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Abstract

Introduction Dog breeds are a consequence of artificial

selection for specific attributes. These closed genetic pop-

ulations have metabolic and physiological characteristics

that may be revealed by metabolomic analysis.

Objectives To identify and characterise the drivers of

metabolic differences in the fasted plasma metabolome and

then determine metabolites differentiating breeds.

Methods Fasted plasma samples were collected from

dogs maintained under two environmental conditions

(controlled and client-owned at home). The former

(n = 33) consisted of three breeds (Labrador Retriever,

Cocker Spaniel and Miniature Schnauzer) fed a single diet

batch, the latter (n = 96), client-owned dogs consisted of 9

breeds (Beagle, Chihuahua, Cocker Spaniel, Dachshund,

Golden Retriever, Greyhound, German Shepherd, Labrador

Retriever and Maltese) consuming various diets under

differing feeding regimens. Triplicate samples were taken

from Beagle (n = 10) and Labrador Retriever (n = 9) over

3 months. Non-targeted metabolite fingerprinting was

performed using flow infusion electrospray-ionization mass

spectrometry which was coupled with multivariate data

analysis. Metadata factors including age, gender, sexual

status, weight, diet and breed were investigated.

Results Breed differences were identified in the plasma

metabolome of dogs housed in a controlled environment.

Triplicate samples from two breeds identified intra-indi-

vidual variability, yet breed separation was still observed.

The main drivers of variance in dogs maintained in the

home environment were associated with breed and gender.

Furthermore, metabolite signals were identified that dis-

criminated between Labrador Retriever and Cocker Spa-

niels in both environments.

Conclusion Metabolite fingerprinting of plasma samples

can be used to investigate breed differences in client-

owned dogs, despite added variance of diet, sexual status

and environment.

Keywords Metabolomics � Plasma � Metabolite

fingerprinting � Multivariate data analysis � Intra-breed
variability � Inter-breed variability

1 Introduction

As a consequence of selective breeding for novel and

desirable traits the domestic dog (Canis familiaris) exhibits

characteristic diversity in morphology, physiology and

behaviour (Belyaev 1979; Wayne 2001). Initially, this led

to the formation of distinct functional classes such as

herding, hunting and guarding. Traits were then developed

through restricted breeding programmes and have since

been modified through pedigree breeding standards (Sutter

et al. 2004). A by-product of this closed population struc-

ture and process has been that many dog breeds suffer from

a high incidence of inherited disorders (Cruz et al. 2008). It

Electronic supplementary material The online version of this
article (doi:10.1007/s11306-016-0997-6) contains supplementary
material, which is available to authorized users.

& David Allaway

david.allaway@effem.com

1 Institute of Biological Environmental and Rural Sciences,

Aberystwyth University, Aberystwyth SY23 3DA, UK

2 School of Environmental and Rural Science, University of

New England, Armidale NSW 2351, Australia

3 WALTHAM Centre for Pet Nutrition, Freeby Lane,

Waltham-on-the-Wolds, Melton Mowbray,

Leicestershire LE14 4RT, UK

123

Metabolomics (2016) 12:72

DOI 10.1007/s11306-016-0997-6

http://dx.doi.org/10.1007/s11306-016-0997-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-016-0997-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-016-0997-6&amp;domain=pdf


is likely that other, more subtle and unintentional conse-

quences of selective breeding may have resulted in addi-

tional changes to metabolic regulation that may impact on

the plasma metabolite fingerprint of different dog breeds.

The process of metabolite fingerprinting is based on

hypothesis-free, non-targeted and unbiased measurements

(Draper et al. 2013; Fuhrer and Zamboni 2015). These

often provide only relative quantification and aim to detect

as many components in the sample as possible. Currently,

global metabolite profiling and fingerprinting are achieved

using high-content analytical platforms, such as 1H nuclear

magnetic resonance (NMR) spectroscopy and mass spec-

trometry (MS). The latter can be used for profiling via

direct infusion (DI) or flow infusion (FI) of samples or

extracts, or coupled to a chromatographic or elec-

trophoretic separation [i.e., gas chromatography (GC)-MS,

liquid chromatography (LC)-MS, or capillary elec-

trophoresis (CE)-MS] as reviewed recently (Dunn et al.

2011; Scalbert et al. 2014). One of the strengths of this type

of data-driven approach is that it enables investigations of

complex, nonlinear, interactive multivariate systems which

are difficult to control or where no clear hypothesis exists

(Kell and Oliver 2004).

Urine may not be the most suitable sample to characterize

breed differences (Beckmann et al. 2010) potentially as this

fluid may be dominated by microbiota-derived metabolites

(Wang et al. 2007). It is likely that blood-based metabolite

fingerprinting may provide more relevant data for deter-

mining ‘‘host-derived’’ endogenous metabolic variance

between dog breeds. Previously, the plasmametabolome has

provided data relevant to specific metabolic adaptations of

species and also has identified differences between indi-

viduals (Allaway et al. 2013; Colyer et al. 2011). However,

these data were derived from studies undertaken under

controlled environmental conditions. It is likely that to

achieve accurate interpretation of metabolomics data from

client-owned dogs, future study designs will need to factor

the major drivers of variance in the metabolome.

