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Abstract

There is a need to accurately call human leukocyte antigen (HLA) genes from existing short-read sequencing data, however
there is no single solution that matches the gold standard of Sanger sequenced lab typing. Here we aimed to combine results
from available software programs, minimizing the biases of applied algorithm and HLA reference. The result is a robust HLA
population resource for the published 1000 Swedish genomes, and a framework for future HLA interrogation. HLA 2nd-field
alleles were called using four imputation and inference methods for the classical eight genes (class I: HLA-A, HLA-B, HLA-C;
class II: HLA-DPAI, HLA-DPBI, HLA-DQAI, HLA-DQBI, HLA-DRBI). A high confidence population set (SweHLA) was
determined using an n—1I concordance rule for class I (four software) and class II (three software) alleles. Results were
compared across populations and individual programs benchmarked to SweHLA. Per gene, 875 to 988 of the 1000 samples
were genotyped in SweHLA; 920 samples had at least seven loci called. While a small fraction of reference alleles were
common to all software (class I = 1.9% and class II = 4.1%), this did not affect the overall call rate. Gene-level concordance
was high compared to European populations (>0.83%), with COX and PGF the dominant SweHLA haplotypes. We noted that
15/18 discordant alleles (delta allele frequency >2) were previously reported as disease-associated. These differences could in
part explain across-study genetic replication failures, reinforcing the need to use multiple software solutions. SweHLA
demonstrates a way to use existing NGS data to generate a population resource agnostic to individual HLA software biases.

Introduction

The human major histocompatibility complex (MHC) spans
approximately four Mb on chromosome six and contains
more than 200 genes, ~40% of which have immunological
function [1]. Within this region, the human leukocyte
antigen (HLA) genes are divided into classes (class I, pre-
sent intracellular derived peptides to CD8+ T-cells; class 1II,
present extracellular derived peptides to CD4+ T-cells).
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These are some of the most polymorphic genes in the
genome, with new alleles continuously being discovered
[1-3]. In the ten years from 2008 to 2018, the number of
alleles in class I and class II have expanded six fold; from
~2500 to ~15,500 and ~1000 to ~6000 alleles, respectively
[4]. Given their roles in immune recognition, these genes
are essential to the processes of transplantation, disease and
infection susceptibility (including immunological diseases,
but also cancers and neuropathies), drug response and
pregnancy [2, 3, 5, 6].

Sanger sequenced lab typing is the gold standard for
calling HLA alleles, where alleles are usually called at the
clinically relevant, protein level, 2nd-field resolution [7, 8]
(e.g., HLA-A*24:02 where the fields are separated by a
colon). However, the last ten years has seen the growing
need to accurately call alleles from pre-existing data, such as
that generated from SNP chips or NGS short-read sequen-
cing [7]. The result has been an explosion of HLA software
solutions, each using different methods for imputation or
inference. The continued growth in this bioinformatics field
neatly illustrates the difficulty of the task, and demonstrates
how, as yet, no single software can replace biological typing.
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Using four freely available software programs, and
existing Illumina short read NGS data generated for the
1000 Swedish genomes project (SweGen [9]), we called
2nd-field alleles for the classical eight HLA genes (class I:
HILA-A, HLA-B, HLA-C; class 1I: HLA-DPAI, HLA-DPBI,
HLA-DQAI, HLA-DQBI, HLA-DRBI). This multi-software
data set demonstrated how biases inherent in input data
choice, HLA allele reference availability and software
algorithms, could impact downstream analyses. For these
reasons, alleles within the high confidence Swedish popu-
lation HLA set, SweHLA, were designated on the basis of
n—1 software matches (class I: three out of four; class II:
two out of three). This resource, benchmarked with allele
frequency correlation to 252 previously lab typed Swedish
individuals [10] and compared on a population level to
5544 imputed British individuals [11], is publicly available
for research use.

Methods
Study population

Individual BAM and gVCF files from the published whole
genome sequencing project of 1000 individuals, SweGen
[9], were used as the basis for these analyses. Representing
a cross-section of the Swedish population, these individuals
were selected from the Swedish twin registry (one per pair)
and The Northern Sweden Population Health Study. In total
this encompassed 506 males and 494 females with a median
age of 65.2 years [9]. SweGen [9] data had an average
genome coverage of 36.7x and was generated using paired-
end sequencing (150 bp read length) on Illumina HiSeq X
with v2.5 sequencing chemistry (https://doi.org/10.17044/
NBIS/G000003).

