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Cancer stem cells are thought to be the main drivers of tumorigenesis for

malignancies such as glioblastoma (GBM). They are maintained through a close

relationship with the tumor vasculature. Previous literature has well-

characterized the components and signaling pathways for maintenance of

this stem cell niche, but details on how the niche initially forms are limited. This

review discusses development of the nonmalignant neural and hematopoietic

stem cell niches in order to draw important parallels to the malignant

environment. We then discuss what is known about the cancer stem cell

niche, its relationship with angiogenesis, and provide a hypothesis for its

development in GBM. A better understanding of the mechanisms of

development of the tumor stem cell niche may provide new insights to

potentially therapeutically exploit.
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epidermal growth factor; PlGF, placental growth factor; ANGPT, angiopoietin; SDF1, stromal cell-derived

factor 1; S1P, sphingosine-1-phosphate; BTC, betacellulin; PEDF, pigment epithelium-derived factor; NT-

3, neutrophin-3; PGD2, prostaglandin-D2; bFGF, basic fibroblast growth factor; TGFb1, transforming

growth factor b1; HIF-1a, hypoxia inducible factor 1a; SCF, stem cell factor; CXCL12, C-X-C Motif

Chemokine Ligand 12; NO, nitric oxide; Shh, sonic hedgehog; SFRP2, secreted frizzled-related protein 2;

CSC, cancer stem cells; GBM, glioblastoma multiforme; HSC, hematopoietic stem cells; NSC, neural stem

cells; GSC, glioma stem cell; MDGI, Mammary-derived growth inhibitor; IRE-1a, Inositol-requiring

enzyme-1a; TME, tumor microenvironment.
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Introduction

Cancer stem cells (CSCs) are a small subset of tumor cells that

are thought to be one of the main drivers behind tumorigenesis

and cancer propagation (1). This is because of the CSC’s ability to

recapitulate the tumor heterogeneity, when isolated and

transplanted (2, 3). CSCs accomplish this through self-renewal,

in which stem cells create new stem cells via asymmetrical or

symmetrical division (4). These subpopulations of tumor cells

have been described in various liquid and solid tumors including

head and neck cancer, breast cancer, and brain tumors (3, 5).

There are two primary hypotheses for the emergence of CSCs at

tumor initiation: 1) resident healthy tissue stem cells can acquire

mutations that results in malignant transformation and 2)

healthy somatic tissue cells acquire mutations such that these

cells gain stem-like and oncogenic characteristics (6). There is

evidence in favor of both explanations in various tumors (6–13).

The biomarkers that are used to isolate and identify putative CSC

populations vary from cancer to cancer, but among the most

common are CD44 and CD133, although some controversy

remains (5, 6).

In many cancers, CSC populations associate closely with the

vasculature of tumors in what is known as a perivascular niche

(PVN) (14–18). The concept of a PVN for CSCs was first

described by Calabrese et al. in 2007 in the context of brain

tumors (15). Using nestin as a CSC biomarker, they found that

nestin-expressing CSCs in glioblastoma (GBM), medulloblastoma,

ependymoma, and oligodendroglioma were significantly closer to

tumor blood vessels than tumor cells not expressing nestin.

Additionally, in medulloblastoma and ependymoma cell culture,

CD133-expressing CSCs physically interacted with endothelial

cells (ECs) in coculture (15). In-depth exploration and

characterization of CSC PVNs, particularly in GBM, has been

described in the literature (19–29). GBM PVNs include much

more than just CSCs and ECs; pericytes, reactive astrocytes,

tumor-associated macrophages and microglia, and fibroblasts

are other components that contribute to the maintenance of the

GBM CSC PVN (19).

The existence of GBM CSCs (also referred to as glioma stem

cells, GSCs) and their PVN are of special importance when

considering the aggressive behavior of GBM. GBM is the most

common as well as one of the most lethal primary brain tumors,

with median overall survival being ~15 months despite standard

of care treatment (30). Additionally, despite optimal treatment,

within just 1 year of diagnosis approximately 70% of patients

with GBM experience recurrence (31). Much of the treatment

resistance noted in GBM has been attributed to GSCs which are

plastic and can adapt to changes in the tumor microenvironment

(TME) to ensure the survival of the tumor (29). These

adaptations include the ability to promote tumorigenesis even

if a majority of the tumor is removed (28, 29). Given that GSCs

are maintained in niches surrounding tumor vasculature and
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that GBM is a highly vascularized cancer, disrupting tumor

angiogenesis was a promising treatment that could target GSC

maintenance. Vascular endothelial growth factor (VEGF) is one

of the main inducers of angiogenesis and serves as a potential

target for treatment (32).