The primary aim of this current study was to use a large-

scale non-targeted metabolomic approach to investigate the

main drivers of intra- and inter- breed variation under

different conditions (controlled diet and environment ver-

sus variable diet and in-home environments).

2 Materials and methods

2.1 Animal maintenance

In the controlled environment study [WALTHAM Centre

for Pet Nutrition (WCPN)] a single fasted ([12 h) blood

sample was collected from individual adult Labrador

Retrievers (LR, n = 12), Cocker Spaniels (CS, n = 12)

and Miniature Schnauzers (n = 9). The dogs were all

housed in small groups in the purpose-built, environmen-

tally-enriched facilities at the WCPN, in accordance with

the Centre’s research ethics and UK Home Office Regu-

lations. Dogs had free access to water and were fed

Chappie� Original dry dog food, for at least 4 weeks

before and throughout the study at energy levels to main-

tain adult body weight (see electronic supplementary

material S1 for dog details).

The client-owned dog study involved 96 dogs from 9

breeds living at home and recruited with owner consent.

Samples were taken in accordance with the research ethics

policy of the University of New England (UNE), Australia.

The breeds were Beagle (Be, n = 14), Chihuahua (Ch,

n = 5), Cocker Spaniel (CS, n = 11), Dachshund (Da,

n = 7), German Shepherd (GS, n = 12), Golden Retriever

(GR, n = 10), Greyhound (Gh, n = 13), Labrador Retrie-

ver (LR, n = 14) and Maltese (Ma, n = 10) (see electronic

supplementary material S2 for dog details). These dogs

were maintained on different diets and fed according to

their owners feeding regimen and amounts. Blood was

taken on one occasion for all breeds except for LR and Be,

where for some individuals three separate fasted blood

samples were collected at different time-points over several

months (see electronic supplementary material S3 for dog

details). When comparing the 9 breeds single plasma

samples from individuals were analysed and where tripli-

cates were available, the first collected sample was chosen

(see S7 for structure and workflow of the studies described

here).

2.2 Collection and analysis of metadata

Metadata were collected for the client-owned dog study

(UNE) to characterize the individual dogs and aid inter-

pretation of inter- and intra- individual differences in

metabolomic profiles (electronic supplementary material

S2). Seven different factors were used to classify plasma

samples. Individuals were assigned to at least two groups

for each factor. For some factors the groups were discrete

(e.g. male and female for ‘gender’) but for others involving

weights, body scores and diets, we chose ranges to define

the groups, aiming to create a balanced model for statistical

purposes while maintaining biological relevance of the

groups. The classes were breed, age category (10–24,

25–48, 49–72 and 73? months), gender (male and female),

sexual status within gender (entire and neutered), weight

category (w\ 10 kg, 10 B w\ 20 kg, 20 B w\ 30 kg,

w C 30 kg), body condition score using a 9 point score

(Laflamme 1997) (reclassified into: 2, 2.5, 3, 3.5 and 4?)

and owner controlled current diet (described by the owner)

which was re-classified into nine diet groups (see electronic

supplementary material S2 for diet details).
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The impact of variance associated with each of the

seven factors was investigated individually by Principal

Component-Linear Discriminant Analysis (PC-LDA) on

metabolite fingerprint data using a different meta-data

factor for class labelling in each model (electronic sup-

plementary material S4). Additionally, Pearson’s v2 test

was performed on the dog metadata (prior to fingerprint-

ing) to determine whether any of these meta-data factors

were associated which may influence any discrimination

seen by PC-LDA. Each categorical trait was randomly

assigned a numeric value and for each possible binary

comparison (n = 21) a contingency table was populated

from the categorical numeric vectors, and Pearson’s v2 test
for count data performed. Values displayed were the un-

corrected p value computed from the asymptotic v2 dis-

tribution of the test statistic. p values which were signifi-

cant after Bonferroni adjustment, to maintain an overall

5 % error rate (p\ 0.0024) were indicated. The base

function chisq.test (R Version 3.1.2) was used for per-

forming the v2 test.

2.3 Blood collection and plasma preparation

Blood was collected for both RNA and metabolite finger-

printing analysis. In keeping with reduction and refinement

principles, the sample volume required was minimised by

filtering blood to collect leukocytes for RNA extraction

prior to centrifugation of the leukocyte-depleted blood fil-

trate to obtain plasma. Fasted ([12 h) blood samples (up to

9 ml), collected from the jugular vein in EDTA tubes (BD

Diagnostics Vacutainer, 10 ml 367,525), were mixed by

inversion and passed through a LeukoLOCKTM filter

[Ambion� LeukoLockTM Fractionation & stabilisation Kit

(No. 1933)] using a 25G needle into an evacuated plain

tube (BD Diagnostics Vacutainer, 10 ml 366636) on ice.

The leukocyte-depleted blood sample was kept on ice until

centrifuged (20009g for 15 min). Plasma samples were

collected and stored, either on dry ice for transport or for

long-term storage at -80 �C until analysis.