MHC demographics

The MHC region was defined as spanning hgl9 chr6:28
477 797-33 448 354 using coordinates lifted from GRCh38.
p13. Nucleotide diversity (Pi), Tajima’s D, and SNP and
indel densities were calculated in 1000 bp windows from
curated vefs using VCFtools [12] v0.1.14. Coverage across
the same windows was determined with BEDtools [13]
v2.26.0 using individual sorted BAM files and a read length
of 150 bp [9].

HLA typing with four software

Four freely available software programs were selected for
the analysis (Fig. 1); the commonly used imputation
(SNP2HLA [14], cited >340 times) and inference software

(OptiType [15], cited >140 times), as well as two more
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Fig. 1 Pipeline for preliminary HLA allele typing and generation
of a high confidence gene set. Four software solutions, representing
two different models (imputation or inference) were used for typing.
Each software utilized a separate algorithm and HLA reference to call a
variable number of genes. An n—1/ concordance rule was used to create
the high confidence set for the classical 8 genes (HLA-A, HLA-B, HLA-
C, HLA-DPAI, HLA-DPBI, HLA-DQAI, HLA-DQBI, HLA-DRBI).

recently published inference solutions (HLA-VBSeq [16]
and HLAscan [17]). In brief, the imputation method builds
HLA alleles based on haplotypes generated from user
supplied pruned GWAS SNPs and a phased reference panel.
Whereas inference software aligns NGS reads to all HLA
alleles in a reference and determines an allele best match via
method specific penalty algorithms. The reference is
sourced from the ImMunoGeneTics project/human leuko-
cyte antigen (IMGT/HLA) database [18]. Of note, each
software method uses a different reference version, and
different regions of this resource, be it nucleotide (exonic)
or genomic sequence. The 2nd-field resolution alleles from
each program were recorded for each HLA gene available,
however only alleles from the classical 8 genes were eval-
uated for the generation of SweHLA. The specific running
conditions of each software program is detailed below and
summarized in Fig. 1.

SNP2HLA [14] utilizes the Hidden Markov model of
Beagle [19] and the TIDGC reference panel of 5225 Eur-
opeans [14] to impute HLA alleles based on a pre 3.11.0
reference (version not specified). The result is 2nd-field
allele information for the classical 8 genes. The default
settings, ten iterations and window size of 1000 markers,
were implemented.

OptiType [15] views HLA typing as an optimization
problem and uses an integer linear program to estimate
which allele explains the largest number of reads. This
software implements a custom-made IMGT/HLA v3.14.0
reference, where nucleotide sequences have been com-
plemented with intronic information from the closest
neighbor of the allele. These genomic-like sequences focus
on exons 2 and 3 and allow for the calling of HLA-A, HLA-
B, and HLA-C, to a 2nd-field resolution.


https://doi.org/10.17044/NBIS/G000003
https://doi.org/10.17044/NBIS/G000003

SweHLA: the high confidence HLA typing bio-resource drawn from 1000 Swedish genomes 629

HLA-VBSeq [16] uses a variational Bayesian approach to
remap reads to a user defined IMGT/HLA genomic reference,
we selected v3.34.0. Default settings were used, however the
recommended allele coverage threshold (>20% of mean
coverage) was relaxed to 10% in order to increase the number
of alleles reported (reduced from 30 to 0.5% NA genotypes).
Coverage was calculated for the 21 genes available in HLA-
VBSeq using the longest transcript and Picard v1.92 HS-
metrics (http://broadinstitute.github.io/picard/). HLA-VBSeq
typed at up to a 4-field resolution [8].

HLAscan [17] realigns reads to a reference consisting of
the nucleotide sequences from IMGT/HLA v3.21.0. It relies
on a score function that ranks alleles based on the number of
unique reads mapping to each, including a gap penalty.
Alleles are reported up to a 3rd-field resolution [8], and calls
are based on exon 2 and 3 for class I genes, and exon 2 for
class II genes. Default settings were used; score cut-off 50,
constant using ScoreFunc 20, for the 21 available genes.

