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Abstract
Purpose An accurate differentiation of brain glioma grade constitutes an important clinical issue. Powerful non-invasive ap-
proach based on diffusion MRI has already demonstrated its feasibility in glioma grade stratification. However, the conventional
diffusion tensor (DTI) and kurtosis imaging (DKI) demonstrated moderate sensitivity and performance in glioma grading. In the
present work, we apply generalised DKI (gDKI) approach in order to assess its diagnostic accuracy and potential application in
glioma grading.
Methods Diffusion scalar metrics were obtained from 50 patients with different glioma grades confirmed by histological tests
following biopsy or surgery. All patients were divided into two groups with low- and high-grade gliomas as grade II versus grades
III and IV, respectively. For a comparison, trained radiologists segmented the brain tissue into three regions with solid tumour, oedema,
and normal appearing white matter. For each region, we estimated the conventional and gDKI metrics including DTI maps.
Results We found high correlations between DKI and gDKI metrics in high-grade glioma. Further, gDKI metrics enabled
introduction of a complementary measure for glioma differentiation based on correlations between the conventional and gener-
alised approaches. Both conventional and generalised DKI metrics showed quantitative maps of tumour heterogeneity and
oedema behaviour. gDKI approach demonstrated largely similar sensitivity and specificity in low-high glioma differentiation
as in the case of conventional DKI method.
Conclusion The generalised diffusion kurtosis imaging enables differentiation of low- and high-grade gliomas at the same level
as the conventional DKI. Additionally, gDKI exhibited higher sensitivity to tumour heterogeneity and tissue contrast between
tumour and healthy tissue and, thus, may contribute as a complementary source of information on tumour differentiation.
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Introduction

Primary brain glioma is a highly widespread type of intra-
axial brain tumours seen approximately in one-fourth di-
agnosed tumour cases [1]. Classification of the brain tu-
mours is performed in accordance with grades introduced
by the World Health Organization (WHO) [2] which com-
bine histopathological and molecular features into inte-
grated tumour characterisation. As a result, glioma grades
are ordered from grades I up to IV related to tumour’s
aggressiveness and malignancy. Both the tumour’s diag-
nosis and its grade can be reliably confirmed by a histo-
pathologic analysis of the tumour’s tissue obtained from
an invasive procedure such as biopsy or surgery.
However, non-invasive assessments of the tumour’s
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malignancy are necessary for clinical treatment, surgery
planning, and survival rate estimations. In particular, this
applies to low-grade tumour cases where such assess-
ments contribute to treatment efficacy and, as a result,
improve quality of life for patients. Magnetic resonance
imaging (MRI) offers a wide spectrum of tissue visualisa-
tion approaches for clinical purposes allowing one to de-
tect and localise brain’s abnormalities with a certain de-
gree of specificity. Nevertheless, conventional MRI tech-
niques such as structural T1/T2-weighted imaging with or
without contrast agents or magnetic resonance spectrosco-
py demonstrate limited sensitivity and specificity for brain
glioma differentiation [3, 4].

Diffusion-weighted imaging (DWI) has exhibited its su-
periority as a non-invasive brain imaging technique and
has been applied in a plethora of clinical settings [5–7].
Diffusion tensor imaging (DTI) [8], the most often used
DWI approach, has also been utilised for tumour assess-
ment by many research groups [9–11]. In turn, diffusion
kurtosis imaging (DKI) [12] is a powerful extension of the
conventional DTI technique enabling estimation of the de-
gree of non-Gaussian diffusion in the brain tissue by esti-
mating higher order cumulant of the diffusion signal ex-
pansion [13]. The deviation of water molecule diffusion
from free diffusion behaviour or Gaussian distribution is
caused by complex organisation of the brain tissue, where
cellular and neurite barriers alter the probability distribu-
tion of water diffusion. This phenomenon is particularly
important for the brain tumour detection and assessment
due to increased tissue complexity resulting from the high
cancer cell proliferation rate, increased tumour tissue vas-
cularisation, presence of oedema, as well as necrosis. DKI
is extensively used in brain imaging [14–16], in particular,
for tumour differentiation [17–21]. Despite the fact that
DKI demonstrated quite promising results in the case of
glioma grading, the kurtosis scalar metrics, such as mean
kurtosis, still lack the accurate and reliable glioma grading
in the case of both low- (i.e. glioma-I and II) and high-
(glioma-III and IV) grade gliomas [18, 22, 23].