Plasma was extracted for metabolomic analysis using

the following method. Aliquots of thawed leukocyte-de-

pleted plasma samples (200 ll) were added to 1520 ll of
pre-chilled, de-gassed methanol/chloroform [4/1] in 2 mL

Eppendorf tubes containing a microspoon of glass beads,

vortexed, shaken for 20 min at 4 �C and then centrifuged

for 5 min at 22,0009g at 4 �C. Extracted plasma samples

were stored at -80 �C until analysis.

2.4 Flow infusion electrospray-ionization mass

spectrometry (FIE-MS)

Aliquots of extracted plasma (100 ll) were transferred into

2 mL Eppendorf tubes and dried under vacuum in a Speed-

Vac vacuum concentrator (UNIVAPO 150H with a UNI-

JET II refrigerated aspirator). Samples were reconstituted

in methanol/water [7/3], vortexed, shaken for 20 min at

4 �C and centrifuged for 5 min at 22,0009g at 4 �C.
Supernatant (50 ll) was transferred into a HPLC vial

containing a 0.2 ml flat bottom micro insert (Chromacol).

Samples were randomised to avoid bias to the position of

the samples within injection order especially for the trip-

licated samples. All samples were run together immedi-

ately after machine calibration but split into batches over

consecutive days if necessary, to minimise the need for

complex pre-processing steps and quality controls. FIE-MS

was carried out as described previously (Beckmann et al.

2008; Fave et al. 2011). Data were acquired in alternating

positive and negative ionization modes and over four scan

ranges (15–110 mass-to-charge ratio (m/z); 100–220;

210–510; 500–1200 m/z), with an acquisition time of

5 min, on a LTQ linear ion trap (Thermo Electron Cor-

poration, San Jose, CA, US). The resulting mass spectrum

was the mean of 20 scans about the apex of the infusion

profile. Prior to analysis, raw data signal acquisition and

data pre-processing was performed in four steps. Raw data

dimensionality was reduced by electronically extracting

signals with ±0.1 Da mass accuracy, minimizing mass

accuracy effects. Background subtraction of individual

sample-attributed ion intensity as a simple baseline cor-

rection. These steps were followed by log10 transformation

to reduce data-set variance and then normalization to total

ion current (TIC) providing relative ratios of m/z signal

abundance.

2.5 Data analysis, sample classification and selection

of potentially explanatory signals

Data mining was carried out by following the FIEmspro

workflow validated previously (Enot et al. 2008) (URL

http://users.aber.ac.uk/jhd/). Principal component analysis

(PCA) was used to reduce data dimensionality and was

followed by PC-LDA. Plots of the first two discriminant

functions (DFs) allowed visualization of class separation.

Random forest (RF) was employed in the analysis of the

multivariate data and the RF classification ‘margin’, along

with the area under the receiver operating characteristic

(ROC) curve (AUC) and accuracy (ACC) were used to

assess classification performance (Enot et al. 2008).

Models were deemed adequate overall if RF margins[0.2

and AUC and/or ACC values[0.8, thresholds which we

have implemented in previous publications (Enot et al.

2008).

A combination of RF, AUC and student’s t test were

used to highlight potentially explanatory signals responsi-

ble for discriminating between sample classes in a full

feature rank list (Enot et al. 2008). RF feature selection was
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performed by calculating Importance Scores, being the

mean decrease in accuracy over all classes when a feature

is omitted from the data. AUC used the area under curve of

the sensitivity (true-positive rate) against the specificity

(false-positive rate) and student’s t-test ranked the features

by the p values.

Randomized re-sampling strategies using bootstrap-

ping were applied in the process of classification and

feature selection to counteract the effect of any

unknown, structured variance in the data. We used 100

bootstraps in pair-wise comparisons for each of the

applied statistical operations with 2/3 of data as training

and 1/3 as test set. RF was set to ntree = 1000 for each

bootstrap which is adequate considering the dimension-

ality of data.

Pearson correlation coefficients between selected vari-

ables were calculated using the function cor [|0.7| were

considered to belong to a cluster indicative of different

ionization or potential breakdown products of a single

metabolite.

2.6 Targeted accurate mass analysis and annotation

of FIE-MS signals

Selected nominal mass bins were investigated further using

targeted Nano-Flow (TriVersaNanoMate, AdvionBioS-

ciences Ltd, UK) LTQ-Fourier Transform-Ion Cyclotron

Resonance Ultra-Mass-Spectrometry (FT-ICR-MS; where

Ultra refers to the high-sensitivity ICR-cell) as reported

previously (Lloyd et al. 2011a, b). Samples were prepared

as for FIE-MS and three additional plasma pools from

randomized groups of dogs were prepared and reconsti-

tuted in methanol/water (80/20, v/v).

