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Abstract: Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis
of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been
characterized. Here, we constructed an in-frame deletion mutant of psgrx (∆psgrx). Mutant ∆psgrx
was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of
ANT206. Mutant ∆psgrx also had more malondialdehyde (MDA) and protein carbonylation content,
suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast
two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore,
two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC),
were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular
fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could
enhance GR activity. trxR expression in ∆psgrx, ∆ahpc, and ANT206 were illustrated 3.7, 2.4, and
10-fold more than mutant ∆psgrx ∆ahpc, indicating that PsGrx might increase the expression of trxR
by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and
ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings
preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the
low-temperature tolerance of ANT206.
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1. Introduction

Glutaredoxin (Grx), which is widely distributed in the cells of bacteria, plants, and
mammals, is a general glutathione–disulfide reductase of importance in redox regulation.
Grxs can be broadly separated into two highly abundant major subfamilies, which are
termed class I and II Grxs. Those in class I present the oxidoreductase activity, which control
a variety of protein thiol redox homeostasis; these typically include dithiol enzymes with
two active-site cysteine residues [1]. A class II Grxs play a role in regulating iron (Fe)
metabolism as well as the maturation of the iron–sulfur protein [2,3]. Reversible redox mod-
ification of proteins is considered to be an important regulatory mechanism in organisms.
Many signal molecules and transcription factors function through changes in the redox
state of proteins [4]. Adverse stress often triggers the production of reactive oxygen species
(ROS) in an organism, which changes the redox state in the cell. As an important thiol
disulfide bond oxidoreductase in the cell, Grxs play a significant part in the regulation of
the intracellular redox balance and the process of resisting oxidative stress damage, which
has become a hot scientific topic [5]. In recent years, Grxs from plants have emerged as key
regulators during stress. The transcript levels of rice Grx20 significantly respond to salt
treatment [6]. Brassinosteroid-mediated apoplastic H2O2-glutaredoxin cascade regulates
antioxidant capacity in response to chilling in tomato [7]. In addition, the overexpression
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of an Arabidopsis monothiol glutaredoxin AtGRXS17 improves response to heat stress in
chrysanthemum [8]. Iron–sulfur GrxS17 activates holdase activity and protects plants from
heat stress [9]. Furthermore, Grxs from other organisms also possess ability to resistance
stress. Grx from Synechocystis sp. PCC 6803 may provide protection to E. coli cells against
oxidative stress [10]. Grx from yeast Saccharomyces cerevisiae is required for protection
against ROS [11]. Grx in yeast plays distinct roles during normal cellular growth and in
response to stress conditions [12], and the disruption of Grx causes oxidative damage and
growth defects of Candida albicans [13]. Moreover, human Grx has the potential to regulate
iron homeostasis via delivery of a cluster to iron regulatory proteins [14]. However, the
regulatory mechanism of bacterial-derived Grxs under oxidative stress is still unclear.

Antarctica is considered the driest, windiest, and coldest place on Earth; it is com-
pletely isolated, geographically and thermally, from the other continents [15]. Biological
systems in Antarctica are unavoidably affected by changes in ambient temperature, which
interfere with the state of metabolism and cellular signal processing [16]. In fact, the drastic
changes in temperature in Antarctic habitats cause the production of hydroxyl free radicals
and ROS, which have a negative impact on the survival of microbial cells, such as damaging
proteins, lipids, and DNA, resulting in cell death [17,18]. Antioxidant enzymes start to
work to remove ROS, and they are gradually being tapped. Glutathione S-transferase from
Antarctic bacteria shows its protective effects against oxidative stresses [19]. Superoxide
dismutase and ascorbate peroxidase from Antarctic microorganisms have also been identi-
fied [20]. The psychrophile Psychrobacter, a typical strain in Antarctica, contains antioxidant
enzymes such as nitroreductase and glutathione reductase [21,22]. Recently, Grx from
Antarctic Psychrobacter sp. ANT206 (PsGrx) was reported [23]. The optimal temperature
for PsGrx activity is 25 ◦C, and the enzyme retains almost 40% residual activity at even
0 ◦C, demonstrating that it is a cold-adapted enzyme. Importantly, PsGrx protects super-
coiled DNA from oxidation-induced damage under low temperature. The objective of
the present study was to further elucidate the functions and interactions of PsGrx from
Psychrobacter sp. ANT206 in low temperature. We constructed an in-frame deletion mutant
strain of psgrx, ahpc, and double deletion mutant, yeast two-hybrid (Y2H) and bimolecular
fluorescence complementation (BiFC) were applied to test and verify the target proteins
of PsGrx. The results suggest a function of Grx in microbial cold adaptation from the
perspective of renewal.