Creation of the high confidence SweHLA data set

As indicated above, each software program has its own
inherent biases. To reduce the impact of these, the high
confidence SweHLA allele data set was generated by mer-
ging results based on n—1 software concordance (Fig. 1).
An individual was classed as “typed” if the allelic pairs for
three out of four software matched for class I, or two out of
three for class II. Downstream population allele frequencies
were calculated from the SweHLA data set.

All alleles are named according to IMGT/HLA refer-
ences with a subset of HGVS allele notations reported in
Supplementary Table S1. The HGVS nomenclature for all
alleles is maintained at https://www.ebi.ac.uk/ipd/imgt/hla/a
llele.html.

Phasing of HLA haplotype blocks

SweHLA alleles were used as input to estimate haplotype
blocks across the classical 8 genes with PHASE v2.1.1 [20].
The -MS model [21] was run over 10,000 iterations using a
thinning interval of 5 and a burn-in of 100. The model was
run ten times using different seeds for each. In order to
maintain phasing power but reduce computational time, the
eight genes were divided into three blocks based on known
recombination hotspots (1: HLA-C and HLA-B, 2: HLA-
DRBI1, HLA-DQAI, and HLA-DQBI, and 3: HLA-DPAI
and HLA-DPBI) [22]. In this way the maximum number of
samples per block could also be considered. Haplotypes
from the three intermediate blocks were combined in the
following sequence, HLA-A with block 1, followed by
block 2 and 3. Haplotypes were named as per the Interna-
tional Histocompatibility Working Group (Supplementary
Table S2).

Benchmarking the HLA typing accuracy and
population frequency

Across software program comparisons were performed to
investigate the impact of software choice on the ability to
call HLA alleles. SweHL A was assigned as the truth set and
a concordance rate per allele calculated for each program.
Concordance rate was defined by counting the number of
times an allele was correctly called, divided by the total
number of SweHLA calls for the same allele.

Within and across population comparisons were also
conducted. We estimated allele calling accuracy by com-
paring SweHLA allele frequencies to an independent lab
typed Swedish population [10]. The lab typed set consisted
of 252 unrelated individuals at 2nd-field resolution for
HLA-A, HLA-B, HLA-DQAI, HLA-DQBI, and HLA-DRBI.
Correlation (r*) was calculated with cor() in the R v3.4
environment [23]. To place SweHLA results in the context
of Europe, gene and haplotype frequencies were compared
to those of a recently published SNP2HLA imputed British
population (5544 individuals) [11].

Results
Characterization of MHC region

The ability to call HLA alleles across the MHC is directly
related to the quantity and quality of the reads mapped and
variants called. Given the variability of coverage across this
four Mb region (average 46.8x; range 7.5-90.5x; Fig. 2a),
we examined the repeat and gene content of the 1 kb bins
sitting at the extremes of the distribution (coverage <20x or
>70x). As expected, these regions predominantly contained
repeat elements (61% were L1 LINEs, Alu SINEs and
ERVI1 LTRs), however we did note exons 1, 3, and 6 of
HILA-DRBI (NM_002124.3 positions 1-194, 465746, and
882-1217, respectively) were covered with >70x. These
coverage extremes illustrate the inherent problems of
mapping short-read data uniquely to repeats or across genes
and paralogues.

We used the metrics of Tajima’s D and Pi, in combina-
tion with variation density, to examine the patterns of
selection and diversity across the MHC (Fig. 2b—e). The
three main peaks in each panel are centered over the class I
(e.g., 29.9 Mb near HLA-A and 31.2 Mb near HLA-C) and
class II genes (e.g., 32.6 Mb near HLA-DQAI), likely
reflecting the selection pressure on these key immune gene
classes (as Tajima’s D > 3, Fig. 2b). The strongest region of
nucleotide diversity spanned the class I genes, with the
apex including the 3'UTR of HLA-DQAI (NM_002122.3,
Pi=0.048, 137 SNPs; Fig. 2c). In contrast to both class I
regions, the 32.6 Mb section contains the highest density of
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Fig. 2 Characterization of read depth and variation in 1-kb bins
across the MHC. a Coverage peaks and troughs are illustrated in
relation to the average across the region (46.8x, dotted line). Metrics of
genetic diversity, Tajima’s D (b) and Pi (c) are plotted for the same
bins, as are density values for indels (d) and SNPs (e), although the
latter are further divided into minor allele frequency (MAF) bins.