In the present study, we adapted the generalised kurtosis
approach (GK) [24] for glioma differentiation in order to eval-
uate as well as to add a complementary information and, thus,
increase the accuracy of glioma grading. An advantage of the
third-order term of cumulant expansion of the diffusion signal
has been demonstrated for differentiation of low- and high-
grade gliomas together with an application of the conventional
kurtosis (CK) approach. In order to emphasise the advantage
of the DKI imaging for glioma grading, we concurrently ap-
plied both DKI and DTI metrics derived from the CK and GK
approaches. Hence, the purpose of the present study was to
investigate the value of the generalised DKI metrics for the
evaluation of glioma grading.

Materials and methods

Patients

Fifty adult patients (mean age, 44 ± 13 years; minimal age,
24 years; maximal age, 70 years; male/female ratio, 30/20)
initially diagnosed with glioma were recruited at our
Institution and examined with MRI prior to biopsy, surgery,
radiation or chemotherapy treatments. The diagnosis of glio-
ma and the WHO grade [25] were confirmed by histological
and immunohistochemical examinations for each subject fol-
lowing MRI examination. Complementary to the histological
glioma grade evaluation, the immunohistochemical marker
Ki-67 was extracted from pathology using commercial mono-
clonal antibody. Immunohistochemistry of Ki-67 was per-
formed and retrospectively analysed by a pathologist blinded
to the clinical- and MRI-derived information. The Ki-67 rates
were estimated by the percentile of immunoreactive cells from
1000 malignant cells. The estimation was performed in the
areas with the highest number of positive nuclei within the
solid tumour.

The study included 19 patients with glioma grade II, 8
patients with glioma grade III, and 23 patients with glioma
grade IV. The group of patients with glioma-II consisted of 6
subjec ts wi th ol igoas t rocytoma, 1 subjec t wi th
oligodendroglioma, 1 subject with gemistocytic astrocytoma,
and 11 subjects with diffuse astrocytoma. The group of pa-
tients with glioma-III consisted of 7 subjects with anaplastic
astrocytoma and 1 subject with anaplastic oligoastrocytoma.
The group of patients with glioma-IV consisted of the 22
subjects with glioblastoma and 1 subject with gliosarcoma.

Imaging

All patients underwent MRI examination with a 3T GE scan-
ner (Signa HDxt) using an 8-channel phased-array head coil.
The imaging protocol included precontrast T2-weighted
FLAIR and diffusion-weighted sequences, followed by
postcontrast T1-weighted imaging with a gadolinium-based
contrast agent. The parameters specific to anatomical imaging
sequences were the following: T1-weighted: FOV = 240 mm2,
TE/TR = 3500/8800 ms, resolution 1 × 1 × 1 mm3; T2-weight-
ed FLAIR: FOV = 240 mm2, TE/TR = 120/9500 ms, resolu-
tion 1 × 1 × 5 mm3; diffusion-weighted imaging: FOV =
240 mm2, TE/TR = 102.8/10000 ms, resolution 3 × 3 ×
3 mm3, b values = 0, 1000, and 2500 s/mm2 with 60 encoding
diffusion directions per each b-shell; directions were non-
coplanar uniformly distributed over the unit sphere. The dif-
fusion imaging was obtained using a single-shot echo planar
imaging sequence.
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Image analysis