2. Results and Discussion
2.1. Construction and Analysis of the Deletion Mutant ∆psgrx

According to the schematic diagram of the in-frame gene deletion mutant strain
construction process of psgrx in ANT206 (Figure 1), the ∆psgrx gene sequence (data not
shown), and the results shown in Figure 2A, a segment of 90 bp was deleted in psgrx ORF,
and an in-frame deletion mutation gene with a length of 174 bp was identified. Subse-
quently, the mutant ∆psgrx was successfully constructed via homologous recombination
and screened by 10% sucrose sensitivity and kanamycin resistance. The mutant ∆psgrx
was capable of inheriting more than 30 generations (Figure 2B), indicating that it possessed
good hereditary and stable kanamycin resistance.

2.2. PsGrx Positively Regulates the Response to Low Temperature

This study further examined the differences in the growth values of ANT206 and
the mutant ∆psgrx under low temperature (Figure 3A). The cell density values of wild-
type ANT206 and mutant ∆psgrx were similar under normal culture conditions (15 ◦C),
indicating that psgrx was not essential to strain ANT206 survival. Compared to ANT206,
the mutant ∆psgrx exhibited a slower growth rate under low temperature, suggesting that
it was more sensitive to temperature than the wild type. The maximum specific growth
rates (µmax) and generation time (GT) of mutant ∆psgrx compared with ANT206 for each
condition was illustrated in Figure 3B,C. It can be seen that µmax and GT were affected by
temperature; these two strains showed a similar growth rate at 15 ◦C, and the value of
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µmax was higher in ANT206 than mutant ∆psgrx at low temperatures, indicating that psgrx
deletion impaired low-temperature growth. Furthermore, a previous study had used the
value of µmax to evaluate the growth of mutant strains and analyzed the effect of deleted
genes of Saccharomyces cerevisiae under low temperature [24]. Meanwhile, the µmax of the
Saccharomyces strains grown at 15 ◦C was also analyzed [25]. The above findings indicated
that psgrx was conducive to the growth of ANT206 under low temperature.
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Figure 2. (A) Electrophoresis detection of the mutant ∆psgrx fragment. 1, PCR product of mutant
∆psgrx fragment; M, DL2000 DNA marker; (B) The colony electrophoresis detection of the subcultured
mutant ∆psgrx. M, DL2000 DNA marker; 1, ∆psgrx fragment; 2–7, PCR products of 5, 10, 15, 20, 25,
and 30 generations colonies, respectively.

MDA is an end product of oxygen free radicals reacting with unsaturated fatty acids in
the cell membrane, and it is commonly employed as a marker of lipid peroxidation [26]. Its
content can reflect the severity of cell damage; as the cells are damaged by ROS, the content
of MDA increased [27]. Similarly, protein carbonylation content is regarded as a biomarker
of oxidative stress [28]. Low-temperature treatment increased the MDA content both
in ANT206 and the mutant ∆psgrx (Figure 3D), which is the phenomenon reported for
wheat leaves [29]. Furthermore, the content of MDA and protein carbonylation content
were higher in the deletion mutant ∆psgrx (Figure 3E), indicating that the deletion of
psgrx could cause an imbalance of oxidative metabolism in the bacteria, thus weakening
the tolerance to low temperature. Taken together, these results indicated that psgrx was
considered to be involved in low-temperature regulation and acted as a positive regulator
of low-temperature tolerance to ANT206.
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Figure 3. (A) The growth curves of wild-type ANT206 (WT) and mutant ∆psgrx under 5, 10, and
15 ◦C. (B) The maximum specific growth rates (µmax) of WT and mutant ∆psgrx under 5, 10, and
15 ◦C. Asterisks indicate significant differences compared with WT at 15 ◦C (* p < 0.05; ** p < 0.01).
(C) The generation time (GT) of WT and mutant ∆psgrx under 5, 10, and 15 ◦C. Asterisks indicate
significant differences compared with WT at 15 ◦C (* p < 0.05; ** p < 0.01). (D) Effect of MDA level of
WT and mutant ∆psgrx under 5, 10, and 15 ◦C. Asterisks indicate significant differences compared
with WT strains at 15 ◦C (* p < 0.05; ** p < 0.01). (E) Effect of protein carbonylation content of WT and
mutant ∆psgrx under 5, 10, and 15 ◦C. Asterisks indicate significant differences compared with WT at
15 ◦C (* p < 0.05; ** p < 0.01).

2.3. Screening for Proteins That Interact with PsGrx

In order to understand the mechanism of how PsGrx regulated the low-temperature
stress response in ANT206, the relationship between the psgrx and the target proteins was
studied. The yeast two-hybrid system is an effective assay for studying protein–protein
interactions [30,31]. Here, it was used to find proteins that potentially bind to PsGrx.
Colony counts of 1440, 242, and 22 were successfully transformed and grown on plates
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with dilutions of 1:10, 1:100, and 1:1000, respectively. The transformation efficiency was
calculated to be 3.23× 104/ug. The average insertion length of the library was about 1.2 kbp
(Supplementary Materials Figure S1), the positive clone rate exceeded 95%, and the library
capacity was 1.15 × 107 CFU.

