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Abstract

In the context of epidemiology, policies for disease control are often devised through a mix-

ture of intuition and brute-force, whereby the set of logically conceivable policies is narrowed

down to a small family described by a few parameters, following which linearization or grid

search is used to identify the optimal policy within the set. This scheme runs the risk of leav-

ing out more complex (and perhaps counter-intuitive) policies for disease control that could

tackle the disease more efficiently. In this article, we use techniques from convex optimiza-

tion theory and machine learning to conduct optimizations over disease policies described

by hundreds of parameters. In contrast to past approaches for policy optimization based on

control theory, our framework can deal with arbitrary uncertainties on the initial conditions

and model parameters controlling the spread of the disease, and stochastic models. In addi-

tion, our methods allow for optimization over policies which remain constant over weekly

periods, specified by either continuous or discrete (e.g.: lockdown on/off) government mea-

sures. We illustrate our approach by minimizing the total time required to eradicate COVID-

19 within the Susceptible-Exposed-Infected-Recovered (SEIR) model proposed by Kissler

et al. (March, 2020).

1 Introduction

The COVID-19 pandemic has already caused over four million deaths worldwide. The effects

of the virus have been widespread and substantial, from the collapse of healthcare systems [1–

3] to the enforcement of isolation and quarantine. In the case of Nepal, the national lockdown

lasted for 120 days uninterrupted [4].

In these circumstances, identifying reliable and effective disease control policies is of utmost

importance. Here by “policy” we mean a deliberate intervention intended to mitigate the

effects of a disease as it runs its course. In much of the mathematical literature on epidemiol-

ogy, the process of generating a policy is as follows [5]: (1) based on expert intuition, a number

of suitable policies to control the disease are proposed; (2) the impact on the population of

each of the considered policies is assessed through dynamical models of disease spread; (3) the

outcomes of all policies are compared and a decision is taken as to which one is deemed to be

the best.

The main advantage of this three-step process is that the final recommended policy is com-

prehensible, i.e., it can be interpreted and explained. Moreover, for simple on/off policies, one
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can sometimes derive analytic results [6]. The process has, nonetheless, two disadvantages.

First of all, the class of policies devised by an human could well be suboptimal, since the opti-

mal policy (under some figure of merit) could be extremely complicated and counter-intuitive.

Second, the method generally requires one to numerically simulate each policy, and so is inap-

plicable when the considered class of policies depends on many control parameters: due to the

exponentially large number of conceivable policies, by the time one finds the optimal disease

control policy, it would be too late to enforce it.

Other approaches for disease control rely on optimal control theory to identify a suitable

policy (see, e.g., [7–10]). The starting point of all these works is that both the initial conditions

(namely, the number of individuals infected, exposed, etc.) and the model parameters (such as

the disease’s reproduction number) specifying the spread of the disease are known with high

precision. This requirement is never met in a real-life epidemic, especially close to the out-

break, when the uncertainty in the disease’s reproduction number can be very high [11, 12].

Policies derived through optimal control theory are thus not guaranteed to have the desired

effects in practice.

An additional disadvantage of optimal control theory is that government measures in the

model cannot be constrained to be discrete. It is true that some optimal control problems

admit a discrete solution, a so-called bang-bang control, but one cannot enforce this property

on the solution a priori. This makes optimal control theory all the more impractical, for dis-

crete measures, such as a lockdown that is either on or off, have so far dominated global efforts

to control the COVID-19 epidemic [13]. Last but not least, optimal control theory can only

handle scenarios where the policies vary over time continuously, thus not making it compati-

ble with observed government measures to control COVID-19, which for the most part have

been applied on a discrete, weekly basis.

In this paper we introduce a general framework that maps any disease control scenario to

an optimization problem. Contrary to the optimal control approach, our framework can

accommodate constraints on the disease dynamics which must hold for whole regions of the

initial conditions and the disease’s model parameters. Our framework can enforce policies to

be weekly and/or discrete. Invoking tools from optimization theory and machine learning

[14], we propose efficient heuristics to solve the optimization problem and hence identify the

government policy that best controls the disease.

To illustrate the power of our approach, we use these optimization techniques to generate

long-term plans to fight COVID-19, under the assumption that the disease’s dynamics are

accurately captured by a variant of the Susceptible-Exposed-Infected-Recovered (SEIR) com-

partmental model [5] proposed in [15]. Our results confirm that optimal policies tend to be

too complicated to be devised by a human.

In reality, most epidemiological models only provide short-term approximations to the

spread of the disease, with long term projections becoming less and less reliable [16]. In addi-

tion, notwithstanding the enormous knowledge gathered since the initial COVID-19 outbreak,

many questions remain to be answered regarding the correctness and accuracy of compart-

mental models such as SEIR: their basic assumptions (e.g., are recovered patients temporarily

or permanently immune to the disease?); the actual value of the model’s parameters (e.g., the

basic reproduction number R0); and the role of variables not modeled (e.g., age, geographic

distribution, contact tracing policies, role of superspreaders).

In this regard, the goal of this work is not to propose a concrete government policy, but

rather to present an efficient method to obtain an optimal one, given all the available informa-

tion. To estimate the effect of our methods in a realistic scenario, we conduct a numerical sim-

ulation where we re-calculate the optimal policy plans every month, based on new, incoming

data. The very final policy plan that we present requires less stringent physical distancing
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measures compared with the one which is not re-calculated every month. All the code used in

our simulations is freely available at [17].

2 The framework in a nutshell

Our starting point is an epidemic that affects a closed population. This assumption is not limit-

ing, since a large ensemble of population centres where individuals are free to commute can

also be modeled as a closed system [18]. To gain an understanding of how the disease spreads,

it is standard to divide the population into different sectors or compartments [5] (see Fig 1).

One can define, e.g., the compartment of all those individuals who are currently infected. This

compartment can, in turn, be sub-divided into different compartments, such as symptomatic/

asymptomatic. Once the number of relevant compartments is fixed, one can estimate the occu-

pation of each of them and arrange the resulting numbers in a vector x. The disease is subse-

quently analysed by looking at how x changes with time.

In order to control or even extinguish an epidemic, governments can enforce a number of

different measures: mass vaccination, physical (or social [19]) distancing measures, or even a

full lockdown, are common examples of interventions aimed to fight the disease. When and to

which degree such measures are applied is determined by the disease control policy. Consider a

disease control policy based on vaccination campaigns, where the intervention consists of vac-

cinating a number of individuals per day, across all compartments, i.e., without distinguishing

between susceptible, exposed, recovered, and so on. Let v(t) be the fraction of the total popula-

tion vaccinated on day t. This function, between the initial and final times t0 and tf (i.e. on the

interval [t0, tf]), determines the government’s vaccination policy. Similarly, let s(t) take the

value 1 if the country is in lockdown on day t and 0 if it is not. Then the government’s

Fig 1. A possible compartment model for COVID-19 (adapted from [15]). The main compartments are: susceptible; exposed; infected; hospitalized;

critical and recovered. This compartmental splitting captures different possible evolutions as well as time delays between transitions. The “infected”

compartment, for instance, contains those who will recover without hospitalization (IR); those who will be hospitalized but won’t need critical care (IH);

and those who will end up receiving critical care (IC). The “exposed” compartment is introduced here to model the time delay between the exposure to the

disease and the development of symptoms (incubation period), in particular, the possibility of infecting others, which is what is relevant for the model. In

this model, the compartment “recovered” includes both dead and alive individuals; in principle, it could be sub-divided further.

https://doi.org/10.1371/journal.pone.0257958.g001
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lockdown policy between times t0 and tf corresponds to the function s(t).

sðtÞ ¼
0 lockdown off

1 lockdown off

(

t 2 ½t0; tf �: ð1Þ

If the government is intervening both through vaccination and lockdown, then its disease con-

trol policy will be identified by both functions v(t) and s(t). Note that, whereas v(t) can take a

continuum of values, s(t) can only have finitely many. In the following, we will call the first

class of interventions continuous; and the second, discrete. In general, a policy for disease con-

trol will combine both kinds of measures, but, as we will see, optimizing over one class or the

other requires very different techniques.

The above are instances of non-adaptive policies for disease control, because the functions s,
v only depend on the time t, and not, e.g., on the current death rate. A general adaptive policy

for disease control would take into account the whole past history of data gathered by the gov-

ernment before deciding what to do at each step. Although in the following all our proposed

policies are non-adaptive, the formalism we introduce allows one to optimize over adaptive

policies as well.

In conclusion, a disease control policy can always be associated to a time-dependent vector

function α and perhaps some other observed variables o, where each vector entry represents a

type of government intervention at time t. In turn, we can use a variable vector μ 2 Rn to

parametrize the class of considered policies, that is, α(t, o) = α(t, o;μ). Since μ completely

determines the policy α, we can also regard the parameters μ as the disease policy. We will do

so from now on.