Bevacizumab is a potent humanized antibody against VEGF-

A that alters VEGF-A’s binding to ECs, thus downregulating

angiogenesis (33). Bevacizumab, as a monotherapy or in

conjunction with chemotherapy was thought to have clinical

efficacy in patients with recurrent GBM, although subsequent

randomized studies failed to demonstrate a survival benefit

(34–42). Additionally, pre-clinical models suggest that

antiangiogenic therapy causes vascular normalization which

results in enhanced blood flow, and therefore enhanced

oxygen and drug delivery (43). A landmark phase 3 clinical

trial tested whether there was any survival benefit of adding

bevacizumab as a first-line treatment in newly diagnosed GBM

(41). The trial showed that there was no overall survival benefit

with early administration of bevacizumab (41). There was an

increase of progression-free survival, however it did not reach

predetermined criteria (41). An additional phase 3 clinical trial

published in the same year evaluating the survival benefit of

bevacizumab in conjunction with lomustine showed similar

results (42). These modest results highlight the need to

reimagine anti-angiogenic therapy and how to best target

tumor vasculature to disrupt GSC maintenance.

The genesis of the GSC niche may provide important

insights about GBM tumor biology.

The majority of the publications regarding GSC PVNs focus

on characterizing the niche and its components (19–29), but

discussion on how the niche develops seems to be a field largely

unexplored. In this review, we describe the development of

nonmalignant stem cell niches as well as discuss the

mechanisms of angiogenesis in cancer. We will also highlight

what is known about the CSC niche and how it relates to

angiogenesis. Finally, we will provide a hypothesis for the

development of CSC niches in GBM.
Nonmalignant stem cell niches

Many of the pathways involved in the stem cell phenotype of

nonmalignant PVNs are also involved in maintaining the CSC

phenotype. PVNs have been established in many postnatal

tissues including brain, bone marrow, stomach, intestine, and

pancreas (44–47). Insight into how these niches form during

embryonic development and their maintenance throughout

adulthood may help to better understand how CSC niches

develop. We discuss the neural stem cell (NSC) niche and the

hematopoietic stem cell (HSC) niche for this purpose. There is

evidence to support that many brain tumors can arise from the

NSC niche (48, 49). It has been shown that NSCs within the SVZ
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possess GBM driver mutations and have the capacity to migrate

from the SVZ and contribute to the development of brain

tumors in other regions of the brain (49). Not only do GSC

niches express stem cell markers and proteins reminiscent of the

NSC niche, but this niche can help drive brain tumor formation

by introducing mutations into the ventricular-subventricular

zone (V-SVZ) (11, 48, 50–53). SVZ-derived NSCs have also

been shown to serve as spatial cues for invading glioma cells,

highlighting the complex interplay between the SVZ (54). There

is also evidence that GSC niches express stem cell markers

and proteins that are mainly found in the HSC niche in the

bone marrow (55–57). Exploring the development of NSC

and HSC niches could provide valuable insight into GSC

niche development.

Neural Stem Cell Niche. NSCs are progenitor cells that

ultimately differentiate into neurons and glial cells. During

embryogenesis, these cells are extremely proliferative but

become mostly quiescent once the nervous system is fully

developed (58). In the postnatal brain, the V-SVZ and

subgranular zone (SGZ) constitute the perivascular niches

where NSCs reside. NSCs are heterogenous in nature, and this

is thought to be partially due to the difference in the amount of

time that it takes these niches to develop (59). In general,

vasculature is not necessary for the development of primitive

neural networks and in the early embryologic stages of the

mammalian brain development (60). In human brain

development, the formation of the neural tube occurs during

the 3rd and 4th week of gestation (61), while cortical development

begins in the 6th week of gestation (62). However, it is not until

the 8th week of gestation that neuro-vasculature becomes

essential for the developing brain (62). Additionally, as mice

age, NSCs in the V-SVZ become more closely associated with

brain vasculature (63, 64). This suggests that the role of

vasculature in brain development occurs only after initial

components of the nervous system and the NSC environment

have been established. In contrast, the role of NSCs in the

development of the neural vascular network are immediately

apparent (65). As the brain develops and grows, simple diffusion

is no longer a sufficient method of oxygen delivery for NSCs.