For metabolite signal identification, the accurate mass

values were then queried using MZedDB, an interactive

accurate mass annotation tool which can be used directly to

annotate signals by means of neutral loss and/or adduct

formation rules (Draper et al. 2009). FIE-MSn was

employed for further metabolite signal identification with

the scan window set for 20 scans, an isolation width of

1 m/z and using normalized collision energy of 30 V. An

activation coefficient ‘Q’ of 0.250 was chosen and an

activation time of 30 ms, with wideband activation turned

on and a source fragmentation of 20–30 V. Mass range

settings were dependent upon the molecular weight of the

target ion. Metabolites were putatively annotated to MSI

level 2 without chemical reference standards due to the

lack of standard availability, based upon physicochemical

properties and/or spectral similarity with public/commer-

cial spectral libraries (Lipid Maps, HMDB, Metlin and

Massbank (Horai et al. 2010; Sana et al. 2008; Sud et al.

2007; Wishart et al. 2009).

3 Results and discussion

3.1 Canine breeds can be differentiated

by the plasma metabolome when housed

under controlled environmental conditions

Fasted plasma samples from Labrador Retriever (n = 12),

Cocker Spaniel (n = 12) and Miniature Schnauzers

(n = 9) in the controlled environment study (WCPN:

electronic supplementary material S1 for dog details) were

analysed by non-targeted metabolite fingerprinting (FIE-

MS) to generate nominal mass data in positive and negative

ionization modes from m/z 15–1200. FIE-MS fingerprints

were subjected to PCA followed by PC-LDA (Fig. 1).

Discrimination was considered adequate for Eigenvalues

(Tw) of[2.0 and poor for Tw\1.0 (Enot et al. 2008). In

positive mode, PC-DF1 (Tw 2.79) indicated that the main

source of variance was between Cocker Spaniel and the

other two breeds, (Fig. 1a). Separation of plasma from

Labrador Retrievers and Miniature Schnauzers was evident

in PC-DF2 (Fig. 1a), however the Tw was\1.0. In nega-

tive mode (Fig. 1b), the main source of variance was

between Miniature Schnauzers and the two other breeds,

however the discrimination was not considered adequate.

Overall, the positive mode data appeared to discriminate

between the breeds more so than the negative mode data.

Previously, urinary metabolomics identified that healthy

LR and Miniature Schnauzer dogs in the same environment

and fed the same diets can be discriminated on a breed

basis (Beckmann et al. 2010; Viant et al. 2007). In the

present study, LR and Miniature Schnauzer dogs in the

same environment and fed the same diets could not be

discriminated using fasted plasma metabolome data

(Fig. 1). As the plasma metabolome may better reflect

aspects of endogenous metabolism, in this pairwise com-

parison these observations may be used to suggest that

urine metabolome data, dominated by gut microbiota, are

more informative of breed-associated microbiota than of

breed genetics (Wang et al. 2007). However, breed effects

were seen, with CS being strongly discriminated from LR

and Miniature Schnauzer when modelling positive ioniza-

tion mode plasma data. This might not have been antici-

pated if size was a dominant feature as CS represented a

medium-sized dog, whilst LR represented larger, and

Miniature Schnauzers, smaller breed sizes. This may

indicate that, in this comparison, a breed effect may have

been dominant to a size effect.
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3.2 The plasma metabolome of client-owned dogs

can differentiate between breeds despite intra-

individual variation reflecting environmental

variability

As daily food intake results in acute changes to both urine

and blood metabolome in humans (Jin et al. 2011; Lloyd

et al. 2011a, b; Martinez-Lopez et al. 2014; Urpi-Sarda

et al. 2009), it was thought valuable to determine whether

uncontrolled dietary exposure would confound metabo-

lome modelling of breed differences. To determine whether

individuals maintained a relatively stable fasted plasma

metabolome or whether the metabolome was highly vari-

able and prone to environmental noise, multiple plasma

samples were taken from dogs over a period of several

months. To determine whether the plasma chemical fin-

gerprint of an individual dog within its normal home

environment was representative of that dog, triplicate

samples of nine Labrador Retriever (LR) and 10 Beagle

(Be) dogs, collected over a period of 3 months, were

analysed for inter- and intra- individual differences (see

electronic supplementary material S2 and S3 for dog

details).

Positive mode FIE-MS fingerprints were created and

subjected to PCA (Fig. 2a) followed by PC-LDA with

individual as the class structure (Fig. 2b). The majority of

the individual LR triplicate samples clustered at the level

of the individual in both PCA and PC-LDA. In comparison,

the scores plots of the Be triplicate samples showed

increased levels of intra-individual variation. Despite this

intra-individual variation, a trend of breed separation was

observed in both the unsupervised PCA and PC-LDA when

using individual rather than breed as a class structure.

Further, when the FIE-MS fingerprints were subjected to

PCA for each breed separately the % variance explained

by the first two PCs did not differ greatly between the LR

and Be (data not shown), suggesting similar amount of

intra-breed variance. This suggests that breed may be a

major driver of metabolome variance in client-owned dogs

and that single blood samples from individual dogs may be

sufficient to support studies characterising breed.

One possibility to explain similar intra-breed variance,

when intra-individual variance was greater in Be is that

although LR dogs consumed different diets, they did so

consistently through the week and samples just happened

to be collected on the same weekday. In comparison, the

majority of the Be dogs followed inconsistent daily diets: 6

of the 10 individuals consumed a dry diet 4–5 nights a

week, and consumed different ‘meaty’ meals on the other

nights; the diet of 2 other Be dogs changed occasionally

over the week. This variability was exacerbated by sam-

pling individual dogs on different weekdays. When FIE-

MS fingerprints of the Be dogs collected on different days

were subjected to PCA it was noted that the % variance

explained by the first two PCs increased dramatically for

the samples collected later in the week (data not shown).