The applied policy μ is assumed to influence the compartment occupation within the time

interval [t0, tf]. That is, x is both a function of t and μ. In this work we are interested in devising

policies for disease control which guarantee that the spread of the disease evolves under certain

conditions. For example, any country has a fixed number of critical care beds, which we denote

by Bc. At each time t 2 [t0, tf], it is desirable that the number of individuals admitted to critical

care in hospitals, CðtÞ, does not exceed that capacity. That is, we require that

CðtÞ � Bc; for t 2 ½t0; tf �: ð2Þ

We will call any such condition on the policy, or on its effect on the evolution of the disease, a

constraint. Further examples of relevant constraints are the requirement that the number of

planned vaccinations does not exceed the government’s total supply, or that the death rate

does not surpass a given threshold.

Finally, among all policies satisfying the desired constraints, we typically wish to identify

the one that minimizes a certain quantity. For example, for many diseases, a simple physical

distancing policy that satisfies the constraint (2) consists of declaring a lockdown throughout

the whole time interval [t0, tf], i.e., s(t) = 1 for t 2 [t0, tf]. This policy is arguably impractical, dif-

ficult to enforce and harmful to its citizens’ psychological health, as well as to the national

economy. More rationally, one is interested in finding alternative disease policies which, while

respecting the critical care occupation constraint, minimize the number of days of lockdown.

Alternatively, one may wish to minimize the total number of deaths during the interval [t0, tf],
or the number of infected people. In general, the figure of merit or quantity that we wish to

minimize will be a complicated functional of the considered policy α and x. We will call this

functional the objective function. A sufficiently complex objective function, together with the

appropriate optimization constraints, can meet any conceivable set of societal demands.

The optimization problem sketched above is mathematically ill-defined, unless we specify

how x varies with the parameters μ determining the policy. In order to predict the natural
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course of a disease or how a given policy might affect its spread, experts make use of mathe-

matical models. In this paper, we will mainly be concerned with deterministic compartmental
models, but we will show also how our method extends to stochastic models. In these models,

the whole population is divided into a number of basic compartments and the interactions

between those compartments are modeled, in the deterministic case, through a system of ordi-

nary differential equations. Given the occupation x0 of the compartments at time t0, these

models allow us to compute the value of x at any instant t 2 [t0, tf] as a function of the policy μ.

That is, each model provides an implicit functional relation of the form

x ¼ xðt;μ; x0Þ: ð3Þ

Past literature on disease control has made extensive use of compartmental models to rec-

ommend specific strategies for policy-makers in an effort to control the spread of a disease.

In many cases, suitable policies are devised through a mixture of intuition and grid search,

see [15, 20–22]. The starting point is a family of disease control policies with one or two

unknowns. For instance, in pulse vaccination [21], those unknowns are the time intervals

between two mass vaccinations and the vaccination rate. In this paper, we propose a scheme

that allows for the optimization over policies specified by thousands of parameters in the space

of a few hours. Our scheme, detailed in the following sections, is based on a standard tool in

optimization theory and machine learning known as gradient descent [23, 24]. Starting with a

rough guess for the optimal policy μ(0), gradient descent methods generate a sequence of poli-

cies μ(1), μ(2), . . . which typically exhibit increasingly better performance. Although the gradi-

ent method is not guaranteed to converge to the optimal policy, after many iterations it

generates solutions that are good enough for many practical purposes. In fact, gradient descent

is the method most commonly used to train deep neural networks [14] and support vector

machines [25].

Importantly, the computational resources required to carry out the gradient descent

method are comparable to the cost of running a full simulation between times t0 and tf with

the considered disease model. Furthermore, the necessary computations can be parallelized for

policies depending on many parameters. Although the focus of this paper is on compartmental

disease models, our main ideas can also be used to understand ecological systems undergoing

more complex dynamics [26], see Appendix D. Even in such complicated scenarios, the former

scaling laws hold: provided that we can run the considered disease model, we can apply the

gradient method to optimize over policies of disease control.

3 The gradient method

We next introduce the gradient method and show how one can use it to tackle an abstract opti-

mization problem. Given functions f ; gi : Rn
! R, for i = 1, . . ., K, consider the following task:

min
μ

f ðμÞ

such that giðμÞ � hi; for i ¼ 1; . . . ;K:
ð4Þ

Each of the conditions gi(μ)� hi is called a constraint.
Define M = {μ: gi(μ)� hi, i = 1, . . ., K}. If f is sub-differentiable, a simple heuristic to solve

this problem is the projected gradient method [23]. Call μ? the solution of the problem. Start-

ing from an initial guess μ(0), the gradient method generates a sequence of values (μ(k))k with

the property that limk!1 μ(k) = μ?, provided that M, f are, respectively, a convex set and a con-

vex function [23]. The sequence (μ(k))k is generated recursively via the relation

μðkÞ ¼ pMðμ
ðk� 1Þ � �rμf ðμðk� 1ÞÞÞ; ð5Þ
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where, for any set A 2 Rn, πA(z) denotes the point y 2 A that minimizes the Euclidean dis-

tance, i.e., miny2A ky − xk2.

Unfortunately, in the problems we encounter in this paper, f is not convex and, sometimes,

neither is M. This implies that the sequence output by the projected gradient method is not

guaranteed to converge to the solution of the problem, but to a local minimum thereof.

In machine learning, optimization problems with non-convex objective function f and

M ¼ Rn
are legion. To solve them, deep learning practitioners typically use variants of the gra-

dient method sketched above. One of these variants, Adam [27], is extensively used to train

neural networks.

Adam works as follows. Starting with the null vectors mð0Þ; vð0Þ 2 Rn
, vector sequences are

generated according to the following iteration rule:

GðkÞ ¼ rμf ðμðk� 1ÞÞ

mðkÞ ¼ b1mðk� 1Þ þ ð1 � b1ÞG
ðkÞ

vðkÞ ¼ b2vðk� 1Þ þ ð1 � b2ÞG
ðkÞ � GðkÞ

m̂ðkÞ ¼
mðkÞ

1 � bk
1

v̂ðkÞ ¼
vðkÞ

1 � bk
2

μðkÞ ¼ μðk� 1Þ � �
m̂ðkÞ
ffiffiffiffiffiffiffi
v̂ðkÞ
p

þ d
;

ð6Þ

where G(k)� G(k) denotes the vector of the element-wise product; similarly, the fraction and

square root in the definition of μ(k) are defined element-wise. Recommended values for the

free parameters �, b1, b2, δ are � = 0.001, b1 = 0.9, b2 = 0.999 and δ = 10−8 [27].

Like the projected gradient method, Adam is not guaranteed to converge to the optimal

solution of the problem. However, provided that the initial conditions and the learning rate �

are chosen with care, Adam has been observed to typically output a local minimum that is

“good enough”.

Note that, by taking M ¼ Rn, it is not clear how to enforce that the solution satisfies con-

straints of the form gi(μ)� hi. The answer is to include those constraints as penalties in the

objective function. That is, rather than minimizing f, we apply Adam to minimize the function

f ðμÞ þ
XK

i¼1

niðgiðμÞ � hiÞ
þ
; ð7Þ

where νi� 1 and z+ denotes the positive part of z, i.e., z+ = z for z> 0; otherwise, z+ = 0. For

high enough values of {νi}i, the solution of the problem will just violate the constraints slightly,

i.e., hi − g(μ?) 2 [−δ,1), for δ� 1. If no violation whatsoever is desired then one can instead

optimize over a function of the form

f ðμÞ þ
XK

i¼1

niðgiðμÞ � hi þ d
0
Þ
þ
; ð8Þ

with δ0 > 0.

In some situations, the objective function f will be complicated to the point that computing

its exact gradient is an intractable problem. It might be possible, though, to generate a random
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vector ~rμf 2 R
n

with the property

h ~rμf i ¼ rμf : ð9Þ

In such a predicament, we can solve the original optimization problem (4) through stochas-

tic gradient descent methods [24]. Stochastic gradient descent consists of applying the consid-

ered gradient method, with the difference that, every time that the method requires the

gradient of f, we input the random variable ~rμf 2 R
n

instead. Namely, it suffices to replace

rμ f(μ(k−1)) by ~rμf ðμðk� 1ÞÞ in the iterative Eqs (5) and (6). As before, if both M and f are con-

vex, stochastic gradient descent methods are guaranteed to converge to the optimal solution of

problem (4) [24].

4 Overview of techniques

Our novel contribution is to show how to apply the gradient method to any disease control

scenario and optimize over discrete or continuous response policies. In both cases the task is

first to identify a suitable functional A, that is to be minimised, and then to show how to com-

pute the gradient of it, which appears in the first line of the Adam algorithm in Eq (6), such

that the algorithm can step to the next iteration.

In a discrete policy, the parameters describing the government intervention can only take a

finite number of values. Eq (1) is an example of a discrete policy, because on day t the govern-

ment can either declare a lockdown (s(t) = 1) or declare no lockdown (s(t) = 0): we allow for

no values of s(t) inbetween.

On the other hand, a continuous policy is one in which the parameters that define the pol-

icy, which in general we denote by the vector μ, are allowed to vary over a continuum. For

example, the fraction v(t) of the population vaccinated on day t can take any value between 0

and 1.