Autoactivation was tested before screening with psgrx as bait. As shown in Figure 4,
strains grew on SD-TL-deficient plates. Six colonies of each group were randomly selected
and transferred to SD-TLHA+X-α-Gal-defective plates. The pGADT7 + pGBKT7-PsGrx and
negative control did not grow, while the positive control grew. Taken together, these results
confirmed that pGADT7 and pGBKT7-PsGrx did not activate the reporter genes (HIS3,
ADE2 and MEL1) autonomously when expressed in Y2H Gold yeast cells, suggesting that
the plasmids were suitable for using in Y2H screening.
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Figure 4. Determination of the auto-activation activity of PsGrx baits in yeast cells. The colonies
growing in the SD-TL (SD/-Leu/-Trp) agar plate indicate that the plasmid is successfully introduced
into yeast cells, and the blue colonies that can grow in the SD-THLA (SD/-Ade/-His/-Leu/-Trp)+X-
α-Xal agar plate can be auto-activated. pGADT7-LargeT + pGBKT7-p53 was negative control, and
pGADT7-LargeT and pGBKT7-LaminC was positive control.

Thirty blue colonies were obtained through Y2H screening (Figure 5). The complete
sequences of 26 colonies were obtained. The putative targets, including stress response,
translation, Calvin cycle, sulfur metabolism, nitrogen metabolism, protein secretion, RNA
metabolism, and protein synthesis, to name a few, are listed in Table 1. Glutathione reductase
(GR), a member of the Grx system, plays roles in oxidative stress [32], as does glutathione
peroxidase. Alkyl hydroperoxide reductase (AhpC) scavenges a variety of peroxides, ROS,
and nitrogen and sulfur species [33]. Proteins relate to the Calvin cycle and associated
reactions are also targeted by Grx and Trx in plants [34,35]. The sulfur metabolism-related
protein methionine synthase and cysteine synthase were also screened. Among these
potential interacting proteins, there were several new targets of Grx. GspI is involved in
protein secretion across the membrane in Gram-negative bacteria [36]. Furthermore, the
DNA translocase FtsK helps coordinate cell division with DNA unlinking and segregation,
which influences cell cycle regulation. RNase E, which functions in the degradation of
mRNA, is a member of the RNase E/G family protein. In Escherichia coli, it is involved in
the dominant pathways of mRNA transcript decay and RNA metabolism [37,38]. Protein
synthesis involves the AarF/Abc1/UbiB kinase family proteins. Above all, the interactions
between these proteins and PsGrx suggest that PsGrx might play a vital role in the regula-
tion of biological processes. All proteins identified will not be described here, but emphasis
will be made about stress-related reactions and new targets. Next, stress-related targets
(GR, glutathione peroxidase and AhpC) and new targets (GspI, FtsK and RNase E) were
selected for further identification.
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Figure 5. Positive Y2H interaction between PsGrx, as bait, and cDNA library of ANT206 as prey. In
both Y2H assays, positive interactions are indicated by cell color on TL (SD/-Leu/-Trp) and TLHA
(SD/-Ade/-His/-Leu/-Trp) + X-α-Xal agar plates. “+”: positive; “-”: negative.

Table 1. Putative interaction proteins identified by Y2H assay.

Gene Number Gene Name Functional Class

1 Glutathione reductase Stress-related reactions
2 Glutathione peroxidase Stress-related reactions
3 Alkyl hydroperoxide reductase Stress-related reactions
4 DNA photolyase DNA modification
5 Aldehyde dehydrogenase Biosynthesis
6 Translation elongation factor Translation
7 Nucleoside diphosphate kinase Translation
8 Glyceraldehyde 3-phosphate dehydrogenase Glycolysis
9 Transketolase Calvin cycle; associated reactions
10 Fructose-1,6-bisphosphatase Calvin cycle; associated reactions
11 Triosephosphate isomerase Calvin cycle; associated reactions
12 Fructose-bisphosphate aldolase Calvin cycle; associated reactions
13 Phosphoglycerate kinase Calvin cycle; associated reactions
14 Carbonic anhydrase Calvin cycle; associated reactions
15 Methionine synthase Sulfur metabolism
16 Cysteine synthase Sulfur metabolism
17 Aminotransferase Nitrogen metabolism
18 GspI Protein secretion
19 DNA translocase FtsK DNA transportation; cell division
20 RNase E RNA metabolism; transcription
21 AarF/Abc1/UbiB kinase family protein Fatty acid metabolism; protein synthesis
22 peptidoglycan-binding protein LysM Cell separation
23 ATP synthase α chain ATP metabolism
24 Methyltransferase small domain Hypothetical protein
25 Thioesterase Hypothetical protein
26 Transglutaminase-like domain Hypothetical protein

2.4. PsGrx Interacts with GR and AhpC

The results of BiFC are illustrated in Figure 6, the fluorescence signal was observed
when GR and AhpC fused with the C-terminal of YFP and PsGrx fused with the N-terminal
of YFP (PsGrx-YN) were transiently co-expressed. In controls, no fluorescence signal was
observed when PsGrx-YN and target protein-YC were co-expressed with the YN and YC
empty vector, respectively. These results demonstrated that PsGrx physically interacted
with GR and AhpC. However, there is no interaction between PsGrx and four other targets.
In parallel, we conducted a Co-IP assay using co-expressed PsGrx and target proteins in
Nicotiana benthamiana. As expected, the results verified the interaction between PsGrx and
GR, PsGrx, and AhpC (Figure 7). Together, these results clearly demonstrated that PsGrx
directly interacted with GR and AhpC. Therefore, these two target proteins were selected
for further analyses.