Prior to estimation of scalar diffusion metrics, the raw diffu-
sion data were corrected for image distortions in accordance
with optimised pipeline [26], i.e. for noise [27] and Gibbs-
ringing distortions [28], eddy-current distortions including
bulk head motion artefacts were corrected using eddy utility
from FSL [29–31]. Conventional DKI metrics such as mean,
axial, radial kurtosis, and kurtosis anisotropy (MK, AK, RK,
and KA, respectively) were estimated using an iterative
weighted least squares approach [32] and supplied by the
complementary DTI measures known as fraction anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and ra-
dial diffusivity (RD). The conventional DKI metrics were ob-
tained from the second-order cumulant expansion in the fol-
lowing form [12]:

ln S bð Þ½ � ¼ ln S0½ �−bDþ b2D2 K
6
¼ F1;

where b is the diffusion weighting, D is the diffusion coeffi-
cient, S0 is the signal without the diffusion weightings, and K
is the diffusion kurtosis. The right-hand expression is defined
as F1. The generalised DKI parameters were estimated using
in-house MATLAB scripts (The MathWorks, Natick, MA,
USA) including the third-order terms [24]:

ln S b;αð Þ½ � ¼ F1 þ α−1ð Þ � D3b3
K2

54
;

where α is the adjusting variable. In the case of α = 1, the last
equation leads to the conventional DKI expression F1. In the
present work, we used an optimised α value at 2/7 [24].
Subsequently, the estimated diffusion scalar maps for both
cases of conventional and generalised kurtosis were aligned
and interpolated to T1-weighted anatomical image for each
patient using the cubic spline interpolation algorithm and af-
fine transformation. Two independent radiologists manually
delineated three regions of interest for each subject: tumour,
oedema, and normal appearing white matter (NAWM) using 3
MRI contrasts: T1-weighted, T2-weighted FLAIR, and MD
map estimated from CK approach. Examples of images for
low- and high-grade gliomas with the 3 aforementioned re-
gions of interest are presented in Figs. 1 and 2, respectively.

Statistical analysis

Statistical analyses were performed using R Project (http://r-
project.org) and in-house MATLAB scripts. Some voxels
among the patient maps contained of corrupted diffusion met-
rics derived from the DTI and DKI tensors. In order to prevent
any statistical bias in analysis, we excluded such voxels from

Fig. 1 Example of low-grade gliomas with the marked regions of inter-
ests: red is the tumour, green is the oedema, and blue is the NAWM. All
maps are already aligned and interpolated to T1-weighted image. a mean
diffusivity map with masks; b T1-weighted image with contrast agent; c
T2-weighted FLAIR image with contrast agent; d T2-weighted

FLAIR image without contrast agent; e mean diffusivity map obtained
from the conventional kurtosis approach; fmean diffusivity map obtained
from the generalised kurtosis approach; g mean kurtosis map obtained
from the conventional kurtosis approach; and h mean kurtosis map ob-
tained from the generalised kurtosis approach
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consideration using inequalities: MK < 0 and MK > 3, for
both CK and GK approaches. Mean values and standard de-
viations of all diffusion metrics were calculated from the tu-
mour, oedema, and NAWM regions. These values were used
for the low- and high-grade glioma differentiation and
assessed with a Mann-Whitney-Wilcox U test with statistical
significance reported at the 0.05 level. Effect sizes were cal-
culated with Cohen’s d in order to estimate the magnitude of
the differences between the conditions/groups. Correlations
between the conventional and generalised DKI metrics have
been estimated using a linear regression model: y = k0 + k1•x
and package stat from R Project. Receiver operating

characteristic (ROC) analysis was performed using package
pROC in order to compute the area under curve (AUC) for
estimation of the diffusion model performance for tumour
differentiation. The squared Pearson correlation coefficients
were estimated using the package stat from R Project. In order
to estimate a rate of the solid tumour heterogeneity using
diffusion metrics derived from CK and GK approaches, we
used a root-mean-square estimator (RMSE). The RMSE rate
demonstrates the root-mean-square deviation of the diffusion
metric from the tumour mean value averaged over the tumour
region, i.e. the higher RMSE rate exhibits a higher metric
dispersion or heterogeneity.