SNPs in the 0.2-0.3 and 0.4-0.5 MAF bins (orange and
light blue, respectively, Fig. 2e). We further dissected the
87,637 variable positions in both the indel and SNP bins to
characterize which fraction represented known (dbSNP
v147) or novel variation (Supplementary Table S3). In each
case, the majority of novel variation was found in the lowest
MAF bin (MAF <0.1; Supplementary Table S3, 69.0% of
novel indels and 58.3% of novel SNP; Fig. 2d, e, dark blue
band). For indels the fraction of novel variants per bin
remained fairly steady (30-40%), however this value
dropped markedly for SNPs (1.5-3.0%), and noticeably,
only singletons not found in EXAC [24] variant database
were located in exons 2 or 3 of the classical 8 genes
(data not shown).
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Table 1 Summary information for the high confidence set, SweHLA.

Sam- Alleles® Homo- Co-

ples! Zygos- ver-

ity (%) age’

HLA- A 981 28 17.7 37.7
B 971 36 9.8 355

C 976 23 12.1 35.1

DQAI 824 15 15.0 35.6

DQBI 988 16 11.9 34.0

DRBI 901 33 11.1 323

DPAI 982 4 78.7 37.0

DPBI 875 20 28.9 36.8

Gene set Class | 932 NA 2.6 36.1
Classical 6 690 NA 1.2 35.0

Classical 8 593 NA 0.5 35.5

NA not applicable

11000 samples were available for typing at each gene

Total number of 2-field alleles typed at each gene

3Coverage was calculated as the part of the HLA-VBSeq threshold

HLA alleles from four software and high confidence
calls

Each of the software programs applied demonstrated a high
per gene HLA typing rate, ranging between 98.1-100%
(Supplementary Table S4). Per software the most difficult
gene to call was HLA-DPAI (938 samples called by
HLAscan, Supplementary Table S4), while for SweHLA it
was HLA-DQAI (824 samples typed, Table 1). The overall
genotyping rate dropped slightly for SweHLA (93.7%),
however this was due to cross software mismatches and not
a single individual’s inability to be typed. Of the small
fraction of SweHLA alleles that were called as NA (1006/
16,000 alleles), most (n = 863) could be resolved if typing
was relaxed to the serological antigen 1st-field level.

For the SweHLA class I gene set, 932 samples were called
for all three genes, 60 samples for two genes and only four
samples had one gene typed (Fig. 3). A similar pattern
emerged as we built up to the classical 8 through the classical
6 set. The poorer SweHLA calling at the HLA-DQAI locus
impacted this set, for which 690 samples had genotypes for all
six genes. For the classical 8 gene set, 593 samples were
typed at all genes, while 920 samples have high confidence
calls at seven or more genes (Fig. 3).

An average of 22 alleles were called for each of the eight
genes investigated for SweHLA (range 4-36, Table 1). This
was not related to the absolute number of alleles available
per software, but rather to Swedish population diversity. For
example, while between 298 and 9854 2nd-field alleles
were available across the software tested (SNP2HLA and
HLAscan respectively, Supplementary Table S5), only
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Fig. 3 Distribution of samples typed in each stage during the
creation of the complete SweHLA set. The majority of the 1000
SweGen samples were successfully called at all three class I genes
(light gray, 3 genes n=932). Building up to the classical 6 genes,
690 samples were genotyped successfully at all loci (dark gray), which
decreased slightly for the classical 8 (hashed, 8 genes n = 593).

1.9% (class I) and 4.1% (class II) of the total number of
alleles available were common across all programs (Sup-
plementary Fig. S1A-B). However, an intersection of the
alleles called (Supplementary Table S5), revealed that for
class I, 32.5% of alleles were typed in all software (37.7%
in n—1 programs) and for class II this fraction was 55.7%
(72.1% for n—1 programs, Supplementary Fig. SIC-D).