Int. J. Mol. Sci. 2022, 23, 1313 7 of 16

Int. J. Mol. Sci. 2022, 23, 1313 7 of 17 
 

 

2.4. PsGrx Interacts with GR and AhpC 

The results of BiFC are illustrated in Figure 6, the fluorescence signal was observed 

when GR and AhpC fused with the C-terminal of YFP and PsGrx fused with the N-termi-

nal of YFP (PsGrx-YN) were transiently co-expressed. In controls, no fluorescence signal 

was observed when PsGrx-YN and target protein-YC were co-expressed with the YN and 

YC empty vector, respectively. These results demonstrated that PsGrx physically inter-

acted with GR and AhpC. However, there is no interaction between PsGrx and four other 

targets. In parallel, we conducted a Co-IP assay using co-expressed PsGrx and target pro-

teins in Nicotiana benthamiana. As expected, the results verified the interaction between 

PsGrx and GR, PsGrx, and AhpC (Figure 7). Together, these results clearly demonstrated 

that PsGrx directly interacted with GR and AhpC. Therefore, these two target proteins 

were selected for further analyses. 

 

Figure 6. Bimolecular fluorescence complementation assay of the interaction between PsGrx and 

GR (A), PsGrx and AhpC (B) in Nicotiana benthamiana leaves. PsGrx, GR and AhpC were fused with 

N- or C-terminal of YFP in vector, respectively. PsGrx-YN&YC, GR-YC&YN, AhpC-YC&YN and 

YN&YC were used as the negative controls. 

 

Figure 7. Interaction of PsGrx and GR or AhpC in co-immunoprecipitation assays. PsGrx with a 

hemagglutinin (HA) tag, and (A) GR or (B) AhpC with a Flag tag co-expressed in Nicotiana bentham-

iana, which were immunoprecipitated using anti-HA and analyzed by protein gel blot analysis. 

To assess whether GR and AhpC were regulated by PsGrx in response to low-tem-

perature stress, the level of gr and ahpc expression was quantified in wild-type ANT206 

and mutant Δpsgrx. qRT-PCR analysis was performed to illustrate the expression patterns 

of target proteins under low temperature. As shown in Figure 8, the enhanced expression 

of psgrx in the 5 °C treatment demonstrated that the expression of psgrx was significantly 

induced by low temperature. The expression of gr and ahpc was significant enhanced de-

pendent of temperature, indicating that gr and ahpc were also sensitive to temperature. In 
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YN&YC were used as the negative controls.
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Figure 7. Interaction of PsGrx and GR or AhpC in co-immunoprecipitation assays. PsGrx with
a hemagglutinin (HA) tag, and (A) GR or (B) AhpC with a Flag tag co-expressed in Nicotiana ben-
thamiana, which were immunoprecipitated using anti-HA and analyzed by protein gel blot analysis.

To assess whether GR and AhpC were regulated by PsGrx in response to low-temperature
stress, the level of gr and ahpc expression was quantified in wild-type ANT206 and mutant
∆psgrx. qRT-PCR analysis was performed to illustrate the expression patterns of target
proteins under low temperature. As shown in Figure 8, the enhanced expression of psgrx in
the 5 ◦C treatment demonstrated that the expression of psgrx was significantly induced by
low temperature. The expression of gr and ahpc was significant enhanced dependent of
temperature, indicating that gr and ahpc were also sensitive to temperature. In addition, gr
and ahpc expression were lower in the mutant ∆psgrx than in the wild type, which indicated
that gr and ahpc was regulated by psgrx. These results demonstrated that the expressions of
psgrx, gr, and ahpc were all induced by temperature, and psgrx enhanced the expression of
gr and ahpc.
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2.5. PsGrx Is Participated in Glutathione Metabolism by Enhancing GR Activity

GR participates in the ascorbate-glutathione cycle which involves the antioxidant
metabolites, such as ascorbate, glutathione, NADPH, and the enzymes linking these
metabolites. It is worth noting that GR is one of glutathione metabolism parameters [39].
To analyze whether PsGrx is participated in glutathione metabolism, the activity of GR was
measured in wild-type and mutant ∆psgrx. Under low-temperature suffering, the activity
of GR was decreased (Figure 9), while the GR activity in Phalaenopsis seedlings was induced
by low temperature [40]. GR activity was higher in WT than mutant ∆psgrx, demonstrating
that PsGrx could enhance GR activity. Furthermore, psgrx enhanced the expression of gr
(Figure 8). Therefore, PsGrx might participate in glutathione metabolism by enhancing the
activity and expression of GR at low temperature.
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2.6. PsGrx Is Involved in ROS-Elimination Pathway by Regulating AhpC