Fig. 2 Example of high-grade gliomas with the marked regions of inter-
ests: red is the tumour, green is the oedema, and blue is the NAWM. All
maps are already aligned and interpolated to T1-weighted image. a mean
diffusivity map with masks; b T1-weighted image with contrast agent; c
T2-weighted FLAIR image with contrast agent; d T2-weighted

FLAIR image without contrast agent; e mean diffusivity map obtained
from the conventional kurtosis approach; fmean diffusivity map obtained
from the generalised kurtosis approach; g mean kurtosis map obtained
from the conventional kurtosis approach; and h mean kurtosis map ob-
tained from the generalised kurtosis approach

Table 1 The results for linear
correlations between diffusion
metrics obtained from CK and
GK approaches (see Figs. 3 and 4)

FA MD AD RD KA MK AK RK

LGG

Intercept b0 0.053 −0.017 0.091 0.025 0.19 −0.12 0.0088 −0.15
Slope b1 0.73 1.1 1.0 1.0 0.88 1.7 1.7 1.6

R-square 0.693 0.981 0.906 0.97 0.463 0.944 0.777 0.942

HGG

Intercept b0 0.028 0.022 0.054 0.028 0.14 −0.1 −0.018 −0.13
Slope b1 0.85 1.0 1.0 1.0 0.93 1.6 1.7 1.6

R-square 0.814 0.977 0.953 0.97 0.756 0.889 0.804 0.855

The linear model is y = b0 + b1∙x; R-square is the coefficient of determination also coinciding with the squared
Pearson correlation coefficient. LGG low-grade glioma, HGG high-grade glioma
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Results

Figures 1 and 2 are visual examples of manual masks of three
regions, i.e. tumour, oedema, and NAWM together with ex-
amples of MD and MK maps for the low- and high-grade
glioma patients, estimated by the CK and GK approaches.
All maps are presented in T1-weighted space with a spatial
interpolation of diffusion maps. Briefly, we can see that the
visual quality ofMDmaps between CK and GK approaches is
very similar. In turn, as already was shown in [24], the tissue
contrast for DKI maps, e.g. MK, is higher for GK approach.
Squared outlier voxels both in Figs. 1 and 2 are the result of
fitting problems due to noisy diffusion signal. These voxels
have been excluded from the analysis.

Figures 3 and 4 present the correlations of diffusion metrics
obtained by CK and GK signal expansions. Figure 3 shows
DTI metrics only, i.e. FA,MD, AD, and RD, with correspond-
ing R-squared values which in the case of linear correlations

coincide with the squared Pearson correlation coefficients (see
Table 1). In Fig. 4, we present DKI metrics only, i.e. KA,MK,
AK, and RK, with corresponding R-squared values (see
Table 1). The scatter plots were estimated voxel-wisely for
the tumour masks only from low- and high-grade gliomas,
respectively. In short, linear correlations between CK and
GK estimations are higher for the high-grade glioma in con-
trast to the low-grade glioma. This effect is present for all DTI
metrics. In the case of DKI metrics, it applies only for KA and
AK metrics. Interestingly, MK and RK metrics have two lin-
early dependent subgroups of voxels (see, e.g. Fig. 4: LGG),
which merge as glioma malignancy increases (see, Fig. 4:
HGG).

In Fig. 5 we present boxplots of the mask-averaged diffu-
sion metrics estimated from CK and GK approaches. The
averages were performed for each ROI such as tumour, oede-
ma, and NAWM for each patient. The boxplots are structured
as ROI-wise and glioma grades pairs. For each pair of low-

Fig. 3 Voxel-wise correlations of the diffusion tensor metrics between
the conventional and generalised kurtosis approaches. The scalar metrics
belong to the tumour masks in low- and high-grade gliomas for all

patients. The columns of plot are axial, radial, and mean diffusivities
and fractional anisotropy, respectively

Fig. 4 Voxel-wise correlations of the diffusion kurtosis metrics between
the conventional and generalised kurtosis approaches. The scalar metrics
belong to the tumour masks in low- and high-grade gliomas for all