NSCs driven by hypoxia/HIF activity express VEGF to serve as a

spatial cue for vessel ingression. This finding has been validated

throughout the literature as it has been shown that mice with

reduced expression of VEGF have decreased vascular density,

smaller brains, and portions of their forebrain that are

completely avascular (65). In mice with a conditional

knockout mutation that ablated NSC function in late

embryogenesis, cortical vessel density was greatly reduced and

showed significant vessel regression (66). This finding

underscores the essential role NSC expression of VEGF has in

neurovascular development. In 22 week old human fetal cortical

samples, NSCs expressing CXCl2 were shown to have basal

processes that exerted a pro-angiogenic effect via direct contact
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with blood vessels (67). This further highlights the importance of

NSC’s role in neurovasculature development and patterning.

Additionally, NSCs promote vessel ingression, the

incorporation of endothelial progenitor cells into the neural

tube, via Wnt signaling. NSC-specific Wnt ligands such as

Wnt7a and Wnt7b are highly expressed within the neural

tube. Decreased expression of these ligands resulted in a

reduced number of ECs and pericytes in the neural tube (65).

Wnt7a expression may also serve as a spatial cue for ECs as it has

been shown to induce ECmigration in vitro (65). After the initial

ingression and expansion of blood vessels into the cortex, there is

a marked decrease in blood vessel branching frequency. NSCs

mediate this stabilization of blood vessel formation via the

downregulation of endothelial Wnt signaling (65, 68). NSCs

also play a role in promoting the integrity and maturation of the

neuro-vasculature via the expression of integrin avb8. This has
been evidenced in the literature as it has been shown that mice

with either mutated av or mutated b8 experience severe cerebral
hemorrhaging (69, 70). In the postnatal and adult murine brain,

the structure of blood vessels as well as their placement within

the V-SVZ are quite dissimilar to the neuro-vasculature residing

outside neurogenic niches. Like the vasculature in brain tumors

(such as GBM), these vessels have sparse pericyte and astrocytic

coverage which contributes to these vessels being more

permeable or “leaky” as compared to the vasculature in other

areas of the brain (58, 60). While a great deal of work has been

performed to describe the cytoarchitecture of the adult SVZ in

humans (71, 72), there are a paucity of manuscripts describing

specifically how the vascular networks are organized in the adult

SVZ in humans.

One way the vasculature within the niche maintains the

stem-like phenotype of NSCs is through direct contact. NSCs

interact with ECs via ephrinB2 and Notch ligand JAGGED-1 on

ECs which promotes NSC quiescence and stem cell identity (73).

More specifically, ephrinB2 suppresses MAPK signaling,

JAGGED-1 mediates neural stem cell identity, and they jointly

inhibit stem cell differentiation. ECs can also maintain NSC

stemness through non-direct contact signaling. These factors/

ligands include SDF1, betacellulin (BTC), pigment epithelium-

derived factor (PEDF), neutrophin-3 (NT-3), sphingosine-1-

phosphate (S1P), and prostaglandin-D2 (PGD2) (58, 74, 75).

The interactions between NSCs and ECs is bidirectional as NSCs

influence the behavior and development of blood vessels

through paracrine and juxtracrine signaling (76, 77). The

human NSC line, CTX0E03, highly expresses the well-known

proangiogenic factors, VEGFA, epidermal growth factor (EGF),

basic fibroblast growth factor (bFGF), angiopoietin 1/2

(ANGPT1/2), transforming growth factor b1(TGFb1), and

hypoxia inducible factor 1a (HIF-1a). When CTX0E03

conditioned media was used, ECs formed tubules when grown

in Matrigel. However, when NSCs and ECs were cocultured,

which allowed for cell-cell contact, there was a significant
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increase in EC tubule formation (76). Additionally, vasculature-

like structures only formed in vitro when undifferentiated NSCs

were cocultured with differentiated ECs (77). This finding

suggests that the stem-like phenotype of NSCs is necessary for

modulation of angiogenesis.