Regardless of whether we chose to optimise over discrete or continuous policies, our start-

ing point is an ordinary differential equation of the form

dxi

dt
¼ Giðt; x; μÞ; i ¼ 1; :::;m ; ð10Þ

where the entries of the vector x represent the occupations of the different compartments of a

disease model and μ represents a continuous or discrete parametrization of the effects of a

given policy. Let xðt; �μ; x0Þ be the solution of Eq (10) with initial conditions x(0) = x0 and

μ ¼ �μ, where the initial policy condition is typically taken to be ‘lockdown off’. We consider

the problem of finding the parameters μ? such that x(t;μ?, x0) minimizes a given functional A.

This functional defines how we wish to control the disease and what for: it might represent the

number and duration of lockdown periods, etc. If the initial conditions x0 are known, then it

makes sense to consider functionals of the form

Aðμ; x0Þ ¼

Z tf

t0

dt Lðt; μ; xðt;μ; x0ÞÞ þ ÂðμÞ ; ð11Þ

where, as discussed in Section 3, constraints which we wish the solution x(t;μ?, x0) to satisfy

are incorporated into Lðt;μ; xðt;μ; x0ÞÞ. For instance, if we want that the number of patients

in critical care does not exceed the number of beds, i.e. Eq (2) to hold, then one of the terms in

L would be

rðtÞðCðt; μ; x0Þ � BcÞ
þ
; ð12Þ
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with ρ(t)� 1. Similarly, to model a constraint on the vaccine supply of the form
R
dt v(t;μ)�

V, we would add the term

l

Z

dt vðt; μÞ � V
� �þ

; ð13Þ

with λ� 1.

As it turns out, minimizing functional (11) (or more complicated ones, see Appendix B)

requires different techniques depending on whether the desired policy is continuous or

discrete.

4.1 Continuous policies

If all the parameters μ defining the policy are allowed to take arbitrary values in Rn and their

effect on the disease’s equations of motion (26) is differentiable, then one can simply apply gra-

dient descent methods to minimize A(μ, x0). The only difficulty stems in computingrμ A (i.e.,

the first line of the Adam algorithm in Eq (6)). For functionals of the form (11), we have

@A
@mj
¼

Z tf

t0

dt
@Lðt;μ; xðt;μ; x0ÞÞ

@mj
þ
X

i

@Lðt;μ; xðt; μ; x0ÞÞ

@xi
@xi

@mj

 !

þ
@ÂðμÞ
@mj

: ð14Þ

In order to evaluate this quantity to step the algorithm, the challenge is to compute the deriva-

tives @xi
@mj

. In Appendix B we show that these derivatives arise as the solution of a system of ordi-

nary differential equations, of complexity comparable to that of Eq (10). We also explain how

to use stochastic gradient descent to deal with scenarios where the model parameters (e.g., the

basic reproduction number R0) and/or the initial conditions x0 are only known to lie within

some bounds, or when the evolution is stochastic. In either case, once a method to compute

(14) is established (or, in the case of uncertainty in the initial conditions, some unbiased statis-

tical estimator thereof (see Appendix B)), one can simply run the vanilla gradient descent (5)

or the Adam algorithm (6) to arrive at a quasi-optimal policy.

4.2 Discrete policies

When some or all the entries of μ are restricted to take values on a finite, fixed set, it is clear

that one cannot apply gradient descent methods straightforwardly in order to minimize the

objective function. In fact, optimizations over discrete variables are, in general, a very difficult

endeavor: it can be argued that problems which appear simple do not have an efficient solution

[28]. Nonetheless, in Appendix C we present two heuristics to tackle such optimizations in the

context of policies for disease control.

The first heuristic consists of mapping the original minimization problem to an optimiza-

tion over probabilistic policies, whereby the government decides how to intervene by sampling

a discrete probability distribution, which is continuously dependent on a number of auxiliary

(continuous) parameters. By applying stochastic gradient descent methods over such auxiliary

parameters, we can find the probabilistic policy that minimizes the average value of the objec-

tive function. As shown in Appendix C, independently of the initial conditions, the gradient

method is guaranteed to converge to a deterministic policy.

The second heuristic is tailor-made for optimizations over lockdown (discrete) policies,

although it can be easily extended to deal with arbitrary discrete policies. Consider a scenario

in which the government is allowed to declare or lift a lockdown at any time. In this case, we

can parametrize the policy by the duration of each lockdown phase and the pauses in between,

and use gradient descent methods to arrive at the optimal times. In Appendix C we show that
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estimating the correspondent gradients only requires a minor modification of the methods

developed for continuous policies.

5 Application: COVID-19

To illustrate the use of gradient descent for policy design, we consider a variant of the extended

“susceptible-exposed-infected-recovered” (SEIR) disease model proposed in [15] to predict the

impact of COVID-19 in the USA, a schematic of which is shown in Fig 1 and the details of

which appear in Appendix A. Each state variable X in the diagram corresponds to the fraction
of the whole population N pop in the corresponding diagram. From now on, we denote

intensive quantities like X with a normal mathematical font, while extensive quantities

X ¼ X �N pop are to be represented with calligraphic letters. The clinical parameters of the

model in Fig 1, such as recovery and hospitalization rates, were estimated in [29, 30], based on

early reports from COVID-19 cases in the UK, China and Italy. Following the model in [15],

the disease transmission is assumed to be seasonal by analogy with the known behavior of

betacoronaviruses such as HCoV-OC43 [30], with a baseline reproduction number between 2

and 2.5, following fits of the early growth-rate of the epidemic in Wuhan [11, 12].

A relevant compartment in this model is CðtÞ � CCðtÞ �N pop, the population occupying a

critical care bed at time t. The patients sent to critical care cannot breathe unassisted, and thus

it is fundamental to ensure that such capacity is not surpassed, namely, that the constraint

(2) holds. For our simulations, we chose a population size of N pop ¼ 47 million and

Bc ¼ 9:5� 10� 5 �N pop. That is, we assumed that the healthcare system provides 95 critical

care beds per million inhabitants. This is a good approximation to the healthcare capacity of

many European countries, as well as the USA.

According to the chosen model, without intervention, the number of citizens requiring

a bed in a critical care unit evolves according to Fig 2 (see Appendix A for the exact initial con-

ditions of our numerical simulations). As the reader can appreciate, between the third and

seventh months, the number of people in need of critical care exceeds the capacity of the con-

sidered healthcare system by 18 times.

Vaccines against COVID-19 were not available during the first year of the pandemic.

Hence initially most governments opted to control the disease via distancing measures and/or

lockdowns. The effect of implementing a policy s(t) is to multiply the disease’s basic reproduc-

tion number R0 by a factor of r [15, 30], i.e. R0! rR0, where

r≔ ð�r � 1Þsþ 1: ð15Þ

Depending on the discrete or continuous nature of the intervention, we shall consider two

kinds of such non-pharmaceutical policies. On one hand, we will speak of lockdown policies
when s is only allowed to take the values {0, 1}; those correspond to situations in which a lock-
down is either on or off. For discrete s(t) as in Eq (1), the effect of a lockdown (s = 1) results in

the reduction of the transmission rate r ¼ �r in Eq (15). On the contrary, when the population

is free to interact (s = 0) then r = 1 and there is no change in the disease’s basic reproduction

number.

On the other hand, we will speak of physical-distancing policies when s is allowed to take

any value in the interval [0, 1]. Continuous values of s(t) correspond to intermediate measures

(for example mandatory face masks, suspension of sport events, remote working, school clo-

sures), the effect of which can be tentatively estimated from available data [29].

If distancing measures are the only type of intervention that a government uses, then a

non-adaptive continuous policy is fully determined by the function s(t;μ) 2 [0, 1]. To begin
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with, we will assume that the government can only declare new measures at the beginning of

each week, i.e., that s(t) does not vary within the weekly intervals t 2 [7k, 7(k + 1)] ≕ Ik, for

k 2 Z. With these conditions, s(t) can be expressed as

sðtÞ ¼
X

k

sð~skÞwIkðtÞ: ð16Þ

where wIkðtÞ is the characteristic function of week number k, i.e., wIkðtÞ equals 1 if t is in the k-

th week; and 0, otherwise. The characteristic function, thus, ensures that there is only one pol-

icy s(t) per week. sðyÞ ¼ 1

1þexpðyÞ denotes the sigmoid function, which guarantees that s(t) 2
[0, 1] by continuously mapping the variables f~skgk, such that, for t 2 [t0, tf], s(t;{sk}) is every-

where differentiable, making it amenable to the gradient method. The parameters to optimize

over are μ � f~skgk, since they fully define the government’s disease policy.

In 2021, several vaccines against COVID-19 successfully passed clinical trials, and nowa-

days many governments are fighting the disease through national vaccination campaigns. We

model the effect of a COVID-19 vaccination campaign by assuming that: a) the government

vaccinates the population across all compartments, i.e., without distinguishing between sus-

ceptible, exposed, recovered, etc.; b) just susceptible individuals benefit from the vaccine; c) all

such vaccinated individuals become immune to the disease. The reader can find the explicit

model in Appendix A. Obviously, this model is a gross simplification of the effect of COVID-

19 vaccines currently in the market, which on one hand varies depending on the particular

vaccine and the prior exposure to COVID-19, and on the other hand does not seem to always

confer full immunity to the disease [31]. More complicated vaccination models can be built to

properly assess a government on vaccination policies, but, for the sake of illustration of our

techniques, this simplified model will suffice.