Analysis of genes from the oxidative stress-defense pathway encoding thioredoxin
reductase (TrxR) is able to indicate whether they are participating in ROS elimination [41].
Since AhpC is involved in the ROS-elimination pathway [41] and interacts with PsGrx
during the response of ANT206 to low temperature, we hypothesized that PsGrx might
affect the function of AhpC in this process. To test this hypothesis, in-frame deletion
mutant ∆ahpc (450 bp) and double deletion mutant ∆psgrx ∆ahpc, which demonstrated good
hereditary stability, were constructed (Figure 10). Subsequently, we analyzed the expression
of trxR in wild-type ANT206, mutant ∆psgrx, ∆ahpc, and ∆psgrx ∆ahpc (Figure 11). The
expression levels of trxR in wild-type and mutant were increased at 5 and 10 ◦C, indicating
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that the expression of trxR was induced by low temperature. The expression of both trxR
in Apis mellifera L. and Apis cerana F. rapidly also increased after exposure to 4◦C, with
a stronger effect induced by cold stress [42]. At 5 ◦C, the expression of trxR in mutant
∆psgrx and ∆ahpc was higher than ∆psgrx ∆ahpc, which demonstrated that ahpc and psgrx
both possessed the ability to enhance trxR expression. Similarly, ahpc in Bifidobacterium
longum strain NCC2705 also increased the expression of trxR [41]. Importantly, the trxR
expression in ∆psgrx, ∆ahpc, and wild-type ANT206 showed 3.7, 2.4, and 10-fold more than
mutant ∆psgrx ∆ahpc at 5 ◦C, respectively, the trxR expression fold in wild-type ANT206
was higher than the sum of the other two deletion mutants. The possible reason for this
phenomenon was that PsGrx interacted with AhpC, which increased the expression of trxR.
Therefore, PsGrx could increase the expression of trxR by regulating AhpC.
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Figure 10. (A) The electrophoresis detection of the mutant ∆ahpc fragment. 1, PCR product of ahpc
fragment; 2, PCR product of mutant ∆ahpc fragment; M, DL2000 DNA marker. (B) The colony
electrophoresis detection of the subcultured mutant ∆ahpc. M, DL2000 DNA marker; 1, ∆ahpc; 2–7,
PCR products of 5, 10, 15, 20, 25 and 30 generations colonies, respectively. (C) The electrophoresis
detection of the double deletion mutant ∆psgrx ∆ahpc fragment. 1–3, PCR product of mutant ∆psgrx
∆ahpc fragment; M, DL2000 DNA marker. (D) The colony electrophoresis detection of the subcultured
mutant ∆psgrx ∆ahpc. M, DL2000 DNA marker; 1, ∆psgrx ∆ahpc; 2–7, PCR products of 5, 10, 15, 20, 25
and 30 generations colonies, respectively.

The hypothetical regulation pattern of PsGrx in cells is illustrated in Figure 12. Oxida-
tive stress, arising from excessive accumulation of ROS, can be induced by low temperature.
Deletion psgrx impaired low-temperature growth of mutant ∆psgrx and psgrx was consid-
ered to be involved in low-temperature regulation and positively regulated the response
to low temperature to ANT206 (Figure 3). Similar mechanisms have been described in
Saccharomyces cerevisiae; mutants of the genes involved on the main antioxidant response
pathways were constructed, and a comparison of the µmax of the mutants with each parental
strain under low temperature was also illustrated [24]. PsGrx interacted with GR and AhpC,
psgrx was capable of enhancing the expression of gr and ahpc (Figure 8). Furthermore, PsGrx
could be involved in glutathione metabolism by enhancing the expression and activity
of GR (Figure 9); the interaction between PsGrx and AhpC enhanced the expression of
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trxR, indicating that PsGrx might participate in the ROS-elimination pathway by regulating
AhpC (Figure 11) to protect ANT206 from low-temperature stress.
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Figure 11. qRT-PCR analysis of trxR expression under low temperature in wild-type ANT206 (WT),
mutant ∆psgrx, ∆ahpc and ∆psgrx ∆ahpc. The expression of trxR is a multiple of the 16S rRNA
expression of the internal reference gene. Data presented are means ± SD from three indepen-
dent experiments; asterisks indicate significant differences compared with WT at 15 ◦C (* p < 0.05;
** p < 0.01).
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3. Conclusions