Hematopoietic Stem Cell Niche. HSCs are progenitor cells

that give rise to all the blood cell lineages. The primary niche for

HSCs is in the bone marrow. In embryonic development,

hematopoiesis occurs in three waves. The first wave is known

as “primitive hematopoiesis” (78). In this short-lived stage,

transient hematopoietic cells are created to address the

immediate needs of the embryo – oxygenation, tissue defense

and repair, and maintenance of circulation (78). In the second

wave, known as “definitive hematopoiesis”, erythromyeloid and

lymphoid progenitors emerge (78). Erythromyeloid progenitors

can then differentiate into mature blood cells. HSCs are

generated from the hemogenic endothelium of the aorta-

gonad-mesonephros (AGM) in the third wave of development

via endothelial-to-hematopoietic transition (EHT) (78, 79). It is

thought that only a certain subgroup of ECs from the hemogenic

endothelium have the capacity to undergo this transition.

Signaling pathways such as Notch, Sonic Hedgehog (SHH),

and Wnt from the supporting endothelium of the AGM

mediate HSC emergence (79, 80). SHH is the primary

signaling pathway involved in the formation and specification

of the hemogenic endothelium (80). In cell culture assays used to

determine promotion of hemogenic endothelium, ECs treated

with SHH ligand, Ihh, had higher hemogenic endothelium

formation (81). In knockout SHH mutants, activation of

hematopoiesis is inhibited, suggesting the crucial role SHH

signaling plays in the emergence and regulation of HSCs (82).

Notch signaling is required for EHT (80, 83, 84). When

activation of Notch signaling is inhibited, there is a marked

decrease in conversion of hemogenic ECs to CD45+ HSCs in cell

culture (83). Additionally, knockout Notch mutants had greatly

reduced expression of key factors necessary for hematopoiesis

(84). Non-canonical WNT signaling activates the Notch

pathway, suggesting that WNT signaling also plays a key role

in EHT (84). Indeed, when b-catenin is inhibited before the

emergence of HSCs, there is a marked decrease in their

generation (84).

In the adult HSC niche of the bone marrow, ECs are the

most abundant cell type present as bone marrow vasculature is

densely packed. There are two distinct niche types within the

bone marrow: the sinusoidal niche and the arteriolar niche (79,

85). Approximately 60% of HSCs reside in the sinusoidal niche

(86–88). The sinusoidal vessels are more permeable than the

arteriolar ones, so HSCs maintained in this niche have a greater

level of reactive oxygen species (ROS) and as such, are more

activated (86). Additionally, sinusoidal ECs express higher levels

of E-selectin which plays a key role in HSC homing and

proliferation (89). Endothelial cytokines such as SCF, CXC12,
Frontiers in Oncology 04
and JAGGED-1 are also implicated in sinusoidal HSC

maintenance, though the relative contributions of SCF and

CXC12 from ECs is small in comparison with the contribution

from mesenchymal progenitor cells (80, 86, 90). The HSCs

maintained in the arteriolar niche are mostly quiescent, due in

part to the low levels of ROS which promotes self-renewal.

Arteriolar ECs have higher expression levels of vascular cell

adhesion molecule-1 (VCAM-1) which has been associated with

HSC retention (79, 89). Though these two niches are thought of

as distinct, it has been demonstrated that within the sinusoidal

niche both quiescent ROSlow HSCs and proliferating ROShigh

HSCs are present (91). The role of the other perivascular cells in

the bone marrow niche may have greater impact on the

determination of the phenotype of the HSCs.

The influence that HSCs exert on the ECs of the bone

marrow vasculature is poorly understood. Studies have shown

that HSCs express VEGF-A and can stimulate the in vitro

proliferation of ECs via VEGF (92, 93). Beyond these findings

the field remains largely unexplored. In non-malignant stem cell

niches, crosstalk between stem cells and niche vasculature is

bidirectional. Stem cells are not only maintained by their niche,

but also play a role in remodeling the niche to best suit their

needs. While there is overlap in the signaling involved in the

embryonic development of the two niches, the processes are

different. In contrast to HSCs that develop from the endothelium

in the niche, ECs must migrate to the NSCs (62, 63, 65, 78, 79).