patients. The columns of plot are axial, radial, and mean kurtosis and
kurtosis anisotropy, respectively
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and high-grade gliomas, we performed the Mann-Whitney-
Wilcox U test in order to check for significant (p < 0.05) dif-
ferences between glioma grades in all regions including tu-
mour, oedema, and NAWM. There were no significant differ-
ences between low- and high-grade glioma diffusion metrics
for oedema, and there was difference between GK metrics of
RD for NAWM. However, for tumour regions, both CK and
GK metrics except for KA and FA, we revealed a significant
difference for low- and high-grade gliomas (marked by
asterisk in Fig. 5). In the case of FA metrics, GK approach
did not reveal significant differences between glioma grades.
The effect sizes for the diffusion metric differences detected
by both CK and GK approaches are summarised in Table 2.
For DTI metrics, the effect size is large for both kurtosis ap-
proaches, while for DKI metrics the differentiation possesses
very large effect size except for GK-derived RK metric. We
also performed a pair comparison between CK and GK met-
rics marked by the cyan background colour for significant
differences (p < 0.05) between the CK-GK metrics.
Interestingly, for all DKI metrics and ROIs, there were signif-
icant difference between CK and GK metrics. However, for
DTI metrics, the significant difference was detected only for
NAWM regions for FA, MD, and RD metrics.

It is of vital importance to perform a comparison between
CK and GK approaches in terms of their sensitivity and spec-
ificity. These results are presented in Fig. 6. Both approaches

demonstrated high rate of sensitivity and specificity for low
and high glioma discrimination with negligible difference be-
tween CK and GK approaches. The estimated sensitivity,
specificity, cutoff, and area under curves (AUC) are
summarised in Table 3.

In Figs. 7 and 8, we present correlations between Ki-67 and
diffusion metrics estimated by CK and GK approaches for
DTI and DKI, respectively. The correlations were estimated
for all subjects and low- and high-grade subject groups sepa-
rately. The Spearman’s correlation coefficients for diffusion
metrics vs Ki-67 are summarised in Table 4. In Figs. 7 and 8,
we plotted the linear regressions for low- and high-grade gli-
omas and performed a quantitative comparison for each ap-
proach using cocor function [33]. The significant difference
(p < 0.05) between LGG and HGG correlations was found
only for FA linear coefficients in both CK and GK
approaches.

Figure 9 shows a variability of the diffusion metrics in the
solid tumour. The tumour heterogeneity was estimated by
RMSE rate obtained for each DKI approach. In order to visu-
alise the tumour heterogeneity, we used the scatterplots for
each metrics. Interestingly, the heterogeneity derived from
DTI metrics for both approaches does not have the significant
difference, i.e. the RMSE points are close to the unity line (see
Fig. 9). In turn, the RMSE rates for AK, RK, and MK are
higher for GK approach, and the RMSE rate for KA is higher
for CK approach. It is worth to note that the heterogeneity
estimations obtained by GK approach show higher RMSE
rates for both low- and high-grade gliomas.

Discussion

In the present study, we estimated two diffusion imaging ap-
proaches based on the conventional and generalised kurtosis
expansions. The scalar metrics based on GK approach

Table 2 The effect size of significant differences between low- and
high-grade gliomas detected by CK and GK derived diffusion metrics
(see Fig. 5)

Effect
size

FA MD AD RD KA MK AK RK

CK 0.99 1.21 1.11 1.23 0.11 1.56 1.47 1.52

GK 0.65 1.15 1.13 1.15 0.30 1.50 1.35 0.24

The effect size is estimated using the Cohen’s d

Fig. 5 The boxplots of averaged diffusion tensor and kurtosis metrics in
different regions: tumour, oedema, and normally appeared white matter.
The star-marked brackets exhibit the significant (p < 0.05) difference

between low- and high-grade gliomas for the diffusion metrics. The green
background colour emphasise the significant difference between diffu-
sion metrics for the conventional and generalised approaches
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demonstrated higher linear correlations with CK-derived met-
rics for high-grade glioma and comparable sensitivity and
specificity in glioma differentiation between low- and high-
grade gliomas. In turn, the scalar diffusion metrics based on
GK approach exhibited brighter tumour and peritumoural oe-
dema contrasts compared to healthy tissue allowing clinicians
to better visualise tumour spreading in a healthy brain tissue
environment. Moreover, the heterogeneity rates estimated by
RMSE measure are higher in the case of MK, AK, and RK
metrics derived from gDKI approach.