Fig 2. Occupation of critical care beds over two years with no policy intervention. The red dashed line indicates the critical care capacity of the

healthcare system.

https://doi.org/10.1371/journal.pone.0257958.g002
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We place a cap of Λ = 0.0011 days−1 on the fraction of the population that can be vaccinated

per day. We also assume that changes in the vaccination rate can only be made weekly. This

brings us to parametrize the vaccination rate via the function

vðtÞ ¼ L
X

k

sðvkÞwIkðtÞ: ð17Þ

Finally, we assume that the government holds a supply of vaccines for just a third of the total

population. This means that, together with (2), we need to enforce the extra constraint

Z tf

t0

dtvðtÞ �
1

3
: ð18Þ

We achieve this by adding the term (13) to the objective function, with V ¼ 1

3
, λ = 104. Without

additional constraints, this model represent the case of a vaccine with 100% efficacy. A reduced

efficacy, let us denote it by e< 1, can be straightforwardly modeled simply by multiplying the

vaccination rate v(t) and the vaccine supply V by e.
In all our examples, we never allow the number of people in the critical care compartment

to exceed the maximal occupancy, i.e., we impose the constraint in Eq (2). To enforce it, we

add the term (12) to the objective function, with rðtÞ ¼ 100

Bc
.

Finally, in order to solve the differential (29), we use the Euler explicit method (30) with

step size δ = 1.0 to generate all our plots, apart from in Figs 6 and 7, where we use δ = 0.1.

Next, we use the gradient method to derive the optimal interventions to control COVID-19

in a number of disease scenarios.

5.1 Fighting COVID-19 via physical distancing measures

We first consider policies exclusively based on non-pharmaceutical interventions; more con-

cretely, continuous weekly policies s(t) of the form (16). For starters, we tackle the problem of

quickly steering the population towards herd immunity, all the while respecting the constraint

(2) on the critical care capacity. Our goal can be captured by a functional of the form (11), with

ÂðμÞ ¼ 0 and

Lðt;μ; xðt;μ;x0ÞÞ ¼ jSðtÞ � Shj; ð19Þ

where S (as depicted in Fig 1) is the component of x that denotes the proportion of individuals

in the population who are susceptible to the disease. Sh ¼ 1

R0
is the proportion of susceptible

individuals required for herd immunity to be guaranteed; thus, once S(t)<Sh, although people

will continue to become infected, the natural evolution of the disease will be such that the rate

and number of infected quickly dies out.

Fig 3 illustrates the results of optimizing the objective function in Eq (19) for continuous

physical-distancing measures. The plot shows both the critical care occupancy CðtÞ and the

total number SðtÞ of susceptible individuals between times t0 and tf = t0 + 3 × 365. The number

of susceptible individuals reaches Sh on day 864, after which the disease can be considered

extinct. As the reader can appreciate, the critical care occupancy curve never surpasses the crit-

ical value Bc.

The results in Fig 3 are achieved at the cost of enforcing constant physical-distancing mea-

sures throughout the considered time frame. Naturally, the next problem we consider is that of

minimizing the aggregate economic cost E associated with the physical-distancing measures

implemented by the government over the first two years of the disease (while respecting the

critical care capacity constraint (2)). Thus we take an objective function of the form (11), with
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ÂðμÞ ¼ 0 and

Lðt; μ; xðt;μ; x0ÞÞ ¼ Eðsðt;μÞÞ : ð20Þ

Fig 4 shows the result of applying the gradient method to minimize this functional for the

cost function EðsÞ ¼ s.
This plot shows the critical care occupancy CðtÞ, and also the physical-distancing measure

s(t) between times t0 and tf = t0 + 2 × 365. The aggregate cost of the optimal policy is equal to

the economic cost of sustaining a full lockdown for 294 days. As anticipated, the optimal policy

found by the computer is very complicated. Notice that the critical care occupancy grows

quickly towards the end of the plot. The reason for this is that we asked the computer to mini-

mize the total time in lockdown over a fixed period of two years, which is exactly what it did: it

minimized the physical-distancing measures in the first two years, with complete disregard for

what could happen next. To overcome such a pathological case, one can introduce additional

terms into Eq (20) to make the final slope of the curve CðtÞ less steep, or even decreasing.

5.2 Fighting COVID-19 via lockdowns

In some circumstances, the only distancing measures considered by governments are discrete:

lockdown on or off, as in Eq (1). Let the objective function be given by Eq (20), with EðsÞ ¼ s,
i.e., we wish to minimize the total time under lockdown. As stated earlier, optimizations over

discrete government interventions cannot be carried out directly with the gradient method.

We conduct them instead with the two heuristics proposed in Appendix C.

The first heuristic allows optimizing over weekly on/off confinements, and its results are

shown in Fig 5. This time the critical care occupancy curve touches the critical care capacity

just once, after the end of year 1. The reason for this is that we demanded lockdowns to last

exactly one week: had we allowed the government to declare a lockdown on any day of the

Fig 3. Occupation of critical care beds (red) and population of susceptible individuals (blue) for a period of three years. The blue line corresponds to

the level of susceptibles guaranteeing herd immunity over the whole year.

https://doi.org/10.1371/journal.pone.0257958.g003
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week, the computer would have found a tighter solution, with every peak of the red curve

touching the dashed line. Even under this discrete weekly simplification, the solution found

by the computer is non-trivial: it requires the government to declare a lockdown 27 times
(as we will soon see, one can limit the total number of lockdowns in the final policy by adding

Fig 4. Occupation of critical care beds (red) and physical-distancing measures (blue) for a period of two years. The optimization has been performed

over continuous weekly policies, 104 continuous parameters, i.e., any value of physical-distancing measure s between 0 and 1 is accepted. The algorithm,

however, tends to prefer 0/1 configurations, i.e., full lockdown or no lockdown in most instances.

https://doi.org/10.1371/journal.pone.0257958.g004

Fig 5. Occupation of critical care beds (red) and lockdown (blue) for a period of two years. The plot shows the result of the optimization over

probabilistic policies via gradient descent over a period of two years.

https://doi.org/10.1371/journal.pone.0257958.g005
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constraints to the optimization problem). The total length of the lockdown in the course of

two years is 371 days.

In the second discretization method, the disease control policy is continuously parame-

trized through the vector μ = (t1, t2, . . ., t2N), and lockdown is assumed to take place within the

time intervals [t1, t2], [t3, t4], . . .. In this parametrization, lockdowns can be declared or lifted

at arbitrary times within [t0, tf], and not only on Mondays, like in the first heuristic. This sec-

ond discretization method has the advantage of allowing one to set the maximum number N
of lockdowns throughout the period [t0, tf]. For N = 9, the corresponding critical care occupa-

tion and lockdown graphs are shown in Fig 6. The total length of the lockdown is 338 days.

5.2.1 Fighting COVID-19 via limited lockdowns and vaccination. We next study the

effect of vaccination campaigns in reducing the total time spent in lockdown. To ensure that

the final recommended policies are easy to implement, we place the limit N = 5 on the maxi-

mum number of lockdowns.

If we allow the government to declare or lift lockdowns at any point in time, the second

heuristic outputs the policy depicted in Fig 7. Note that the optimal policy does not require 5

lockdowns, but 4. The policy involves vaccinating the population at maximum rate since the

very beginning of the government intervention until about day 200, after which the vaccina-

tion rate gradually drops to zero. The total span of the required lockdown is 186 days. This

must be compared with the 338-days lockdown required when we allow for N = 10 lockdowns,

but no vaccines are available. Even at such a slow vaccination pace, and under a shortage of

supplies, the effects of a vaccination campaign prove to be very impressive.

Let us now see how the picture changes when the government is not allowed to enforce an

intervention in the middle of the week. Enforcing a maximum number N of lockdowns is not

automatic when we deal with the first heuristic; it requires us to add an extra constraint to the

Fig 6. Occupation of critical care beds (red) and lockdown measures (blue) for a period of two years. Optimization over deterministic policies with

arbitrary initial and final times for each lockdown period. A total of 9 lockdown periods has been fixed prior to the optimization. Notice that the first

lockdown period, around day 60, has been basically removed by the optimization procedure.

https://doi.org/10.1371/journal.pone.0257958.g006
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optimization over non-deterministic policies. A possibility is to include the term

O
X

j

jcj � cjþ1j � 2N

 !þ* +

ð21Þ

in the objective function. Here the random variable ck equals 1 if there was a lockdown on

week k or 0 otherwise, see Appendix C. The penalty for changing the government response by

2N + x times within the period [t0, tf] is therefore x ×O. Choosing O = 102, we arrive, through

stochastic gradient descent, at the deterministic policy depicted in Fig 8. It demands a total

lockdown time of 231 days (compared to the 371 days of lockdown required by the corre-

sponding non-pharmaceutical policy, depicted in Fig 5). As the reader can appreciate, the time

spent in lockdown is considerably higher when we require lockdowns to be enforced or lifted

on Mondays than when we allow the government to intervene at arbitrary times.