Considering that cancer stem cell niches display similar

signaling and maintenance to these stem cell niche

environments, the developmental schemes from these normal

systems could inform our understanding of how perivascular

niches develop in cancer. Figure 1 summarizes the key signaling

involved in the NSC niche, HSC niche, and CSC niche.
Angiogenesis and vasculature
in cancer

Angiogenesis is an established hallmark of cancer (32). In

contrast to normal brain vasculature, tumor vessel morphology

and organization tends to be irregular (94). These irregularities

include sparse pericyte coverage, weakened interconnectivity

between ECs, and irregular basement membrane attachment

resulting in leaky vessel networks with inconsistent blood flow

(94, 95). Though not to the same extreme, as briefly mentioned

in the previous section, the vasculature of the V-SVZ and the

sinusoidal vessels of the HSC niche share some similarities with

tumor vasculature. This suggests that some aspects of this vessel

phenotype prove beneficial for maintaining stem cells and that

insights about tumor vasculature development may help to

better understand the development of CSC niches. This

section will discuss the angiogenic switch in cancer, tumor

vascular formation processes, and vessel co-option.
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The Angiogenic Switch. Whereas homeostatic measures

ensure proper function, growth, and organ maintenance,

tumorigenesis is thought to begin when cell proliferation

becomes unregulated and programmed cell death becomes

ineffective. However, these tumors will remain small and

dormant if there is a lack of vessel formation. Under

angiogenic quiescent conditions, there is a balance between

pro-angiogenic factors and anti-angiogenic factors (96). The

“angiogenic switch” is flipped when pro-angiogenic signaling

dominates (32). This occurs when the tumor reaches a certain

size such that simple diffusion of oxygen is not sufficient to

sustain tumorigenesis. This low oxygen condition stabilizes

HIF1a which leads to the expression of many proangiogenic

factors such as VEGF, platelet-derived growth factor (PDGF),

placental growth factor (PlGF), ANGPTs, as well as chemokines

such as SDF1a and S1P (96, 97). CSCs contribute to

neovascularization via the expression of pro-angiogenic factors

such as VEGF. In GBM, a CD133+ cell population, constituting

cancer stem cells, express much higher levels of VEGF as

compared to CD133- cells (98). Other factors can aid in the

induction of the angiogenic switch, including tumor-associated

inflammation, as well as infiltration of immune cells (96). The

idea of the angiogenic switch/angiogenic dormancy is highly

interconnected with tumor dormancy and cancer stem cell

dormancy. Tumor dormancy is defined by most of the cells

within a tumor remaining viable but not actively proliferating

(99). It is thought that CSC niche dormancy, and tumor

dormancy by extension, is promoted by angiogenic dormancy.
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At the time of angiogenic dormancy, the CSC niche may not

have the proper signaling pathways in play for activation (100).

Once the angiogenic switch is flipped and growth factor

signaling can support CSCs, they are released from quiescence

and become the main drivers of tumorigenesis (99, 100). The

mechanisms mediating this complex relationship are not

entirely clear, but it is suggested that CSC niche dormancy is

regulated by angiogenic dormancy/angiogenesis (99, 100).

Vascular Formation Processes. There are several ways by which

tumor vascularization can occur: (1) sprouting angiogenesis, (2)

intussusceptive angiogenesis, (3) vasculogenesis, (4) trans-

differentiation of CSCs, and (5) vascular mimicry (96).

Sprouting results in the formation of a new blood vessel that

branches off of a parent vessel. Crosstalk between VEGF and Dll4/

Notch signaling mediates this process (101, 102). Intussusceptive

angiogenesis occurs when a transluminal epithelium begins to

form inside of another blood vessel. This type of angiogenesis has

been observed in various cancers including breast, lung, and brain

cancer (103–105). While the mechanisms underlying

intussusceptive angiogenesis are not clear, VEGF, PDGF, and

erythropoietin are involved in its induction (106, 107). This type

of angiogenesis is thought to aid in tumor development by

increasing the complexity and number of microvascular

structures (96). Vasculogenesis involves the de novo formation

of blood vessels. This process relies on the recruitment of

endothelial progenitor cells (EPCs). VEGF signaling results in

the mobilization of VEGFR2+ bone marrow EPCs to the tumor

(108). Additionally, tumor cells secrete various chemokines such
A B

C

FIGURE 1

Crosstalk between stem cells and endothelial cells. (A) Signaling between neural stem cells and endothelial cells. (B) Signaling between
hematopoietic stem cells and endothelial cells. (C) Signaling between cancer stem cells and endothelial cells.
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as SDF-1, CCL2, CCL5, and adiponectin which mediate the

homing of endothelial progenitor cells into tumor

neovasculature (109, 110). Additionally, junctional adhesion

molecule-C (JAM-C) is also important in EPC homing and

vascular assembly (111).