Thus both inconsistent dietary patterns of the Be breed and

inconsistent sampling days may partly contribute to the

increased intra-individual variability compared with the LR

dogs. Despite this source of metabolome variability, clear
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Fig. 1 Principal Component-Linear Discriminant Analysis of Flow

Infusion Electrospray-ionization Mass Spectrometry (FIE-MS) fin-

gerprints (15–1200 m/z) of Labrador Retriever (LR), cocker spaniel

(CS) and Miniature Schnauzer plasma samples from the WCPN study

a positive ionization mode; b Negative ionization mode (1264

features). Where circle CS; triangle LR; plus Miniature Schnauzer.

Eigenvalues (Tw values) are given in brackets
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breed separation was still evident (Fig. 2b), suggesting that

the sampling method was adequate to determine whether

breed is a major driver of metabolome variance in client-

owned dogs.

3.3 Breed and gender-associated differences are

the main causes of variance in client-owned dogs

Having shown natural separation between Be and LR

breeds using randomly sampled fasting plasma obtained

from dogs maintained in an uncontrolled environment we

then sought to identify the main drivers of metabolome

variance in a wider range of breeds using client-owned

dogs. In addition to Be and LR, we introduced Ch, CS, Da,

GR, Gh, GS and Ma making the cohort up to 96 dogs

(electronic supplementary material S2 for dog details).

Seven different factors (age, body condition score, breed,

diet, gender, within gender sexual status and weight) were

used to classify plasma samples (electronic supplementary

material S4). Eigenvalues (Tw) were used as a classifica-

tion metric, with breed providing the largest discriminating

factor (Tw values[2) in data from both ionisation modes.

Weight and diet in both ionisation modes, together with

within gender sexual status in negative ionisation mode

were the only other classifiers resulting in near-to-adequate

models (Tw values 1.4–1.7). Pearson’s v2 test analysis was
performed to determine whether any of these meta-data

factors (prior to fingerprinting) were associated (electronic

supplementary material S5), which may have influenced

the discrimination evident in electronic supplementary

material S4. As expected, gender and within gender sexual

status were highly associated. A gender effect has been

previously observed in adult neutered dogs, as a secondary

driver of variance to breed in controlled environmental

conditions (Beckmann et al. 2010). As the numbers of

entire and neutered dogs were not balanced within or

between breed, further analysis into the effects of gender

and within gender sexual status were not investigated.

Breed, weight and diet were also reasonably associated

(p\ 0.0024), as expected considering the limited size

range within breed. From the breeds chosen in this study, it

is not possible to interrogate the association between

genetic similarity and size similarity, and it is not possible

to say whether genetics or physiology was the major

influence on the plasma metabolome.

The study design was amenable to investigations of the

effect of breed and diet and these were analysed further.

PC-LDA plots of plasma samples represented by FIE-MS

data using breed and diet class structures are shown in

electronic supplementary material S6. It was found that

individuals clustered by breed, which supports the view

that breed is an important driver of variance in the plasma

metabolome of client-owned dogs. However, only 3 of the

9 breeds (Ch, Ma and Gh) were consistently discriminated

from the majority of other breeds in the study (electronic

supplementary material S6 A and B). Two of the ‘small

breed dogs’ Ch and Da were similar, in that they both

clustered away from the other breeds on DF1 in both

positive and negative ionisation mode (electronic supple-

mentary material S6 A and B). Gh also separated from the
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Fig. 2 Principal component (PC) analysis followed by PC-linear

discriminant analysis of flow infusion electrospray-ionization mass

spectrometry (FIE-MS) fingerprints (15–1200 m/z) of Beagle (Be)

and Labrador Retriever (LR) from the UNE study a PCA, positive

ionization mode; b PC-LDA, positive ionization mode. Where Pink

denotes Be and black denotes LR and symbols represent triplicate

samples from the same dog. Eigenvalues (Tw values) are given in

brackets (Color figure online)
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other dog breeds, on DF2 in positive mode and DF1 in

negative mode. Random Forest (RF) margins, AUC values

and ACC modelling scores for all breeds were calculated,

in pair-wise comparisons (Table 1). In accordance with the

PC-LDA, only Ch, Da and Gh were discriminated from the

majority of other breeds. Ch appeared most different to the

other breeds: in comparisons with 7 of the 8 other breeds

the RF margin value was [0.2 in positive and negative

mode data and appeared most similar to Da. The plasma

metabolome of the Da and Gh breeds was able to be dis-

criminated from 6 of the other 8 breeds, with RF margin

values[0.2 in at least one ionisation mode (Table 1). The

plasma metabolome of the remaining breeds could not be

adequately discriminated from at least five other breeds

(RF margins \0.2, data not shown). Previous data from

urinary metabolome analysis in client-owned male dogs

distinguished the beagle as a distinct breed from those

others tested (Beckmann et al. 2010). Here, the beagle was

Table 1 Three ‘robustness’