5.3 Dealing with uncertainty

In practice, the predictions of any mathematical model for a physical system will not be perfect

for a number of reasons. First, basic parameters of the model, such as the transmission rate or

the initial occupation x0, are only known up to approximations. Even if reality were exactly

described by a particular mathematical model, small errors in such parameters would accumu-

late in the long run, making long-term predictions unreliable. Second, reality is never exactly

described by mathematical models: on the contrary, any tractable disease model is, at best, a

rough approximation to reality. Consequently, even the most successful disease models in the

market cease to deliver solid predictions beyond 4 weeks [16].

5.3.1 Uncertainty in the parameters. These considerations make us question how practi-

cal a two-year disease control policy really is. Consider the physical-distancing policy depicted

in Fig 4, which was obtained by applying the gradient method to the SEIR model in [15]. Here,

Fig 7. Lockdown times (blue) and vaccination rates (magenta) for a period of two years.

https://doi.org/10.1371/journal.pone.0257958.g007
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the model parameters ν correspond to the average values �ν of the parameter ranges in Table 1

of Appendix A. In reality of course, the values of the parameters are never all equal to their

averages, so we proceed to generate sets of parameters with some fluctuations. Let Δν be the

vector with entries given by the difference between the upper and lower bounds of all the

entries of the table, and suppose that the actual parameters of “reality” are unknown and uni-

formly distributed in the region of values N a ¼ n : � a Dν
2
� ν � �ν � a Dν

2

� �
, where a can be

interpreted as the amount of noise or uncertainty. How robust is the afore-mentioned policy

to uncertainty in the initial parameters?

Fig 9 shows the result of generating 1000 independent parameter samples from the region

N 0:05, corresponding to a 5% uncertainty, with respect to the given interval of values, and run-

ning the corresponding models for the optimal physical distancing policy in Fig 4. As one can

see, for some sampled values of parameters, the critical care capacity of the healthcare system

is exceeded. This is not surprising, since the policy depicted in Fig 4 was devised to perform

well under the assumption that ν ¼ �ν and not ν 2 N 0:05.

In order to tame the behavior in the plot in Fig 9, we use stochastic gradient descent to min-

imize the average value of the objective function A assuming a uniform distribution of ν over

N a, as explained at the end of Appendix B. By adding to A sufficiently strong penalties for the

violation of each optimization constraint, we make sure that such constraints will approxi-

mately hold for most of the points in N a.

Fig 10 shows a lockdown policy minimizing the physical distancing measures under the

condition that constraint (2) holds for different values of n 2 N 0:05, i.e., the critical care capac-

ity is not exceeded. This time, the violation of condition (2) is neither so extreme nor so fre-

quent. This comes, however, at the cost of enforcing physical distancing measures with a cost

equivalent to 331 days of lockdown. Repeating the optimization for N 0:25, Fig 11, we see that

the critical care capacity is rarely surpassed. However, this time the total cost is equivalent to

414 days of lockdown.

Fig 8. Weekly lockdown times (blue) and vaccination rates (magenta) for a period of two years.

https://doi.org/10.1371/journal.pone.0257958.g008
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Fig 9. Occupation of critical care beds (red) and (unoptimized) physical distancing measures (blue) for a period of two years under random

parameters in N 0:05. The region in red is obtained by sampling 1000 times from the region of model parameters N 0:05 and evolving the corresponding

models with the physical distancing policy optimized over the model with average-value parameters (as in Fig 4). More precisely, the red region is the one

delimited by the minimum and the maximum critical care occupation for all the 1000 models, at each time. The red line represents the average critical care

occupation in all those simulations.

https://doi.org/10.1371/journal.pone.0257958.g009

Fig 10. Occupation of critical care beds (red) and (optimized) physical distancing measures (blue) for a period of two years under random

parameters in N 0:05. The disease control policy was optimized to respect condition (2) over the whole range of parameters N 0:05. As in Fig 9, the region in

red depicts again the range of critical care occupations observed in a sample of 1000 model parameters in N 0:05, and the red line the average critical care

occupation.

https://doi.org/10.1371/journal.pone.0257958.g010
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This result is what one would have expected. As time goes by, the predictions of the disease

model for different values of ν diverge: any policy that aims to satisfy constraint (2) for large

ranges of these parameters will necessarily require extensive physical distancing measures.

In practical policy-making, graphs such as Figs 10 and 11 should not be understood to rep-

resent the actual physical distancing policy, but rather to provide a provisional policy plan. A

policy plan gives a recommendation for action for the immediate future, given the current

knowledge of the disease. In Fig 10, the policy plan is advising not to declare physical distanc-

ing measures in the first weeks. That is the measure that the government should adopt then.

After a first time period, say four weeks, more data will have been gathered: this will allow us

to obtain a better estimate of the parameters ν, and then re-run the models for another two

years ahead. The measure to enforce should then be whatever the new policy plan recom-

mends for the following four-week time period. The process is then repeated.

To test how this idea would perform in practice, we consider a scenario where the parame-

ters defining the disease model are unknown, but the region in parameter space in which they

live shrinks every month (to be precise, we used a 28-day period, corresponding to four

weeks). That is, at month k, the government is informed that the parameters ν satisfy

n 2 N 0:25=
ffiffi
k
p . Every four weeks, the policy is recalculated to minimize the physical distancing

measures for the rest of the two years ahead, using the range n 2 N 0:25=
ffiffi
k
p . The final curves for

the critical care occupation and the physical distancing measures are shown in Fig 12 for ν, in

a sequence of shrinking regions N 0:25=
ffiffi
k
p , for each month k (red region) and in the case of a

fixed uncertainty region corresponding to the last month, i.e., N 0:049 (inner dark blue region).

The total cost of the physical distancing measures is equivalent to 358 lockdown days. This has

to be compared with the cost of 414 days predicted by the initial policy plan under the assump-

tion n 2 N 0:25.

Fig 11. Occupation of critical care beds (red) and (optimized) physical distancing measures (blue) for a period of two years under random

parameters in N 0:25. The disease control policy was optimized to respect condition (2) over the whole range of parameters N 0:25. As in Fig 9, the region in

red depicts again the range of critical care occupations observed in a sample of 1000 model parameters in N 0:25, and the red line the average critical care

occupation.

https://doi.org/10.1371/journal.pone.0257958.g011
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In principle, one could further decrease the total planned cost by devising adaptive policy
plans, where the measure to be taken at each moment depends not only on the current time t,
but also on the past history of physical distancing measures and their observed effects. In fact,

we tried optimizing over generic adaptive policies described by a continuous version of a neu-

ral network architecture known as Long Short-Term Memory (LSTM) [32]. In all our numeri-

cal experiments, such simple LSTM architectures could not improve the performance of non-

adaptive strategies, but this could be due to ineffective training on our side.

5.3.2 Nondeterministic models. So far, all models considered in the optimization are

deterministic, namely, given the model parameters and initial conditions, the compartments

evolve along a unique trajectory. As a more general case, we can consider the one in which the

disease’s dynamics is governed, rather than by Eq (23), by a stochastic differential equation.

More concretely, consider the model that results when we replace the first and second lines of

Eq (23) by

dS
dt
¼ � ð1þ xÞrðtÞbðtÞSðIR þ IH þ ICÞ;

dE
dt
¼ ð1þ xÞrðtÞbðtÞSðIR þ IH þ ICÞ � nE;

ð22Þ

where ξ represents a Gaussian noise term reflecting stochastic fluctuations on the virus’ trans-

missivity [5]. Solving this equation by discretization, each occurrence of ξ at time tk = t0 + kδ is

Fig 12. Occupation of critical care beds (red) and physical distancing measures (blue) for a period of two years under random parameters and

monthly noise decrease. The disease control policy was optimized to respect the condition in Eq (2), i.e., critical care capacity not exceeded, starting with

the parameter region N 0:25 and with a monthly noise decrease of 1ffiffi
k
p , i.e., in the k-th month the noise is equal to 0:25=

ffiffiffi
k
p

. The black-dotted region depicts

the range of critical care occupations observed in a sample of 1000 model parameters in a sequence of shrinking regions N 0:25=
ffiffi
k
p ; more precisely, for each

month k the red region is obtained by evolving, from the initial time to month k (included), 1000 different models with parameters sampled from the

region N 0:25=
ffiffi
k
p . The final plot is obtained by joining the plots for each month k. The inner region in red depicts the range of critical care occupations

corresponding to the uncertainty in the final month, i.e., obtained with 1000 models with parameters sampled in N 0:049. The red line represents the average

critical care occupation, obtained by joining the average of the simulations with decreased uncertainty for each month k. Despite the initial uncertainty on

the parameters ν of the disease model, the final lockdown time is much lower, due to monthly revisions of the original policy plan.

https://doi.org/10.1371/journal.pone.0257958.g012
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replaced by a quantity ξk sampled from a Gaussian distribution of zero mean and standard

deviation Z
ffiffiffi
d
p

, where η denotes the magnitude of the noise term.