As VEGF is heavily involved in the angiogenic mechanisms,

CSCs may play a regulatory role in each. The concept of trans-

differentiation of CSCs has been described for several cancers

(23, 112, 113). In GBM, it has been observed that a

subpopulation of ECs possesses the same somatic mutations

found in tumor cells, such as EGFR amplification and

chromosome 7 alterations (114). Another study demonstrated

that GBM CSCs give rise to vascular pericytes (23). Though

vascular mimicry is considered a type of tumor vessel formation,

this process does not require the contribution of ECs. This has

been seen in several tumors and can contribute to tumor

development by promoting tumor cell motility and invasion

and by providing an alternate route of neovascularization

following anti-angiogenic therapy (96). It is not entirely clear

how large of a role vascular mimicry plays in tumorigenesis.

Whether CSC niches can form around these makeshift vessels is

an area that remains largely unexplored.

Vessel Co-option. Vessel co-option is a non-angiogenic, and

VEGF-independent process in which tumors hijack the

vasculature of normal tissue to meet their metabolic needs

(115). Invasion of the tumor into surrounding healthy

parenchyma is, in part, mediated by vessel co-option (116).

Tumor vessel co-option has been previously described in brain

tumors, as well as tumors of the liver, lung, and breast (115). Co-

option can be determined via histopathology as tumor vessels

are observed preserving the expression of factors associated with

normal vasculature. In non-small cell lung cancer, the alveolar

tumor growth pattern retained the normal markers associated

with alveolar capillaries indicating that this growth pattern relies

on alveolar capillary co-option (117). Similarly, gliomas can

possess areas where vasculature still reflects the characteristics of

an intact blood-brain barrier, indicative of vessel co-option

(118). Normal ECs may serve as a spatial cue for CSCs. In 3D

models of GBM, it was shown that normal brain ECs promote

tumor growth and invasion via an IL-8-dependent pathway that

promotes stemness (119).

Tumor vascularization is dynamic, meaning that tumors can

rely on vessel co-option or angiogenesis alone, switching as

needed, or even have both processes occurring simultaneously in

different parts of the tumor (116). Vessel co-option has also been

implicated in the resistance of tumors to anti-angiogenic therapy

(115). In orthotopic models of glioma and brain metastasis, anti-

angiogenic therapy resulted in a more infiltrative phenotype

(120–122). In hepatic cancer, the population of patients that

responded well to bevacizumab were enriched for more

angiogenic-reliant tumors, while those who had poor

responses were enriched for more co-option-reliant

tumors (123).
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The cancer stem cell niche

A perivascular CSC niche has been described for several

different cancers, particularly in brain tumors (15, 100, 124, 125).

In much the same way that crosstalk between the nonmalignant

stem cells and the vasculature in the niche is bidirectional, the same

is true for CSCs in their niche. As discussed previously, one of the

major contributions of CSCs to ECs is the expression of VEGF to

promote angiogenesis (98). CSCs can also maintain ECs via direct

contact. In GBM, CSC-EC contact via integrin avb3 resulted in EC

activation (126). This activation is shown via an increase in E-

selectin and VCAM-1, as well as promotion of EC network

formation and a more migratory phenotype (126). Conversely,

many of the pathways involved in nonmalignant stem cell

maintenance are also involved in the CSC phenotype

maintenance. As mentioned earlier, Notch, SHH, and Wnt

signaling are crucial for the development and maintenance of

nonmalignant stem cells, and the same is true for their

involvement with CSCs. In GBM, ECs release nitrous oxide (NO)

which activates notch signaling, allowing for a promotion of CSC

self-renewal (5, 21). However, in other cancers, alternate

mechanisms have been found. For example, in colorectal cancer

notch paracrine signaling via a soluble form of endothelial

JAGGED-1 maintains CSC stemness (127). In breast cancer, ECs

activate notch signaling via direct contact with CSCs (18). In terms

of SHH signaling, in GBM, CSCs were found to closely associate

with Sonic hedgehog (Shh)-expressing ECs and inhibition of the

SHH pathway via Shh knockdown hampered the stem-like

phenotype of the GSCs (128). Notch and SHH signaling are

downstream of the Wnt signaling cascade (129), signifying the

key role Wnt signaling plays in CSC self-renewal and

differentiation. Interestingly, endothelial regulation of Wnt

signaling via secreted frizzled-related protein 2 (SFRP2) in cancer

is context-dependent. In brain tumors, breast cancer, ovarian

cancer, gastric cancer, and esophageal cancer, the SFRP2

promoter is hypermethylated, suggesting SFRP2 may act as a

tumor suppressor (130). However, in osteosarcoma, multiple

myeloma, and colorectal cancer, SFRP2 is overexpressed (130).