The tumour grade differentiation constitutes a challenge for
many imaging techniques such as MRI, CT, or PET. This is

due to the need of a quantitative parametrisation enabling both
the assessment of damage of healthy brain tissue by aggres-
sive growth of tumour and the degree of the malignancy of
this process. This is particularly complicated due to multifar-
ious forms of tumour manifestation, including cell swelling,
microvasculature proliferation, tumour heterogeneity, and
presence of necrosis. Thus, the diffusion MR imaging grants
two levels of tumour assessment, that is, easy-to-interpret sca-
lar maps and sensitivity of these maps to the micrometre scale
of tissue changes. Therefore, diffusion kurtosis imaging offers
an excellent tool for probing brain tumour, enabling estima-
tion of the qualitative and quantitative differences between
different glioma grades and their dynamics.

The difference between the conventional and general-
ised kurtosis estimations is defined by a fraction multipli-
er α and a quadratic kurtosis term in Eq. (2). It is inter-
esting that dispersion in the distribution between DTI
metrics (see Fig. 3) is quite low and does not depend on
glioma grade. However, in the case of kurtosis scalar
maps (see Fig. 4), in particular for MK and RK, there is
a stronger value spreading in low grade glioma metric
correlations. Such kind of distribution behaviour can in-
dicate two different types of tissue organisation present at
early stages of the glioma tumour: resting healthy brain
tissue and highly heterogeneous tumour. As glioma ma-
lignancy increases, the heterogeneous tumour tissue be-
comes dominant due to aggressive growth which leads
to higher correlations between CK and GK metrics, i.e.
quadratic kurtosis term might drive this effect. We see
that GK-derived MK and RK metrics are more sensitive

Table 3 Differentiation performance for diffusion metrics estimated by
CK and GK approaches

FA MD AD RD KA MK AK RK

CK

AUC 0.77 0.79 0.78 0.80 0.53 0.87 0.86 0.86

Cutoff 0.15 1.50 1.72 1.39 0.23 0.53 0.41 0.54

Sensitivity 0.74 0.71 0.71 0.71 0.48 0.74 0.93 0.74

Specificity 0.74 0.84 0.84 0.84 0.68 0.89 0.68 0.90

GK

AUC 0.65 0.78 0.77 0.78 0.62 0.86 0.83 0.88

Cutoff 0.17 1.71 1.80 1.59 0.39 0.73 0.81 0.71

Sensitivity 0.48 0.80 0.71 0.81 0.68 0.74 0.71 0.77

Specificity 0.74 0.68 0.84 0.68 0.68 0.89 0.89 0.89

AUC of ROC (see Fig. 6), cutoff, sensitivity, and specificity values are
presented

Fig. 6 Receiver operating curves (ROC) for the conventional (CK) and generalised kurtosis (GK) approaches for differentiation of low- and high-grade
gliomas. The error bars exhibits the detected sensitivity and specificity of both methods
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to the tumour heterogeneity in low-grade glioma.
Therefore, a variation in data dispersion between CK
and GK metrics, in particular, in kurtosis metrics, might
provide us with an additional information about glioma
grades. Notably, this information is accessible only for
voxel-wise assessment, where typical glioma grade differ-
entiation is performed for region-averaged diffusion
metrics.

This hypothesis is supported by significant differences be-
tween CK and GK metrics for kurtosis metrics in contrast to
the DTI ones (see Fig. 5). For kurtosis metrics, the significant
differences between CK and GK derived values were found in
all regions: tumour, oedema, and NAWM. On the other hand,
DTI metrics demonstrated significant differences only for nor-
mally appearing brain tissue, likely due to the different regions
of the brain chosen as NAWM and strong age dependence of
the patients. Thus, the quadratic kurtosis term strongly influ-
ences the kurtosis scalar metrics while it does not affect the
DTI ones.

It is quite important to estimate general brain changes as-
sociatedwith tumour grades in accordancewith healthy tissue.
All DTI metrics (FA, MD, AD, and RD) demonstrated their
potential as a glioma grade biomarker, except for FA maps
derived fromGK (see Tables 2 and 3). The values ofMD, AD,
and RD show lower diffusivities in high-grade glioma for both
CK and GK approaches. In turn, diffusion metrics for both
low- and high-grade gliomas demonstrated higher diffusivities
in contrast to the NAWM values. This effect might be related
to damage of healthy tissue as extra-cellular space increases
accompanied by simultaneous microvascularisation process in
the tumour tissue. Interestingly, low-grade glioma tissue re-
tains higher diffusivities in contrast to high grade one, likely
due to an increased cell proliferation rate in high-grade glio-
ma, i.e. emergence of more cellular barriers limiting the water
diffusion.