We recorded population level frequencies for each gene
and software combination (https:/swefreq.nbis.se, https://doi.
org/10.17044/NBIS/G0O00009) and noted that shared allele
availability did not always translate to shared allele frequency.
For example in class I genes, small frequency fluctuations
were observed across data sets for HLA-A (A*26:01 ranged
between 1.8-2.5%; 2.1% SweHLA, Fig. 4a), while larger
discrepancies were noted for HLA-B (B*27:05: 4.8-8.0%;
7.6% in SweHLA, Supplementary Fig. S2A). In class II, the
variations were larger and occurred more frequently. For HLA-
DRBI, the most common allele HLA-DRBI1*15:01, depending
on software choice, the population allele frequency ranged
from 6.1 to 17.7% (SweHLA frequency 16.1%, Fig. 4c).

In order to explore discrepancies more thoroughly, we
plotted the concordance rate per allele against the frequency
per allele for each gene and software (Supplementary
Fig. S3). In general, SweHLA alleles observed at a fre-
quency greater than 5% showed concordance above 90%.
There were a few notable exceptions; HLA-B*27:05 and
HILA-DRBI*15:01 as mentioned previously, as well as

HLA-C*05:01, two HLA-DPBI and HLA-DQAI alleles
(Supplementary Fig. S3B-E and H). In each case, the
SweHLA allele frequency was 7.6% or above, with a con-
cordance rate below 80%. We noted previously that HLA-
DQAI had the lowest genotyping rate (824/1000 samples,
Table 1) and Supplementary Fig. S3E illustrates that this
problem is in large part due to missing reference data; seven
alleles with a population allele frequency ranging
0.06-6.00% were not present in the SNP2HLA reference
(dark blue line). Combined, these alleles represent 11% of
HLA-DQAI diversity in SweHLA.

Given that SNP2HLA is an imputation program, we
investigated if the original alignment of reads to the genome
reference could have affected SNP availability for this process.
This may indeed have been the case. There are eight curated
European HLA haplotypes available for alignment, with
GRCh37 incorporating the PGF haplotype [25] (Supplemen-
tary Table S2). This is important, as within exon 2 of HLA-
DQALI there is a stretch of ~100 nucleotides, common to COX
and QBL, but lacking in the other five haplotypes including
PGF. Mapping to GRCh37 results in the soft clipping of reads
which cannot align to the reference, and a dramatic drop in
sequence coverage (Supplementary Fig. S4). The latter can
affect allele calling in both homozygotes and heterozygotes,
illustrated clearly when uncalled samples were aligned to
either PGF, or alternate haplotypes (Supplementary Fig. S4).

Allele and haplotype correlations across populations

The SweHLA population frequencies for HLA-A, HLA-B,
HLA-C, HLA-DQAI, HLA-DQBI, and HLA-DRBI were
highly correlated with those of an independent lab typed
Swedish population (+* spans between 0.87-0.99 for HLA-
DQAI to HLA-A; black circles, Fig. 4b, d and Supple-
mentary Fig. SSA, C and E). There was no evidence that the
number of alleles typed influence the correlation. HLA-
DQAI has 15 alleles and HLA-DQBI 16, yet 7 is 0.87 and
0.93, respectively. High levels of genetic homogeneity
across HLA have been reported for Europe, with the
diversity estimated to be as low as ~5% [26, 27]. It was
therefore not surprising that the frequency comparison
between SweHLA and >5500 British samples gave only
slightly lower correlations than those to a Swedish popu-
lation (+* spans 0.83-0.98 for HLA-DQAI to HLA-A; gray
circles, Fig. 4b, d and Supplementary Fig. S5).

Phased MHC blocks can be used in multiple downstream
analyses, including the imputation of missing allele calls,
creating population reference graphs, the investigation of
allele group interactions and to dissect disease causing
mechanisms [25, 28, 29]. In our phasing of the classical 8
gene haplotypes, only samples with complete allele typing
per intermediate block were included. For example, block 1
(HLA-C and HLA-B) utilized the results of 948 samples,
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Fig. 4 SweHLA allele frequency distribution and correlation (%) to
a separate lab typed Swedish population (SWE) and an imputed
British set (GBR). a, b HLA-A*02:0] was the most frequent allele
found in SweHLA, SWE, and GBR data sets, where as ¢, d the fre-
quency pattern in HLA-DRBI varied across these three data sets.