This overexpression of SFRP2 has been associated with poor clinical

outcomes (130). While SFRP2 is just one of many methods in

which Wnt signaling can be regulated, this protein highlights an

important endothelial mediator of Wnt which has important effects

on CSC phenotype. Though themechanism by which ECsmaintain

CSCs is quite complex, endothelial signaling is necessary (131).
The developmental hypothesis for
the GBM CSC niche

There have been extensive efforts to characterize the GBM

CSC niche, however, less is known about the mechanisms that

contribute to perivascular niche formation. As described above,
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angiogenesis is a hallmark of cancer and the CSC niche is

thought to be released from dormancy after the angiogenic

switch has been activated, suggesting that angiogenesis is a key

factor in development of the GBM CSC niche (100). However, in

the early stages of gliomagenesis, vessel co-option is the

dominant mechanism of tumor vascularization (116, 132,

133). In an orthotopic murine glioma model, it was observed

that once the implanted tumor began tissue invasion, the

patterning of the tumor overlapped with the pre-existing

vasculature of the brain. This finding indicates that healthy

brain vasculature was being used as scaffolding for these

invading tumor cells, confirmed with a de novo murine GBM

model and human GBM tissue samples (132). Additionally, a

computational simulation of brain tumor development revealed

that VEGF-independent vessel co-option is sufficient to sustain

tumor growth (132). Another study showed that this VEGF-

independent co-option process is mediated by CSCs expressing

NSC markers nestin and musashi-1 (133). In the rat C6 glioma

model, there was a rapid invasion of tumor cells via vessel co-

option followed by an upregulation of ANGPT2 (134). The

expression of ANGPT2 was associated with vessel regression and

hypoxia, thus leading to the induction of VEGF and a rapid

expansion of angiogenesis (134). Therefore, while gliomas may

initially be VEGF-independent, the tumor likely switches to

become an angiogenic-dependent tumor, making angiogenesis

a component of CSC maintenance, but likely not driving initial

CSC niche formation. As outlined in Figure 2, we propose that

CSC niches first develop around co-opted vessels and that the

beginning of GBM development is angiogenesis-independent.

This idea conflicts with the notion of tumor dormancy that was

previously discussed. Activation of the CSC niche during vessel

co-option could, however, contribute to the release of the

angiogenic switch. The cell of origin for GBM CSCs is
Frontiers in Oncology 07
unknown; this hypothesis does not address whether the CSC

arises from a NSC that acquired the requisite mutations to

become malignant or is a result of the dedifferentiation of

neoplastic brain tissue to a more stem-like phenotype. Our

hypothesis regarding the development of CSC niches may

provide a framework for additional investigation into

gliomagenesis and help better understand treatment resistance,

most notably anti-angiogenic therapies.
Conclusion

In this review we propose a methodology for the

development of the GBM CSC niche, hypothesizing that

mechanisms of the development and maintenance of the NSC

and HSC niches may provide insights. In this context, the role of

angiogenesis, a hallmark of GBM was discussed as a potential

component of CSC niche development. Though GBM is a highly

vascularized tumor, angiogenic-focused treatments have been

largely unsuccessful (115). GBM can circumvent anti-VEGF

therapies through VEGF-independent means, such as tissue

invasion via vessel co-option. Targeting vessel co-option may

prove to be an effective strategy for targeting tumor

vascularization, perhaps in conjunction with anti-VEGF

therapy. Factors such as bradykinin, SDF-1a, ANGPT2, IL-8,
mammary-derived growth inhibitor (MDGI), inositol-requiring

enzyme (IRE)-1a, ephrin-B2, Olig2, andWnt7a have been shown

to be important for vessel co-option specifically in GBM (135).

Although outside the scope of this review, the interplay between

GBM vessel co-option and the tumor microenvironment,

including tumor immune cell populations, remains to be

further elucidated. In addition to alternate therapeutic strategies

targeting vascular interactions with CSCs, clarifying the
FIGURE 2

Scheme for the development of GBM CSC niche. Objects are not to scale.
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mechanisms behind niche formation may reveal additional

vulnerabilities that can be exploited with future therapies.
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