For our simulation, we consider the noise η = 0.05. As before, the method of stochastic gra-

dient descent is used for obtaining a noise-robust policy. At each time step, we average the gra-

dient over 1024 × η different stochastic evolutions. In contrast to the case of noisy parameters,

for a stochastic evolution the sampling has to be repeated at each time step, see Appendix B for

more details. The results of our simulations are shown in Fig 13. Notice that, in contrast to Fig

9, the noise is not uniformly distributed in a limited interval, but is given by a Gaussian, which

allows for (rare) events far away from the mean. This justifies the different representations of

uncertainty in these plots. Despite the presence of relatively high noise in the evolution, as

shown by the wide fluctuations in Fig 13, the algorithm is able to devise strong policies that

maintain the critical care occupation almost always, i.e., with a high probability, below its

capacity.

6 Conclusion

In this paper, we have applied standard tools from optimization theory and machine learning

to identify optimal disease control policies, given an epidemiological model. This is in stark

contrast to standard practice in mathematical epidemiology, where human intuition is used to

narrow down the considered set of policies to a uni-parametric family. We saw that the opti-

mal solutions found by our algorithms are highly counter-intuitive, and thus unlikely to be

identified by a human. This supports the idea that policies for disease control should be based

on a combination of both human expertise and machine learning.

Compared to previous approaches that tried to identify suitable disease control policies

through optimal control theory, our framework allows one to devise policies that satisfy

Fig 13. Occupation of critical care beds (red) and physical distancing measures (blue) for a period of two years for stochastic evolution with noise-

level η = 0.05. The disease control policy was optimized to respect the condition in Eq (2), i.e., critical care capacity not exceeded. The region in light red

depicts the range of critical care occupations observed in a sample of 1000 × η different evolutions, with a stochastic noise η = 0.05; the red line, the average

critical care occupation; and the darker red region, the trajectories that lie within two standard deviations from the average value. The policy corresponds to

a total of 321 lockdown days.

https://doi.org/10.1371/journal.pone.0257958.g013
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arbitrary constraints under arbitrary uncertainties in the initial conditions and model parame-

ters that determine the disease’s dynamics, and stochastic evolution. Our methods, in addition,

allow one to optimize over discrete policies, as well as policies that can just vary at certain fixed

times.

To illustrate our ideas, we studied a scenario in which a computer is tasked with outputting

the minimal amount of non-pharmaceutical interventions for an epidemic in a hypothetical

country, in such a way as to never exceed the critical care bed capacity. We looked at situations

in which these measures were continuous (recommendations on the interval [0, 1]) as well as

discrete (either 0 or 1)—a lockdown that is off or on, respectively for periods of 2 years. We

experimented with measures that are just allowed to change weekly, as well as those in which

there is a maximum number of lockdowns that is allowed to be declared. We also showed how

vaccine supplies, even when meager and poorly distributed, can dramatically shorten the total

confinement required to keep the disease under control.

Admittedly, some of our computer-generated policies are too complicated to be imple-

mented in practice. Our formalism allows, however, to limit the complexity of the found

solutions by adding extra constraints to the original optimization problem. To highlight this

feature, we generated a near-optimal weekly policy plan of vaccinations and on/off weekly con-

finement measures with a cap on the total number of lockdowns.

We examined the problems that one may encounter when applying our techniques to sce-

narios where the model parameters are not known with high accuracy, or the model evolves

stochastically. This led us to propose practical policy plans which must be continually revisited,

to account for our ever-changing and ever-growing knowledge in an epidemic. We tested the

viability of this approach by simulating a scenario where the uncertainty on the disease model

parameters decreases with time. As expected, the final policy implemented was safe for the

final range of parameters and required considerably less physical distancing measures than the

initial policy plan hinted.

In this last regard, an interesting problem for future research is devising a gradient-friendly

ansatz for adaptive policy plans for disease control, where the actual measure at each time

depends on the whole history of disease indicators accessible to the government. In theory,

such plans should predict lower values of the average objective function in scenarios where the

model parameters are unknown. In our experience, though, gradient descent applied to the

standard LSTM architecture seems to be unable to beat the non-adaptive score.

Finally, we would like to remark once more that, since the optimization problems we dealt

with in this paper are non-convex, the gradient method is not guaranteed to converge to the

minimum of the (average) objective function. While conducting this research, in order to con-

vince ourselves that the solutions found by our numerical methods were close to optimal, we

had to repeat our optimizations several times, with different initial policies μ(0) and learning

rates �. Such a redundant use of computational resources would have been entirely avoidable if

we had had some rough approximation to the exact solution of the problem. Hence we con-

clude this paper with a challenge for the operations research community: develop mathemati-

cal tools which allow one to lower bound the solution of minimization problems involving

ordinary differential equations.

7 Appendix

A Models for the spread of COVID-19

In all our numerical simulations, we assume that the dynamics of the COVID-19 are well

approximated by a compartmental model of the SEIR type. When the government policy

reduces to enforcing physical distance measures, we adopt a simplified version of the model
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used in [15]. This model divides those infected with COVID-19 into three different compart-

ments: IR, or those who recover by themselves from the disease; IH, those who require hospital-

ization but do not enter a critical care unit; and IC, those who are both hospitalized and visit a

critical care unit before recovery. The dynamics of the model are governed by the system of

ordinary differential equations below, see the diagram in Fig 14:

dS
dt
¼ � rðtÞbðtÞSðIR þ IH þ ICÞ;

dE
dt
¼ rðtÞbðtÞSðIR þ IH þ ICÞ � nE;

dIR
dt
¼ pRnE � gIR;

dIH
dt
¼ pHnE � gIH;

dIC
dt
¼ pCnE � gIC;

dHH

dt
¼ gIH � dHHH;

dHC

dt
¼ gIC � dCHC;

dC
dt
¼ dCHC � xC;

dR
dt
¼ gIC þ dHHH þ xC:

ð23Þ

Here

bðtÞ ¼ gR0

1þ D

2
þ

1 � D

2
cos

2pðt þ �Þ
7� 52

� �� �

ð24Þ

denotes the virus’ transmitivity, that is subject to seasonal variability. rðtÞ ¼ ð�r � 1ÞsðtÞ þ 1

models the effect of a government-mandated lockdown s(t) 2 {0, 1} on the virus’ transmission

rate. The values of the remaining parameters are taken from [15], and appear in Table 1.

Fig 14. Two COVID-19 compartmental models for disease policies based on physical distancing measures. The solid

lines show the model first presented in [30], where the coefficients connecting the compartments are interpreted couplings,

population fractions, time delays and so forth. The addition of the dotted line connecting the ‘susceptible’ and ‘recovered’

compartments creates another model where a vaccination campaign is taken into account.

https://doi.org/10.1371/journal.pone.0257958.g014
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If the government has a vaccine available, the model changes. In that case, the first and last

lines of Eq (23) shall be replaced by

dS
dt
¼ � rðtÞbðtÞSðIR þ IH þ ICÞ � vðtÞS;

dR
dt
¼ gIC þ dHHH þ xC þ vðtÞS;

ð25Þ

where v(t) denotes the vaccination rate.

In all our numerical simulations, we take the total population to be 47 million; the critical

care bed capacity per inhabitant Cc is also taken to be 9.5 × 10−5. We assume that the govern-

ment starts its intervention on day t0 = 60, 30 days after the outbreak of the disease. We model

the disease outbreak by assuming that, at time tout = 30, there are 10 individuals in compart-

ment E. By default, the values of the disease parameters are taken to be the arithmetic means of

the intervals shown in Table 1. We assume that the government can vaccinate at most 50, 000

individuals per day. This means that, at any given time t, vðtÞ � L≔ 50;000

47;000;000
� 0:00106. In

addition, we assume that the total supply of vaccines can just cover a third of the total popula-

tion. In other words,
R
dtvðtÞ � 1

3
.

B Optimization over continuous measures for disease control

In this section, we explain how to apply the gradient method to optimize over continuous clas-

ses of government interventions. Our starting point is an ordinary differential equation of the

form

dxi

dt
¼ Giðt; x; μÞ; i ¼ 1; :::;m: ð26Þ

The entries of vector x represent the occupations of the different compartments of a disease

model. In the case of adaptive policies, some of such entries might also represent the compo-

nents of the cell state θ [32], i.e., the internal variables used by the government to keep track of

the evolution of the disease and guide future government interventions. μ 2 Rn represents a

parametrization of the effects of a given policy. Let xðt; �μ; x0Þ be the solution of Eq (26) with

initial conditions x(0) = x0 and μ ¼ �μ.

Table 1. Parameter ranges for the compartmental model for COVID-19 proposed in [15].

parameter value units

�r [0, 0.6] none

Δ [0.7, 1.0] none

γ 1/5 days−1

ν 1/4.6 days−1

pR 0.9596 none

pH 0.0308 none

pC 0.0132 none

δH 1/8 days−1

δC 1/6 days−1

ξ 1/10 days−1

ϕ −7 × 3.8 days

R0 [2, 2.5] None

https://doi.org/10.1371/journal.pone.0257958.t001
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Given the set M � Rn, we consider the problem of finding the parameters μ? 2M such that

x(t;μ?, x0) minimizes a given functional A. This functional defines the means by which we wish

to control the disease: it might represent the number and duration of lockdown, etc. For the

time being, let us assume this functional to be of the form

Aðμ; x0Þ ¼

Z tf

t0

dt Lðt; μ; xðt;μ; x0ÞÞ þ ÂðμÞ ; ð27Þ

From the discussion in Section 4, the functional in Eq (27) might also contain constraints

which we wish the solution x(t;μ?, x0) to satisfy, such as (12) and (13). Note that we are assum-

ing to know the initial conditions x0 with precision. We will relax this requirement by the end

of the section.