output statistics Random Forest

(RF) classification ‘margin’,

area under the receiver

operating characteristic (ROC)

curve (AUC) and accuracy

(ACC) of flow infusion

electrospray-ionization mass

spectrometry (FIE-MS)

fingerprints (15–1200 m/z)

using ‘breed’ and ‘diet’ as the

class structure

Pair-wise comparison Positive Negative

ACC AUC RF margin ACC AUC RF margin

Ch vs. Be 0.89 0.98 0.49 0.9 1 0.51

Ch vs. CS 0.79 0.99 0.34 0.85 0.98 0.35

Ch vs. Da 0.69 0.9 0.13 0.76 0.93 0.18

Ch vs. Gh 0.79 0.97 0.37 0.86 0.98 0.42

Ch vs. GR 0.88 0.98 0.33 0.9 1 0.39

Ch vs. GS 0.9 1 0.46 0.93 1 0 47

Ch vs. LR 0.9 1 0.5 0.92 0.99 0.48

Ch vs. Ma 0.71 0.94 0.23 0.85 0.99 0.31

Da vs. Be 0.73 0.88 0.26 0.8 0.95 0.29

Da vs. Ch 0.69 0.9 0.13 0.76 0.93 0.18

Da vs. CS 0.72 0.87 0.17 0.75 0.93 0.2

Da vs. Gh 0.77 0.95 0.23 0.72 0.92 0.21

Da vs. GR 0.76 0.92 0.18 0.93 0.99 0.32

Da vs. GS 0.68 0.89 0.18 0.82 0.95 0.25

Da vs. LR 0.72 0.85 0.22 0.71 0.88 0.22

Da vs. Ma 0.71 0.87 0.13 0.77 0.94 0.16

Gh vs. Be 0.9 0.97 0.26 0.83 0.94 0.21

Gh vs. Ch 0.79 0.97 0.37 0.86 0.98 0.42

Gh vs. CS 0.85 0.97 0.19 0.85 0.95 0.2

Gh vs. Da 0.77 0.95 0.23 0.72 0.92 0.21

Gh vs. GR 0.88 0.96 0.25 0.93 0.99 0.36

Gh vs. GS 0.75 0.88 0.13 0.83 0.92 0.15

Gh vs. LR 0.73 0.84 0.12 0.8 0.91 0.16

Gh vs. Ma 0.87 0.98 0.22 0.86 0.98 0.23

4 vs. 1 0.72 0.81 0.28 0.74 0.94 0.33

4 vs. 2 0.67 0.75 0.1 0.74 0.83 0.15

4 vs. 3 0.67 0.73 0.08 0.7 0.77 0.1

4 vs. 5 0.72 0.83 0.1 0.75 0.86 0.14

4 vs. 6 0.67 0.58 0.17 0.68 0.73 0.18

4 vs. 7 0.72 0.72 0.22 0.72 0.73 0.22

4 vs. 8 0.71 0.42 0.14 0.69 0.64 0.18

4 vs. 9 0.67 0.72 0.18 0.7 0.87 0.22

Highlighted in bold are RF margin values[0.2; AUC[0.8; ACC[0.8

Breeds: Be Beagle, Ch Chihuahua, CS Cocker Spaniel, Da Dachshund, GR Golden Retriever, Gh Grey-

hound, GS German Shepherd, LR Labrador Retriever, Ma Maltese. Diets: 1, Dry; 2, Mince and dry; 3,

Mince, dry and bones/meat; 4, Mince, dry and scraps; 5, Mince, dry, meat/bones and scraps; 6, Mince, dry

and meat; 7, Dry, bones and meat; 8, Dry, bones, meat and scraps; 9, Meat and bones
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not readily discriminated from the majority of other breeds

using mass spectral fingerprinting of plasma. Assuming

that the urinary metabolome is dominated by metabolic

activity of the gut microbiota and the plasma metabolome

is dominated by host physiology, this observation may be

interpreted to suggest that beagles have a unique gut

microbiota, contributing to the differences observed

previously. However, other factors exist, including that the

breeds used in the comparison were not the same and that

the genetic heritage of US and Australian beagles may be

different.

When ‘diet’ was used as the class structure in a PC-LDA

(electronic supplementary material S6 C and D) only diet 5

(Mince, dry food, meat/bones and scraps) and diet 4

(D)
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w
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(B)

x10-3

x10-3

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5

Positive Negative

ACC AUC RF 
margin ACC AUC RF 

margin

LR-W vs CS-W 0.98 1.00 0.41 0.78 0.91 0.12
LR-U vs CS-U 0.85 0.91 0.20 0.66 0.78 0.06

LR-U vs LR-W 0.97 0.99 0.36 0.86 0.95 0.19
CS-U vs CS-W 0.98 1.00 0.44 0.76 0.88 0.09

(C)

(E)

(F)

(G)

Fig. 3 Flow Infusion Electrospray-ionization Mass Spectrometry

(FIE-MS) fingerprints (15–1200 m/z) of fasting plasma samples from

Labrador (LR) and Cocker Spaniel CS from the WCPN (W) and UNE

(U) study a Principal Component (PC) Analysis, positive ionization

mode where circle CSW; triangle LRW; plus CSU; crossmark LRU.

