. Thus, an open research question for
gait parameter estimation is whether it would be better to use
multiple, low-cost single-channel radars of high bandwidth or a
single, more expensive multi-channel, high bandwidth radar.

Processing Constraints: The RF data representation from
which gait parameter estimates are derived impacts both
accuracy and the parameters that can be estimated. Established
metrics for fall risk are based on accurate estimation of skele-
tal keypoints, which our study also shows offers improved

estimation despite hardware limitations. An examination of the
RF skeleton estimation literature shows that the more physical
variables measured by the radar are used in the estimation
process, the greater the accuracy of the resulting estimates. Thus,
we have seen an improvement in accuracy when both range,
angle, and Doppler are considered relative to range, angle, or
micro-Doppler only. Here we should also make a distinction
between methods that take as input the radar data tensor (range-
frequency-angle vs. time) versus methods that directly use radar
point clouds. While the use of point clouds may seem expe-
dient given its ready availability from commercially available
RF-SoCs, the point cloud is itself a derived data representation
based on the constant false-alarm rate (CFAR) detection applied
to the radar data tensor. Although more recently developed
RF-SoCs provide not just (x, y, z) coordinates for each point
but also a Doppler shift (fD) measurement, it should be noted
that these measurements are provided every CPI, which is the
duration that N pulses can be transmitted at a pulse repetition
interval (PRI) for each pulse. In contrast, a micro-Doppler sig-
nature contains a Fast Fourier Transform (FFT)-based estimate
of micro-Doppler frequency (radial velocity) at an interval of
PRI/Nfft, where Nfft is the number of FFT points utilized.
As such, the micro-Doppler represents a much richer source
of kinematic information than that embodied by point clouds.
Thus, an open area of research is how to best process the RF data
tensor to maximally exploit the complete set of measurements
by a radar system for gait parameter estimation – and how to
accomplish this in real-time to minimize latency and maximize
sample rate.

DNN Design Considerations: The most widely used DNNs
are networks that were proposed for the applications of com-
puter vision and speech processing. However, radar data is not
inherently an image, nor does it possess the same frequency-
dependent properties as speech signals [121]. Consequently,
from a DNN design perspective as well the RF data representa-
tion utilized at the input of a DNN will have a great impact on
the resulting performance [122] both in terms of accuracy and
latency. For example, direct utilization of the complex I/Q radar
data at the input of a CNN can reduce computation time, enabling
real-time applications, but has greatly degraded performance
relative to that of utilization of the micro-Doppler signature
at the input. Recently, the inclusion of complex sinc filtering
layers prior to the convolutional layers has been proposed to
attain comparable performance with low latency [123]. Another
disadvantage of CNN-based skeleton estimation methods is that
they do not consider the spatial correlation inherent to human
movement. Although the CNN+LSTM model does incorporate
sample-to-sample correlations, our pilot study examining results
on simulated data is evidence that there remains a significant
amount of estimation uncertainty due to network design and
training. Finally, it should be noted that deep learning-based
methods are very data greedy, and that not just the amount of
data but also how the data was collected – under what scenarios,
sensor positions, environment, and the mobility characteris-
tics of the participants utilized – will impact model training
and resulting estimation accuracy. Thus, there remains much
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opportunity for future research in DNN design that can con-
tribute to improved radar-based gait parameter estimation accu-
racy.

Environmental Factors: In application of radar-based QGA
technologies in home, signal processing and AI/ML algorithms
must also take into consideration dynamic environmental fac-
tors, such as the separation of radar signatures from multiple
people [124], [125], [126] and potential presence of obstacles
or other sources of motion in the scene being illuminated by
the radar, such as a fan or pet. Thus, while on the one hand
researchers are developing more advanced signal processing and
micro-Doppler decomposition [127], [128], [129] algorithms,
on the other hand some researchers have proposed positioning
the radar in hallways [56], where obstacles are not expected and
motion is automatically constrained by the walls, or utilizing
the radar in a cognizant fashion by potential users, such as the
case would be if conducting an in-home TUG test. Dynamic
environmental factors, including sensor positioning, will also
impact the ability of DNNs to generalize across environments
and thus must be accounted for during training and network
design.

V. CONCLUSION

This paper has provided an overview of emerging radar-based
techniques for gait parameter estimation, especially with empha-
sis on those relevant to fall risk. A pilot study was conducted that
compares the accuracy of gait parameters estimation from dif-
ferent radar data representations (i.e., micro-Doppler signature
and skeletal point estimates) against an 8-camera, marker-based
optical tracking system. The results of this study show that while
there is excellent agreement between radar and optical tracking
estimates of step time and step length, gait variability measures
show poor to moderate agreement. The limitations of current
radar-based technology that adversely affect the accuracy of
radar-based gait variability measures – such as trade-offs be-
tween transceiver architecture, transmit waveform parameters,
and cost, processing constraints, and DNN design considera-
tions – are discussed. We conclude by pointing out areas for
future research that can address current limitations and enable
the realization of radar-based QGA as a promising emerging
technology for continuous, non-intrusive fall risk assessment.
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