Low temperature is a major stress that adversely affects microbial growth in the Antarc-
tic, and unraveling the adaptation mechanisms of Antarctic microorganisms has always
been a matter of interest. In this study, Antarctic psychrophile Psychrobacter sp. ANT206 was
used as materials; deletion mutation, yeast two-hybrid, and qRT-PCR were used to study
the function of PsGrx. The results showed that psgrx improved the tolerance of ANT206
to low temperature. In addition, several target proteins that interacted with PsGrx were
screened and identified. Among the target proteins, GR and AhpC were regulated by PsGrx
under low temperature. Taken together, the data PsGrx may participate in glutathione
metabolism and the ROS-elimination pathway by regulating GR and AhpC under low
temperature to improve the growth of ANT206. Studying the regulatory function of PsGrx
would provide valuable insights into understanding complex cellular physiologies such
as stress responses. The findings also provide a novel understanding of low-temperature
adaptation in microorganisms.
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4. Materials and Methods
4.1. Strains and Material

The wild-type strain Psychrobacter sp. ANT206 was isolated from the Antarctic sea-ice.
ANT206, the deletion mutant ∆psgrx, ∆ahpc and double deletion mutant ∆psgrx ∆ahpc were
all cultured in 2216E medium under environmental conditions of 15 ◦C and pH 7.5. At
37 ◦C, auxotrophic Escherichia coli (E. coli) WM3064 and E. coli WM3064 that contained the
suicide plasmid pRE112 were cultured in the LB medium that had a pH value of 7.0 and
contained meso-2,6-diaminopimelic acid (DAP) of 50 µg/mL. E. coli S17-1, and E. coli S17-1
that contained the suicide plasmid pDS132 were cultured in the LB medium. The above
strains were maintained in our laboratory. Strain AH109, Y2H, and related plasmids used
in a Y2H assay were purchased from the Beijing Genomics Institute (BGI, Beijing, China).
All other reagents were acquired from Sinopharm (Beijing, China), and were of analytical
grade or higher.

4.2. Construction of Mutant Strain ∆psgrx, ∆ahpc and ∆psgrx ∆ahpc

To study the function of PsGrx, a deletion mutant of psgrx was constructed using the
allele replacement method [43]. Taking into account the expression of genes, we deleted
a DNA fragment (90 bp) in the psgrx. Using the whole genome as a template, the primers
∆psgrx-P1, which has a XbaI site, and ∆psgrx-P2 were used to amplify the 1–87 bp of the
deletion mutant. The amplification products were labeled grx1. Using ∆psgrx -P3 and
P4 as primers, the method above was repeated to amplify 178–264 bp fragment, and the
amplification products were labeled grx2. Fragments grx1 and grx2 were fused via PCR
and named ∆psgrx. Plasmid pRE112 and ∆psgrx were ligated together after being digested
separately. This experiment chose the suicide plasmid pRE112 as the carrier and transferred
the ligation products into the plasmid. After that, the ligation products were mated with
auxotrophic E. coli WM3064 and entered the strain ANT206. By homologous recombination,
this experiment integrated the transconjugants into the genome of ANT206. At 15 ◦C, the
target transconjugants were then selected by the use of the 2216E solid medium that had
kanamycin and DAP of 50 µg/mL. Next, a double-crossover recombination fragment
was incubated in 2216E solid medium with 10% sucrose at 15 ◦C to culture the mutant
∆psgrx. Mutant ∆ahpc was constructed via the same method, a DNA fragment (102 bp) in
the ahpc was deleted, and ∆ahpc-P1 P2 and ∆ahpc-P3 P4 were used to amplify the 1–246
and 349–552 bp of the deletion mutant, respectively. Then, fragments were fused via
PCR and named ∆ahpc. The ligation suicide plasmid pDS132 and ∆ahpc were mated
with E. coli S17-1 (named E. coli S17-1/pDS132-∆ahpc) and entered the strain ANT206 by
homologous recombination. Then, target transconjugants were selected by 2216E solid
medium that had chloramphenicol of 50 µg/mL. Furthermore, based on mutant strain
∆psgrx, double deletion mutant ∆psgrx ∆ahpc was obtained by mating E. coli S17-1/pDS132-
∆ahpc and mutant strain ∆psgrx. Finally, mutant strain ∆psgrx, ∆ahpc, and ∆psgrx ∆ahpc
were sequenced by The Beijing Genomics Institute (BGI, Beijing, China). Kanamycin or
chloramphenicol resistance stability and the genetic stability of mutants were determined
as previously described [44]. The primers used in allele replacement are listed in Table 2,
and the cultured mutant strains were analyzed and identified via PCR reaction.
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Table 2. Primers used for the construction of the mutant ∆psgrx and ∆ahpc (underlines represented
cleavage sites of XbaI and SacI, respectively).