Eigenvalues (Tw values) are given in brackets; b PC-Linear

Discriminant Analysis, positive ionization mode. Eigenvalues (Tw

values) are given in brackets; c Random Forest (RF) classification

‘margin’, area under the ROC (receiver operating characteristic)

curve (AUC) and accuracy (ACC). Highlighted in grey are RF margin

values [0.2; AUC [0.8; ACC [0.8; Hierarchical cluster analyses

(HCA) based on the correlation coefficient (Pearson correlation

method) and box-plots of the top discriminatory features in the

WPCN study and UNE study d HCA of a cluster 1 with a box plot of

m/z 518.63; e HCA of a cluster 2 with a box plot of m/z 136.18;

f HCA of a cluster 3 with a box plot of m/z 280.36; g HCA of a cluster

4 with a box plot of m/z 299.36. TIC, Total ion count
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(Mince, dry food and scraps) had a discernible impact on

the plasma metabolome (clustering on opposite sides of the

PC-LDA plot: S6C and D). However, these data need to be

interpreted with care in relation to diet 5 as 11 of the 12

dogs following this diet were of a single breed (Gh), which

accounted for the significant p-value in electronic supple-

mentary material S5. In contrast, a number of breeds were

exposed to diet 4 which reflects the large degree of meta-

bolome variance associated with this factor. RF margins,

AUC values and ACC modelling scores for the pair-wise

comparisons of diet 4 with the other 8 diets are shown in

Table 1. The plasma metabolome of dogs following diet 4

(Mince, dry food and scraps) appeared statistically differ-

ent to diet 1 (Dry food) and diet 9 (Meat and bones), thus it

could be suggested that the metabolome differences seen

here could be attributed to the intake of table scraps.

Regarding the impact of diet on the fasted plasma meta-

bolome the data indicate that variance due to the diet (al-

beit in a subjective and complex class structure) explained

less of the variance than breed in both positive and negative

ion spectra. We conclude that whilst diet was a con-

founding factor for both intra-individual reproducibility

and inter-breed comparisons, it was not dominant to the

breed effect in this study. Other factors that may need to be

considered as important to control in future studies include

gender, within gender sexual status and weight, whilst age

and body condition score were not considered significant

drivers of variance within this cohort.

3.4 Environmentally robust plasma metabolome

differences exist between dog breeds

We next sought to investigate whether breed information is

sufficiently dominant to be consistent between dogs fed the

same diet in a controlled environment and client-owned

dogs, with the added variance of diet, sexual status and

environment. Two breeds, LR and CS were common to

both the WCPN (controlled) and UNE (client-owned)

studies.

For this comparison, data from FIE-MS fingerprints

were subjected to PCA followed by PC-LDA. The data

indicated that the differences between the samples derived

from the two sites (UNE vs WCPN) were the main source

of variance (Fig. 3a–c). The discrimination between LR

and CS was evident in the second dimension of the PC-

LDA (Fig. 3b) and despite the large environmental effect,

breed differences were still adequate (Tw[ 2.0) in this

dimension.

Three ‘robustness’ output statistics (ACC, AUC values

and RF margins) of metabolite fingerprinting data derived

from analysis of plasma from the two WCPN dog breeds

are shown in Fig. 3c. High values indicate excellent

Table 2 Identification of signals explanatory of the Labrador Retriever breed by Fourier Transform-Ion Cyclotron Resonance Ultra Mass-

Spectrometry (FT-ICR-MS) and Flow Infusion Electrospray-Ionization Tandem Mass Spectrometry (FIE-MSn)

Nominal

mass

Accurate mass

using

FT-ICR-MS

Identification confirmed with

FIE-MSn
Molecular formula and ionization product Calculated

mass

PPM

D

518.63 518.3224 PC(0:0/16:0) or PC(O-14:0/2:0) C24H50NO7P & [M ? Na]1? =C24H50NNaO7P 518.32171 1.3

519.63 519.32561 13C isotope of PC(0:0/16:0) or PC(O-

14:0/2:0)

C24H50NO7P & [M ? Na]1? =13C isotope

C24H50NNaO7P

519.32507 1.03

534.63 534.29617 PC(0:0/16:0) or PC(O-14:0/2:0) C24H50NO7P & [M ? K]1?=C24H50NKO7P 534.295651 0.98

546.63 546.353575 PC(0:0/18:0) or PC(O-16:0/2:0) C26H54NO7P & [M ? Na]1? =C26H54NNaO7P 546.35301 1.03

547.63 547.356445 13C isotope of PC(0:0/18:0) or PC(O-

16:0/2:0)