To minimize A(μ, x0) via gradient descent, we need to computerμA. For functionals of the

form (27), we have that

@A
@mj
¼

Z tf

t0

dt
@Lðt;μ; xðt;μ; x0ÞÞ

@mj
þ
X

i

@Lðt;μ; xðt; μ; x0ÞÞ

@xi
@xi

@mj

 !

þ
@ÂðμÞ
@mj

: ð28Þ

The next question is thus how to compute the derivatives @xi
@mj

. To this aim, define the vari-

ables yijðt;μ; x0Þ �
@xiðt;μ;x0Þ

@mj
. Differentiating Eq (26) by μj, we have that

@yij
@t
¼
@Giðt; x;μÞ

@mj
þ
X

l

@Giðt; x; μÞ
@xl

ylj; i ¼ 1; :::;m; j ¼ 1; :::; n: ð29Þ

In order to obtain fyijðtÞg for each time t, it hence suffices to solve the system of coupled dif-

ferential equations given by (26) and (29) with initial conditions x(t0) = x0, yijðt0Þ ¼ 0. This can

be achieved numerically through several different methods, depending on the desired accu-

racy. The simplest such method is called Euler explicit [33]: for some δ> 0, it consists of

regarding time as a discrete variable of the form tk = t0 + δk, for k ¼ 0; :::; d
tf � t0
d
e. The quantities

fxiðtkÞ; yijðtkÞ : kg are then obtained by recursively applying the relations

xiðtkþ1Þ ¼ xiðtkÞ þ dGiðtk; xðtkÞ;μÞ;

yijðtkþ1Þ ¼ yijðtkÞ þ d
@Giðtk; xðtkÞ;μÞ

@mj
þ
X

l

@Giðtk; xðtkÞ;μÞ
@xl

yljðtkÞ

 !

:
ð30Þ

We will also encounter situations where our functional A is more complicated than (27).

Some parameters z (not policy parameters) regulating the evolution (26), such as the basic

reproduction number of the disease, might be unknown, or perhaps the initial conditions x0

are just known within some bounds. In such cases, the problem’s objective function A might

adopt the form

AðμÞ ¼
Z

pðζ; x0Þdζdx0

Z

dtLðt; μ; xðt;μ; ζ; x0ÞÞ þ ÂðmÞ; ð31Þ

for some probability measure p(z, x0)d z d x0. Again, we wish to minimize A over μ. As

explained in section 3, this can be achieved via stochastic gradient descent methods [23]: all we

need is an unbiased estimator ~rμA ofrμA. We obtain this estimator by taking N independent
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samples ðζðjÞ; xðjÞ0 Þ
N
j¼1

from the measure p(z, x0)dzdx0 and using them to compute the quantity

~rμA ¼ rμÂðmÞ þ
1

N

XN

j¼1

rμ

Z

dtLðt;μ; xðt;μ; ζðjÞ; xðjÞ0 ÞÞ: ð32Þ

The prescription above also allows optimizing over control policies in scenarios where the

disease’s equations of motion are not deterministic, but probabilistic. Suppose, for instance,

that the disease’s dynamics are governed by a stochastic differential equation

dxi

dt
¼ Giðt; x; μ; ξÞ; i ¼ 1; :::;m; ð33Þ

where the entries of ξ 2 Rs
represent Gaussian white noise. When we solve this equation by

discretization, each occurrence of ξ at time tk = t0 + kδ is to be replaced by an s-dimensional

vector ξk of independent Gaussian variables of 0 mean and standard deviation
ffiffiffi
d
p

. Call

M ¼ dtf � t0
d
e. If we aim to minimize the expectation value of the objective function, we can esti-

mate the gradient of the average through Eq (32), with z = (ξ1, . . ., ξM) and

pðζÞ ¼
YM

k¼1

1
ffiffiffiffiffiffiffiffi
2pd
p

� �s

e
�

ξðkÞffiffi
d
p

� �2

; ð34Þ

and use stochastic gradient descent to find the minimum. In the specific case we considered in

our simulations, the noise simply affected the “susceptible” and “exposed” compartments,

where the usual infection rate is multiplied by a factor (1 + ξ), thus modelling a stochastic fluc-

tuation of the infection rate. This is arguably the most interesting term to study stochastic fluc-

tuations, since the product SI appearing in the differential equation is at the origin of the

nonlinearity of the SEIR model.

In the next section, we will use the same idea to carry out policy optimizations in scenarios

where the disease’s evolution is influenced by a finite number of discrete random variables.

C Optimization over discrete policies of disease control

The section above explains how to conduct optimizations over disease control policies, as long

as the parameters μ defining the policy are allowed to vary all overRn. Some policies, though,

are by their very nature, discrete. For instance, on day t we can either declare a lockdown

(s(t) = 1) or not declare a lockdown (s(t) = 0). As we discuss in section 5 in the main text, the

effect of a lockdown policy in the evolution of the disease can be modeled by introducing a

term in Eq (26) that is proportional to s(t). Namely, Giðt; x; μÞ ¼ Ĝiðt; x; μÞ þ sðtÞFiðxÞ.
To optimize over such discrete policies via gradient descent methods, one could think of

introducing a continuous variable l 2 R and writing its effect on the disease’s equations of

motion by means of a piece-wise continuous function of λ, e.g.: s(t) = Θ(λ), for t 2 [t1, t2].

Here Θ(z) denotes the Heaviside function (i.e., Θ(z) equals 1 for z� 0, or 0, otherwise). In this

case, however, the gradient method would not work, since the Heaviside function has zero

derivative everywhere except at 0. In every iteration of Adam,rλA would be null, and so

λ(k) = λ(0) for all k.

Applying the gradient method to optimize over policies for disease control involving dis-

crete government interventions is therefore not straightforward. In the following, we propose

two heuristics to tackle this problem.

C.1 Optimization over deterministic discrete policies through non-deterministic dis-

crete policies. Suppose, for the time being, that our lockdown policy were probabilistic, i.e.,
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at each week k, we declare a lockdown with probability pkð1Þ ¼ sð~skÞ; otherwise, with proba-

bility pkð0Þ ¼ 1 � sð~skÞ, we let the population roam freely. We wish to minimize our average
objective function, that is, the expression

�Að~s;μÞ ¼
X

c1 ;:::;cq¼0;1

Yq

k¼1

pkðckÞ
Z

dtLðt;μ; xðt; c; μ; x0ÞÞ; ð35Þ

where c is the whole vector of weekly lockdowns, and μ corresponds to the continuous param-

eters of the policy, e.g.: vaccination rates.

In principle, we could apply gradient descent to minimize (35). Estimating the exact gradi-

ent of the above expression is, however, unrealistic, as it involves summing a number of terms

exponential in the number of weeks q. Instead, we will produce a random unbiased estimate of

the gradient and invoke stochastic gradient descent methods, see Section 3.

Let us first differentiate Eq (35) with respect to the continuous variables μ. The result is

@ �Að~s;μÞ
@mj

¼
X

c1 ;:::;cq¼0;1

Yq

k¼1

pkðckÞvjð~s;μjcÞ ¼ hvjð~s;μjcÞic; ð36Þ

where

vjð~s;μjcÞ ¼
Z

dt
@Lðt;μ; xðt; c; μ; x0ÞÞ

@mj
ð37Þ

and the components of the random variable c 2 {0, 1}q are generated by sequentially sampling

from the Bernouilli distributions ð1 � sð~skÞ; sð~skÞÞk. Note that the expression in the integrand

of (37) can be computed using the techniques discussed in Section B.

Differentiating Eq (35) with respect to ~sk we find that

@ �Að~s;μÞ
@~sk

¼
X

a¼0;1

hwkð~s;μjc
ðk;aÞÞicðk;aÞ ; ð38Þ

with

wkð~s;μjcðk;aÞÞ ¼
@pkðaÞ
@~sk

Z

dtL t; μ; x t; cðk;aÞ;μ; x0

� �� �
; for a ¼ 0; 1 ð39Þ

and the average hwkð~s;μjcðk;aÞÞicðk;aÞ is obtained via sampling over the product of Bernoulli dis-

tributions for cðk;aÞ1 ; . . . ; cðk;aÞk� 1 ; c
ðk;aÞ
kþ1 ; . . . ; cðk;aÞq and fixing cðk;aÞk ¼ a.

Putting all this together, we have that the random vectors v, w satisfy

hvi ¼ rμ
�Að~s;μÞ

hwi ¼ rs
�Að~s;μÞ:

ð40Þ

Since both vectors can be sampled efficiently, we can use them (and their averages) to optimize

over �Að~s;μÞ via stochastic gradient descent.