Name Primer Sequences Restriction Enzyme Cutting Sites

∆psgrx-P1 5′-GCTCTAGACGATGACTGTATCTGTTAAAG-3′ XbaI
∆psgrx-P2 5′-CGGTGCGATAGTTATTCTCTTCATAATC-3′

∆psgrx-P3 5′-GAAGAGAATAACTATCGCACCGTGC-3′

∆psgrx-P4 5′-TAGAGCTCTTAACCCGCTAATAGCTC-3′ SacI
∆ahpc-P1 5′-ATGTCTAGAATGACGACTGATAGCG-3′ XbaI
∆ahpc-P2 5′-GTTCTCAATGTGACCCCAAAAATAG-3′

∆ahpc-P3 5′-CAAGAGTTACACAGATAAAAACCCC-3′

∆ahpc-P4 5′-TCAGAGCTCTAAAAACTGACGACAG-3′ SacI

4.3. Low-Temperature Treatment, MDA Activity and Protein Carbonylation Assay

To investigate the effects of low temperature on wild-type ANT206 and mutant strains,
ANT206, mutant ∆psgrx, ∆ahpc and ∆psgrx. ∆ahpc were added to the fresh 2216E media,
until the density of the cells at 600 nm (OD600) achieved 0.05. ANT206 and mutant strains
were incubated at 5 ◦C, 10 ◦C and 15 ◦C for 72 h. The OD600 of ANT206 and mutant ∆psgrx
was determined via spectrophotometry (UV2000, Shimazu, Japan). The growth parameter
maximum specific growth rate (µmax) of ANT206 and mutant ∆psgrx was calculated from
each treatment by directly fitting OD measurements versus time to the reparametrized
Gompertz equation proposed by Zwietering et al. [45]. Another growth parameter genera-
tion time (GT) was calculated based on the previous method [46]. The MDA levels, protein
carbonylation content, and GR activity were determined using commercial kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) and detected via spectrophotome-
try. Moreover, through the Bradford Protein Assay Kit (Biyuntian, Haimen, China), this
study determined protein concentrations in the cell extract using bovine serum albumin
as standard.

4.4. cDNA Library of Strain ANT206

To test the interaction between PsGrx and proteins from strain ANT206, this experi-
ment used psgrx as a bait and the cDNA library of the ANT206 strain as prey to carry out
a genome-wide Y2H screening. With the intention of preparing the cDNA library, TRIzol®

Reagent (Ambion, Carlsbad, CA, USA) was used to extract the total RNA was extracted
from strain ANT206, and the Oligotex® mRNA Mini Kit (Qiagen, Hilden, Germany) was
employed to isolate the mRNA. After that, Make Your Own Mate & Plate® Library System
(Clontech Laboratories Inc., Palo Alto, CA, USA) was used to reverse-transcribe the first-
strand cDNA from the mRNA according to the guidelines of the manufacturer and em-
ployed the amplified double-stranded cDNA to conduct the assessment [47].

4.5. Yeast Two-Hybrid Analysis

To identify the interacting partners of PsGrx, the Y2H screen was performed with
the Matchmaker GAL4 Two-hybrid System 3 (Clontech Laboratories Inc., Palo Alto, CA,
USA). The schematic figure of the Y2H process was illustrated in Figure 13. To test bait
auto-activation, we marked the pGADT7-largeT and pGBKT7-p53 as positive controls,
pGADT7-largeT and pGBKT7-laminC as negative controls, and pGADT7 and pGBKT7-
PsGrx as the experimental group. Plasmids were transformed into the AH109 strain
and cultured on selective medium (SD-TL) at 30 ◦C for 4 days. Six transformants were
randomly selected and transferred to two separate selective media plates at 30 ◦C for
culturing for 4 days. The bait yeast culture and prey yeast cDNA library were gently
mixed. A total of 30 transformant colonies that grew again were selected and transferred
to the SD-TL and SD-TLHA+X-α-Gal plates at 30 ◦C for culturing for 3 days. Finally, we
sequenced the colonies that grew on both plates and determined the gene names using
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi, last accessed on: 21 January 2022).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.6. Bimolecular Fluorescence Complementation (BiFC) and Co-Immunoprecipitation (Co-IP) Assay

Since this study’s emphasis is stress-related reaction targets and new targets, the
interactions between PsGrx and these six proteins (GR, glutathione peroxidase, AhpC,
GspI, DNA translocase FtsK, and RNase E) were further analyzed. With the intention
of generating constructs for BiFC assays, this experiment amplified full-length cDNA
fragments of these six proteins with PCR methods (the primers are listed in Table 3)
and subcloned them into the pDONR221 vector and then recombined them into the YN
(pEarleyGate201-YN) and YC (pEarleyGate202-YC) vectors [48]. After that, this experiment
introduced the constructs to the Agrobacteriumtumefaciens strain GV3101. Then, a 1 mL
needleless syringe was used to co-infiltrate them into Nicotiana benthamiana leaves’ abaxial
side. The Nicotiana benthamiana leaves used in this experiment should be 4 to 6 weeks old.
Infected tissues were examined after they were infiltrated for 48 h. This experiment adopted
the Confocal Spectral Microscope Imaging System (Leica TCS SP5, Wetzlar, Germany),
to capture the YFP fluorescence, setting an argon blue laser at 488 nm, a beam splitter at
500 nm for excitation, as well as a spectral detector between 515 and 540 nm. Based on the
BiFC experiment, a Co-Ip assay was used for analysis, and PsGrx with a hemagglutinin
(HA) tag, GR, and AhpC with a Flag tag were co-expressed in Nicotiana benthamiana.
Proteins were extracted using lysis buffer and DTT after 48 h incubation. Then, 10 µL of
anti-HA-tag magnetic bead buffer was added and the samples were incubated for 3 h at
4 ◦C to immunoprecipitate the proteins. Next, Western blotting was performed to transfer
the proteins to the PVDF membrane. Anti-HA and anti-Flag with sodium azide were
dissolved and added to the PVDF membrane, incubating for 3 h.