whereas block 2 (HLA-DRBI, HLA-DQAI, and HLA-
DQBI) was reduced to 733 samples (Supplementary
Fig. S6A-C). At the resolution of the classical 6 genes
(Supplementary Fig. S6D), it was revealed that COX (7%)

SPRINGER NATURE

Haplotype freq. SweHLA (%)

SweHLA alleles with frequencies above 1% are plotted in bar graphs.
e The distribution of classical 8 allele haplotypes with a population
frequency of <3% in SweHLA. (1) and (2) indicate haplotypes with
the same allele frequency. f The correlation between SweHLA and
GBR populations is reduced at the haplotype level.

and PGF (4%) were the most common haplotypes in
SweHLA. This result could be further teased apart at the
classical 8 haplotype level (Fig. 4e), with PGF still among
the most frequent at 2.6% of the total, however VAVY
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which shares the classical 6 haplotype with COX, became
the most common haplotype (2.7%) [29].

The maximum haplotype frequency within the classical 6
data was below 7% and for the classical 8 it was reduced to
below 3% (Fig. 4e, Supplementary Fig. S6D). This was in
keeping with the frequencies reported for the British
population [11]. Comparing across these populations, we
can see the effect of recombination to shuffle common
alleles to create rare haplotypes (classical 8 haplotype > =
0.648, Fig. 4f), however COX and PGF were also the most
frequent 6 gene haplotypes in the British population, with
VAVY ranked third in the 8 gene haplotype [11].

Significant differences found in homozygosity rate

We explored the homozygosity of SweHLA (Table 1) in
comparison to other European derived populations. Per
gene, SweHLA was compared to European Americans
(HLA-A, HLA-B, HLA-C, HLA-DQAI, and HLA-DRBI)
[30] and for the classical 6 and 8 haplotypes SweHLA
was compared with the same British population as before
[11]. Both HLA-A and HLA-B were significantly more
homozygous than European Americans (population pro-
portional Z-score; 17.7% vs. 15.2%, p-value = 0.044 and
9.8% vs. 7.0%, p-value =0.002, respectively). For the
classical 6 and 8 haplotypes, no significant differences to
the British cohort were observed (p-values: 0.44 and 0.31).

Discussion

Drawn from the 1000 genomes of SweGen, SweHLA
represents a high confidence bio-resource that provides a
snapshot of Sweden’s MHC diversity. Data is reported at a
clinically relevant resolution (2nd-field) and through the
application of an n—/ software concordance approach
(Fig. 1), is expected to have minimal allele bias. Results for
the classical 8 genes are available at both the allele and
haplotype level, and so SweHLA could be used to estimate
HLA diversity within this population, or to tease apart the
patterns of linkage disequilibrium surrounding these genes.
As SweHLA is drawn from SweGen, and therefore also the
Swedish Twin Registry, the resource’s value likely lies as an
added control resource for the genetic dissection of disease
linked to HLA genes. Access to raw genotyping or pheno-
typic data (sex, age, and cohort) can be requested from each
data set mentioned following an individual review process.

SweHLA is a consensus resource; for allele calls to be
reported, three out of four software matches were required
for class I genes, relaxed to two out of three for class II
genes. The absolute number of HLA typing programs
considered was arbitrary, but reflected a range of factors that
end users of all software should take into account, (i) not all

programs are developed to call the same gene set, (ii) the
IMGT/HLA allele reference employed may be fixed or
dated, (iii) algorithms differ between software.

Point one can be overcome through the selection of
software to suit a specific need; although there is a lack of
solutions developed to call outside class I, let alone the
classical 8 genes set or those in the extended MHC region.
Points two and three are perhaps the most clinically rele-
vant, and reinforce the need for using multiple programs.
Between 298 and 9854 2nd-field reference alleles were
available for the software programs we used, however only
a small fraction of these were common to all (1.9% class 1
and 4.1% class II). While this fraction increased in our
population after typing (32.5% class I and 55.7% class II),
the choice of IMGT/HLA reference could lead to incorrect
assumptions. For example, HLA-DQA1*03:03 has a popu-
lation frequency of 6% in SweHLA, but was not reported in
the British population we used for comparison (Supple-
mentary Fig. S5C). This was not a reflection of diversity,
rather the fact that HLA-DQA1%03:03 is not available in the
software used to analyse the British data set (Supplementary
Fig. S3E). The flip side of this is when reference alleles are
available, but not called due to the software’s algorithm.
Here we use the example of HLA-DRBI*16:01, an allele
previously associated with immune response in multiple
sclerosis [31]. In our hands, HLA-DRB1*16:0]1 was called
at a frequency of 0, 0.3, and 10.7% depending on software
choice (Supplementary Fig. S3D). It may therefore appear
that a locus is not replicated, rather than misestimated.