At this point, the reader might object that our original goal was to minimize (27) over poli-

cies with deterministic lockdown. Very conveniently, independently of the initial values of s, μ,

the stochastic gradient method will converge to a policy p?, μ? such that the deterministic
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policy with the same continuous parameters μ? and lockdown given by

c?k ¼

(
0 for p?kð0Þ > 1=2

1 otherwise
ð41Þ

has the same objective value. Indeed, for k 2 {1, . . ., n}, fix fs?j : j 6¼ kg, then

�Að~s?;μ?Þ ¼
X

a¼0;1

p?kðaÞAð~s
?;μ?jak ¼ aÞ; ð42Þ

with

Að~s?;μ?jak ¼ aÞ �
X

c1 ;:::ck� 1 ;ckþ1;:::;cq¼0;1

Yq

j6¼k

p?j ðcjÞ
Z

dtLðt;μ?; c; xðt; c1; :::; ck� 1; a; ckþ1; :::; cq; μ
?; x0ÞÞ:

ð43Þ

Since p?, μ? is a local minimum of �Að~s?;μ?Þ, it follows that, either

�Að~s?;μ?Þ ¼ Að~s?;μ?jak ¼ 0Þ ¼ Að~s?;μ?jak ¼ 1Þ; ð44Þ

or, for some a 2 {0, 1},

�Að~s?;μ?Þ ¼ Að~s?;μ?jak ¼ aÞ < Að~s?;μ?jak ¼ 1 � aÞ; ð45Þ

with p?kðaÞ ¼ 1; p?kð1 � aÞ ¼ 0. In either case, fixing ck through the procedure (41) cannot

increase the average value of the objective function. Iterating over k = 1, . . ., q, we prove the

claim.

C.1.1 Generalization to optimizations over adaptive policies. The method described above

can be easily extended to tackle optimization problems over weekly discrete adaptive policies.

Consider an adaptive policy where the government intervention ck 2 {0, 1} on week k is

decided on week k − l by sampling from a Bernoulli distribution dependent on the value θk of

the cell state on week k − l (remember from Appendix B that the cell state at time t represents

the government’s internal memory and is given by some of the entries of x(t)). The functional

form of this distribution is determined by a vector of parameters νk. We thus have that

pk(ck) = pk(ck|θk; νk).
Note that xk = xk(c1, . . ., ck−l−1). Starting from the initial conditions x0, the average objective

function can therefore be estimated by propagating x week by week, computing the contribu-

tion to (27) and sampling each ck at time 7(k − l) as we go along. If we instead compute the

contribution to the gradient of (27) with respect to the continuous variables μ, we will have a

statistical estimate of the gradient of the average objective function (with respect to μ).

Estimating the gradient of the average objective function with respect to the variables νk is

done similarly, by averaging over the appropriate Markov chain. More specifically,

rνk
�Að~s;μÞ ¼

X

a¼0;1

D
wkð~ν; μjc

ðk;aÞÞ
E

cðk;aÞ
; ð46Þ

with

wkð~ν;μjcðk;aÞÞ ¼ rνkpkðajy
k
; νkÞ �

Z

dtLðt;μ; xðt; cðk;aÞ;μ; x0ÞÞ; for a ¼ 0; 1: ð47Þ

This time, c(k,a) is sampled sequentially while we solve the differential equation, as described
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before to estimate the average of the objective function. The only difference is that, at time

t0 + 7(k − l), instead of sampling ck, we set it equal to a.

Now, let us assume that, for y1 6¼ y2, the family of functions pk(a|θk;νk) available is rich

enough to regard pk(a|θk = y1;νk), pk(a|θk = y2;νk) as independent. Then one can argue as for

non-adaptive policies and conclude that the gradient method will converge to a deterministic

policy.

C.2 Optimization over discrete policies with continuous lockdown times. Our second

heuristic to devise discrete policies for disease control requires considering lock-down policies

of the following form:

sðtÞ ¼
0 if ðt � t0Þ � t1 or

P2i
k¼1
tk � ðt � t0Þ �

P2iþ1

k¼1
tk; for some i;

1 otherwise:

8
<

:
ð48Þ

Here t0 is fixed and the variables ftkg
n
k¼1

are assumed to be non-negative and to add up to

tf − t0; this policy can hence be parametrized by a vector μ 2 Rn
, with τ = (tf − t0)softmax(μ),

where softmax(μ) denotes the vector ν with components ni ¼
expðmiÞP
j
expðmjÞ

. Intuitively, ftkg
n
i¼1

divide the interval [t0, tf] into n different parts. In each part, lockdown is alternatively declared

(s = 1) or suspended (s = 0), see Fig 15.

At time t, the disease’s basic reproduction number is given by (15), with s(t) defined as

above. To find out yij �
@xiðt;μÞ
@μj

, we invoke Eq (29). In computing the term

@Gi

@mj
¼
X

k

@Gi

@tk

@tk
@mj

; ð49Þ

we have the problem that, due to (48), G is not continuous or differentiable. To work our way

out, we approximate s(t) by a piece-wise continuous function with bounded derivative that

transitions from 0 to 1 (or viceversa) linearly and in time δ� 1, see Fig 16; later we will take

the limit δ! 0.

The new function ~sðtÞ has zero derivative with respect to μi, except for t satisfying

t� ≔ ðt0 þ
Xu

k¼1

tkÞ � t � ðt0 þ
Xu

k¼1

tk þ dÞ ¼: tþ: ð50Þ

In that case, the derivative of ŝ with respect to τj, with j� u, will (approximately) be

@

@tj
ŝðtÞ ¼

ð� 1Þ
u

d
: ð51Þ

The derivative with respect to any of the variables {τj: j> u} is zero. The dominant term on the

Fig 15. Lockdowns (discrete policies) parametrized with continuous time. In this example there are two lockdowns

and two periods of freedom. The algorithm finds the optimal distribution and minimises the total time τ2 + τ4 in

lockdown.

https://doi.org/10.1371/journal.pone.0257958.g015
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right-hand side of (29) for t 2 [t−, t+] is therefore

@Gi

@mj
¼
@Giðt� ; xðt� ÞÞ

@~s

Xu

k¼1

@~s
@tk

@tk
@mj

¼ ðtf � t0Þ
ð� 1Þ

u

d

@Giðt� ; xðt� ÞÞ
@~s

Xu

k¼1

@softmaxðμÞk
@mj

¼:
Ki

jðt
� ; xðt� Þ; μ; uÞ

d
:

ð52Þ

Since the evolution takes place for time δ = t+ − t−, we have that

yijðt
þÞ � yijðt

� Þ þ Ki
jðt
� ; xðt� Þ;μ;mÞ. Taking the limit δ! 0, we have that the evolution of

yij is determined by the following prescription:

1. yijðt0Þ ¼ 0.

2. Let t ¼ t0 þ
Pu

1¼0
tk, for some u. Then yij is updated by the rule

yijðtÞ ! yijðtÞ þ Ki
jðt; x; μ; uÞ: ð53Þ

3. For all other values of t, yij continuously evolves via the equation

dyij
dt
¼
X

l

@Giðt; x; μÞ
@xl

ylj; i ¼ 1; :::;m; j ¼ 1; :::; n: ð54Þ

D Continuous-space population models

Even though the focus of this article is that of compartmental models of the form (26), one can

also apply the principles of gradient descent for policy optimizations on dynamical systems

governed by partial differential equations. Consider, e.g., the scenario studied in [26], where

the authors model the spread of rabies in raccoons across a realistic landscape O � R2
through

a system of reaction-diffusion equations of the form

@

@t
u � divðνruÞ ¼ AðuÞu: ð55Þ

In this equation, the three entries of the vector field uðt;X;YÞ 2 R3
respectively denote the

number of susceptible, exposed and infected individuals at time t in position X, Y. ν, A are

Fig 16. Modified continuous function ~sðtÞ.

https://doi.org/10.1371/journal.pone.0257958.g016
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3 × 3 matrices that, in principle, might depend on some controllable parameters μ. This equa-

tion is to be solved under the initial conditions u(0, X, Y) = u0(X, Y) and the homogeneous von

Neumann boundary conditions

ruðt;X;YÞ � nðX;YÞ ¼ 0; for ðX;YÞ 2 @O; ð56Þ

where nðX;YÞ 2 R2 denotes the vector normal to the contour @O at location (X, Y). The

authors of [26] solve this equation numerically via the Finite Element Method (FEM) [34].

Suppose that we wished to optimize the policy parameters μ 2 Rn
over some functional A

depending on u(t, X, Y;μ, u0) (instead of x(t;μ, x0)) via the gradient method. Then at some

point we would need to compute the quantities vijðt;X;Y;μ; u0Þ �
@uiðt;X;Y;μ;u0Þ

@mj
. Let vj 2 R

3
be

the vector with components vij and differentiate both (55) and (56) with respect to μi. This

results in the equation

@

@t
vj � div

@ν
@mj
ruþ nrvj

 !

¼
@A
@mj
þ
@A
@ui

vij

 !

uþ AðuÞvj

rvjðt;X;YÞ � n ¼ 0; for ðX;YÞ 2 @O:

ð57Þ

Since u(0, X, Y;μ, u0) does not depend on μ, this new diffusion equation must be solved for the

initial conditions vj(X, Y, 0) = 0. This can be achieved numerically in the same way that the

authors of [26] solved Eq (55), that is, via the FEM.
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