Table 3. Primers used for BiFC.

Name Primer Sequences

psgrx-F 5′-ACAAGTTTGTACAAAAAAATGACTGTATCTGTTAAAGTTTATAC-3′

psgrx-R 5′-CACCACTTTGTACAAGAAACCCGCTAATAGCTCGTCAAG-3′

gr-F 5′-ATGACAAAACATTATGATTATATTT TCCATTGGCGGC-3′

gr-R 5′-CTAACGCATCGTCACAAACTCTTCTGAGCCAGTTGGATGAAT-3′

ahpc-F 5′-ATGACGACTGATAGCGACAAGACGACTGAGAGATCTAAAAAG-3′

ahpc-R 5′-AAAAACTGACGACAGCCACAATCTTAATTTCAATGACCATAAC-3′

glutathione peroxidase-F 5′-ATGACTACTATTTATGATTTTAGTGCTGAGCGTATGGCAT-3′

glutathione peroxidase-R 5′-TTTGCACGCCTCCTTAACTTGGTCAAGATCAGGGCTGAAC-3′

gspI-F 5′-ATGATAAATAATGACAGAGCCAAACCTAACCATGTAAACCGA-3′

gspI-R 5′-GTTTGGCTCTGTCATTATTTATCATTTCGGTTTACATGGTTAG-3′

ftsK-F 5′-GTGATATCAGCACCAATTATTGATTACTTAAAAAAGGGCATA-3′

ftsK-R 5′-AATCAATAATTGGTGCTGATATCACATATGCCCTTT-3′

Rnase E-F 5′-ATGAAACGCATTTTAATCAACGCCACCCAAAACGAAGAAATTC-3′

Rnase E-R 5′-GCTCTCTCTATCTGAGTTATCTGAATCATCTGACTCTAGTT-3′
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4.7. RNA Extraction and Quantitative Real-Time PCR

The expressions of psgrx and target proteins were determined by performing qRT-PCR
at 5 ◦C, 10 ◦C, and 15 ◦C. Total RNA was extracted from ANT206 and the mutant ∆psgrx,
∆ahpc and ∆psgrx ∆ahpc cultured in each different temperature environment using TRIzol®

Reagent (Ambion, Carlsbad, CA, USA), which was followed by centrifuging at 12,000× g
for 5 min at 4 ◦C. The chloroform and isopropanol were added, which was followed
by centrifuging at 12,000× g for 5 min at 4 ◦C. RNA precipitate was obtained from the
bottom of the tube. The extracted RNA was exposed to RNase-free DNase to remove any
residual genomic DNA that may present in the RNA. The qRT-PCR was performed by
a PCR instrument (Applied Biosystems 7500, Carlsbad, America). A 16S rRNA sequence of
strain ANT206 was used as the internal reference for normalizing gene expression. The
comparative Ct (2−∆∆Ct) method was used to calculate relative gene expression [49]. The
primers used for qRT-PCR are listed in Table 4.

Table 4. Primers used for qRT-PCR.

Name Primer Sequences

psgrx-F 5′-GGCGTTGATTATGAAGAGATTGGCATG-3′

psgrx-R 5′-TGTGGCACGGTACGATAGTTATTAGTC-3′

gr-F 5′-TGTATGTCCGTCAGCACTCG-3′

gr-R 5′-TCGCCCAAATCAAGCAGTCT-3′

ahpc-F 5′-CAAGTCCGGCTCTGACCAAG-3′

ahpc-R 5′-CTTGGCTCATCTCGCCATCT-3′

trxR-F 5′-CTGATCGTCAACAGCGGTCT-3′

trxR-R 5′-CAGCAGAGGTGATCGCTTGA-3′

16S-F 5′-CCTTCGCCATCGGTATTCCTCCAG-3′

16S-R 5′-GAGCTAGAGTATGTGAGAGG-3′

4.8. Statistical Analysis

Statistical significance of the results was analyzed by Statistical Product and Service
Solutions (SPSS) 22.0 software. Data are presented are means ± SD from three independent
experiments, asterisks indicate significant differences. The differences were considered to
be significant if p < 0.05 and were indicated by one asterisk, those at p < 0.01 were indicated
by double asterisks.
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