These concerns were not limited to class II alleles. For
HLA-B*27:05, an allele with high association to several dis-
eases, including ankylosing spondylitis [11, 32], we recorded
allele frequency between 4.8 and 8.0%. Troublingly, one of
the software had a concordance rate below 80% when com-
pared with SweHLA (Supplementary Fig. S3B). Others have
noted that the HLA-B*27 serotype has a higher frequency in
the Nordic countries compared with other regions (>10% of
HILA-B diversity [10, 33]), and so depending on population,
this allele may appear rare (<5%) when in fact that is not the
true case. These are not isolated examples. We noted 18
alleles with a delta allele frequency between any two HLA
programs of more than 2%; 15 of these had reported asso-
ciation to at least one disease (Supplementary Table S6).

The problem of variant calling from reads aligned to
regions of high genetic diversity, high repeat content or
containing paralogous genes is not new [34, 35]. A clear
bias toward calling reference alleles was noted when HLA
SNPs genotyped from 1000G (phase I) short read NGS
were compared to those generated for the same individuals
via Sanger sequencing [36]. This trend was found in four of
the five HLA genes examined, HLA-A, HLA-B, HLA-DQBI,
and HLA-C, but not HLA-DRB] [36]. It is here that popu-
lation reference graphs [29, 37] or alignment to the most
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similar MHC reference could aid variation discovery. We
tested this at the HLA-DQA locus with a subset of samples,
typed or missing from SweHLA. First, we used the sur-
rounding HLA classical 8 alleles to determine the most
similar GRCh37 alternative haplotypes [29], and then
aligned raw SweGen reads to those references and com-
pared observable allelic variation. Supplementary Fig. S4
illustrates how the problem of soft clipping in exon 2 can be
resolved for homozygotes (e.g., SweGen_A) and some
heterozygotes (e.g., SweGen_B), but the problem is more
challenging for heterozygotes for which the alternate
extended haplotype is not yet available (e.g., SweGen_C).
To overcome these issues, the community is developing
software solutions using HLA population graphs as the
reference. These aim not only to improve HLA inference,
but also identify novel alleles (e.g., HLA*PRG [38] and
Kourami [39]). However these provide G-group resolution
[8], clustering HLA alleles together based on identical
sequence at the peptide biding domain.

While it was not the aim of this project to identify novel
HLA alleles, we nonetheless examined the genetic diversity
across the MHC for this population (Fig. 2). Our results
matched expectation, with the highest levels of Tajima’s D
over the class I and II genes, and with more nucleotide
diversity observed at class II genes compared to class I
[40, 41]. The majority of SNP and indel variation fell into
the 0—-0.1 minor allele frequency bins. While a proportion of
this will be true variation, as was noted above and by others,
when the short read sequences are aligned to a more similar
reference, a fraction of this variation will be revealed to be
mapping errors [42].

With this work we have added to the growing set of HLA
population resources now available for biomedicine. Whe-
ther the goal is to assess allele prevalence, dissect haplotype
structure or develop a panel of additional control samples,
the 1000 genomes sourced to build SweHLA will be
extremely valuable. Here the development of an n—1/ high
concordance HLA set cleanly illustrates the need to apply
more than one program to the problem of calling MHC
alleles from short read data sets.

Data availability

The SweHLA population allele frequency data is available
from the website https://swefreq.nbis.se (https://doi.org/10.
17044/NBIS/G000009). Flat files containing per individual
HLA genotyping data generated from each software pro-
gram, and for the final SweHLA data set, are available upon
registration and agreement to terms and conditions for data
download.
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