Kurtosis scalar maps exhibited the same trends as DTI
metrics for low and high glioma differentiation and the con-
trast between the tumour and healthy tissue regions. Notably,
KA did not reveal significant differences between low- and
high-grade gliomas. Nonetheless, MK, AK, and RK metrics
demonstrated lower kurtosis values in low-grade glioma in
contrast to both high-grade glioma and healthy tissue (see
Fig. 5).

We did not find significant differences for oedema regions
for neither low- nor high-grade gliomas. At the same time,
oedema metrics exhibited close range of kurtosis and DTI
values with high-grade glioma, suggesting that the
peritumoural tissue organisation is more complex than free
water diffusion. This effect may be caused by the compression
of the surrounding cells and resting microstructure of healthy
tissue. However, this hypothesis should be verified and exam-
ined with different types of glioma spreading processes such
as the level of cell infiltration that demands high-resolution
diffusion measurements.

Table 4 The Spearman’s correlation coefficients r between Ki-67 and
diffusion metrics estimated by CK and GK approaches

FA MD AD RD KA MK AK RK

r (all)

CK − 0.17 0.21 0.17 0.21 0.02 − 0.11 − 0.05 − 0.14
GK − 0.19 0.22 0.17 0.23 0.01 − 0.07 − 0.03 − 0.08

r (HGG)

CK 0.22 − 0.34 − 0.30 − 0.30 0.01 0.42 0.31 0.50

GK 0.09 − 0.29 − 0.25 − 0.29 − 0.12 0.43 0.40 0.58

r (LGG)

CK − 0.35 − 0.17 − 0.12 − 0.17 − 0.46 0.23 0.31 0.13

GK − 0.33 − 0.13 − 0.16 − 0.07 − 0.33 0.21 0.24 0.16

Fig. 7 Correlation plots between Ki-67 and DTI metrics derived from CK and GK approaches. For each glioma grade group (low-grade LGG; high-
grade HGG), we plotted the linear regression lines
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Our results showed the low correlations between prolifer-
ation rate Ki-67 and diffusionmetrics (see Figs. 7 and 8) for all
subjects. In the case of DTI metrics, we found that diffusion
metrics obtained for high-grade gliomas exposed a moderate
Ki-67 correlation rate in contrast to the metrics from low-
grade gliomas. In turn, DKI metrics for both CK and GK
approaches exhibited the high correlations with Ki-67 rate
independently on the glioma grade. Encouraging, our findings
of the Ki-67 correlations are in agreement with the previously
published works [9, 34, 35].

As a limitation of the study, we should note not an optimal
choice of adjusting variableα. Amore accurate model fitted to

the tumour microstructure [36] might increase feasibility of
GK approach and its performance in the case of glioma grad-
ing. Additionally, advanced diffusion techniques including
fast kurtosis [37], isotropic diffusion weighting [38–40], and
multidimensional diffusion imaging [41, 42] might help clini-
cians to perform a robust, fast, and non-invasive glioma dif-
ferentiation. We plan to implement and apply these ap-
proaches for research and patient treatment in the future.

In conclusion, the generalised diffusion kurtosis imaging
presents an additional source of information enabling differ-
entiation of low- and high-grade gliomas at the same level as
the conventional DKI. The GK approach exhibited higher

Fig. 8 Correlation plots between Ki-67 and DKI metrics derived from CK and GK approaches. For each glioma grade group (low-grade LGG; high-
grade HGG), we plotted the linear regression lines

Fig. 9 Scatterplots of root-mean-square estimators (RMSE) computed for CK and GK approaches. The RMSE rates were computed for the solid tumour
regions only
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tissue contrast and, thus, offers more sensitive scalar maps to
glioma tissue heterogeneity.
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