C26H54NO7P & [M ? Na]1? =13C isotope

C26H54NNaO7P

547.35637 0.14

562.63 562.327388 PC(0:0/18:0) or PC(O-16:0/2:0) C26H54NO7P & [M ? K]1? =C26H54KNO7P 562.32695 0.78

548.72 548.34718 PC(O-18:0/0:0) or PC(O-16:0/O-2:0) C26H56NO6P & [M ? K]1? =C26H56KNO6P 548.34769 0.92

544.63 544.34034 PC(20:4/0:0) C28H50NO7P & [M ? H]1? =C28H51NO7P 544.33979 1.06

545.63 545.34374 13C isotope of PC(20:4/0.0) C28H50NO7P & [M ? H]1? =13C isotope

C28H51NO7P

545.34312 1.13

Metabolites have been putatively annotated to MSI level 2 without chemical reference standards, based upon physicochemical properties and/or

spectral similarity with public/commercial spectral libraries

PC phosphatidylcholine. PPMD parts per million difference
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discrimination between LR and CS in positive mode FIE-

MS data for both the WCPN and UNE study (Fig. 3c),

despite a large environmental effect between the two

studies and a large degree of environmental variance within

the UNE study. Identification of metabolites that discrim-

inated between breeds under such different environmental

conditions was considered to indicate breed-associated

functional differences. The top ranked signals discrimi-

nating between CS and LR in the WCPN and UNE study

(p value \0.05 and RF Importance Score [0.002) were

identified (data not shown). Several clusters of signals

appeared to strongly discriminate between the breeds in

both studies (Fig. 3d–g), some of which were increased in

intensity in LR plasma (Fig. 3d–e) and some which were

increased in intensity in CS (Fig. 3f–g). The LR-specific

cluster 2 (Fig. 3d–e) was most probably an [M ? K]1?

adduct (m/z 152.18) and an [M ? Na]1? adduct (m/z

136.18) due to the difference of nominal mass m/z 16, plus

another correlated adduct (m/z 196.09). The two CS

specific clusters (Fig. 3f–g) consisted of parent molecules

and corresponding 13C isotopes (nominal mass difference

1 m/z). The cluster with the highest number of correlated

signals was cluster 1 (Fig. 3d), so we selected these signals

and annotated them in greater detail.

Using Fourier Transform-Ion Cyclotron Resonance

Ultra Mass Spectrometry (FT-ICR-MS) and Flow Infusion

Electrospray-Ionization Tandem Mass Spectrometry (FIE-

MSn) coupled with the signal annotation tool MZedDB

(Draper et al. 2009) and spectral libraries ((Lipid Maps,

HMDB, Metlin and Massbank (Horai et al. 2010; Sana

et al. 2008; Sud et al. 2007; Wishart et al. 2009)) the sig-

nals in cluster 1 were putatively annotated to MSI level 2 as

adducts and isotopes of four structurally related phos-

phatidylcholines (Table 2). Phosphatidylcholines are pre-

dominantly structural lipids important in plasma

membranes and lung surfactants as well as being major

components in lipoproteins. Inter-breed differences in

lipoproteins have been identified, with LR having partic-

ularly high levels of Low Density Lipoproteins and low

levels of High Density Lipoproteins (Downs et al. 1993;

Pasquini et al. 2008) compared to other dog breeds in those

studies, though CS were not included. In other reports,

breed differences in phosphatidylcholines in pulmonary

surfactants have been identified in Be and Gh (Clercx et al.

1989). The breed difference was considered to be a likely

consequence of selection for the Gh for specific athletic

attributes (for example, improved ventilation to perfusion

matching). It is possible to speculate that the identification

of phosphatidylcholine as a robust marker of breed dif-

ference may indicate differences in lipid metabolism and

lipid functionality between breeds. This finding parallels

work which identified a group of lipids showing high inter-

(3) PC(O-18:0/0:0)- m/z 548.72                                             or PC(O-16:0/O-2:0)

Chain elongation +C2H4

Reduction -O +H2

Chain elongation 
(+C2) and 
desaturation (4 
double bonds )

Chain elongation (+C2), 
oxidation (O) and 
desaturation (4 double 
bonds).

(1) PC(0:0/16:0)- m/z 518.63, 519.63 and 534.63                or PC(O-14:0/2:0)

(2) PC(0:0/18:0)- m/z 546.63, 547.63, 562.63           or PC(O-16:0/2:0)

(4) PC(20:4/0.0)- m/z 544.63, 545.63

Fig. 4 The biochemical relationships between the phosphatidylcholines (PC) in cluster 1
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individual variance within individuals of both dogs and

cats (Colyer et al. 2011). The structural similarities and

possible biochemical relationships are shown in Fig. 4. A

comprehensive lipidomics analysis may in the future

establish whether other elements of lipid biology are dif-

ferent between breeds.

4 Concluding remarks

To summarise, a data-driven, non-targeted metabolomic

analysis of plasma from various dog breeds in different

locations and fed different habitual diets has enabled us to

establish that factors associated with breed and gender

were the main drivers of variance in fasted plasma. We use

these observations to suggest that the metabolite fingerprint

of an individual is primarily a function of size and genetics

and that environmental factors can confound these physi-

ological elements. Future studies may consider the impli-

cations of these findings in relation to developing an

evidence base to help determine the specific nutritional

requirements of different dogs.
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