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Abstract: Field-effect transistors have attracted significant attention in chemical sensing and clinical
diagnosis, due to their high sensitivity and label-free operation. Through a scalable photolithographic
process in this study, we fabricated graphene-based ion-sensitive field-effect transistor (ISFET) arrays
that can continuously monitor sodium ions in real-time. As the sodium ion concentration increased,
the current–gate voltage characteristic curves shifted towards the negative direction, showing that
sodium ions were captured and could be detected over a wide concentration range, from 10−8

to 10−1 M, with a sensitivity of 152.4 mV/dec. Time-dependent measurements and interfering
experiments were conducted to validate the real-time measurements and the highly specific detection
capability of our sensor. Our graphene ISFETs (G-ISFET) not only showed a fast response, but also
exhibited remarkable selectivity against interference ions, including Ca2+, K+, Mg2+ and NH4

+. The
scalability, high sensitivity and selectivity synergistically make our G-ISFET a promising platform for
sodium sensing in health monitoring.

Keywords: ion-selective field-effect transistor; graphene; sodium ions; real-time monitoring

1. Introduction

Sodium ions are important indicators for monitoring and evaluating health status
owing to their important role in homeostasis and maintaining the proper functions of the
nervous system [1–3]. For instance, the total sodium level in cognitively normal brain
tissues is around 35–45 mM, and 12–21 mM in healthy muscle tissue [4–6]. Deviation of
sodium concentrations in the human body is related to its hydration status, which can
be used as an indicator for health monitoring [7,8]. Thus, rapid, reliable and real-time
monitoring of sodium ions has been an increasing interest in the fields of precision medicine
and personalized healthcare [1,9,10]. To date, solid-contact ion-selective electrodes (ISE)
are the most commonly used platforms for ion sensing, due to their low cost, accuracy, and
simple operation [11–15]. However, ISEs have drawbacks, including the relatively high
detection limit and narrow detection range, e.g., 10−4 or 10−5 M for specific ions [16–19].

Recently, field-effect transistors (FET) have gained increasing attention in ion sensing,
offering the prospect of simple, rapid, cost-effective, and label-free detection [20,21]. The
FET biosensors hold tremendous promise for label-free detection of target molecules with
high accuracy and selectivity, without the usage of fluorescent, isotopic, or electrochemical
labeling [22,23]. In combination with an ion-selective membranes (ISM), ion-sensitive
field-effect transistors (ISFETs) are promising for ion sensing with enhanced sensitivity, and
reduced sensor sizes and response times, providing the possibility to integrate them with
flexible electronics [24–28].
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Graphene is a 2D material with unique material properties, such as high carrier mo-
bility (up to 106 cm2/V·s) [29], high conductivity [30], excellent mechanical strength,
etc. [30,31]. Taking advantage of all these features combined, we have fabricated G-
ISFETs that offer high sensitivity, selectivity and real-time monitoring of sodium ions. The
graphene channel was grown by atmospheric pressure chemical vapor deposition (CVD),
and transferred to pre-patterned electrodes, followed by a scalable photolithographic pro-
cess. The graphene FETs (GFETs) were then functionalized with a sodium ionophore to
specifically capture the target sodium ions. A broad range of sodium concentrations, from
10−8 to 10−1 M, which covers the sodium concentration in tissues, was detected, with a
sensitivity of 152.4 mV/dec. We further conducted time-dependent measurements and
control experiments to demonstrate the capability of real-time monitoring with high selec-
tivity. The high performance of our G-ISFET makes it a promising platform for the real-time
monitoring of sodium ions for health monitoring through physiological liquids.

2. Materials and Methods
2.1. Graphene Synthesis

The monolayer graphene film was synthesized using a chemical vapor deposition
system (Lindberg/Blue M™ Mini-Mite™ Thermo Scientific Co., Waltham, MA, USA). The
copper foil (Alfa Aesar, #13382, Haverhill, MA, USA) was cleaned by sonication in 5.4%
HNO3 for 1 min and then rinsed in DI water twice, followed by drying with high-pressure
nitrogen gas. The cleaned foil was then transferred into the quartz tube. The furnace was
heated to 1050 ◦C with a constant flow of 500 sccm Ar and 30 sccm H2 and then annealed
for 5 min. The 5 sccm-diluted CH4 (0.5% in Ar) was introduced as a carbon source, and the
growth time was 1 h. Lastly, the furnace was rapidly cooled to room temperature under
the H2 and Ar atmosphere.

2.2. GFET Sensor Array Fabrication

The sensor fabrication process was summarized in Figure S1. First, the electrode
pattern was defined on a 4-inch p-doped SiO2 (285 nm)/Si wafer by standard photolithog-
raphy. The contact metallization was 8 nm Cr/45 nm Au, deposited by e-beam evaporation.
Monolayer graphene was then transferred onto the pre-patterned SiO2/Si chip using a
“bubbling” transfer method. Briefly, a layer of polymethylmethacrylate (PMMA) was
spin-coated on the graphene-Cu foil, followed by baking at 105 ◦C for 2 min and then
slowly immersed into a 50 mM NaOH aqueous solution [32]. By applying a 15 V voltage,
the graphene/PMMA film was peeled off from Cu foil by the hydrogen bubbles formed
on the copper surface. The film was washed with DI water thrice and transferred onto the
electrode chip. The chip was air-dried and then baked at 150 ◦C for 2 min before removing
the PMMA with acetone. The graphene/electrode chip was then spin-coated with PMGI
(Micro Chem Corp., Newton, MA, USA) and a S1813 (Shipley) photoresist bilayer and
exposed using an ABM aligner. Graphene outside the channels was removed by O2 plasma
etching. The remaining photoresist on graphene channels was stripped by Remover PG
(Micro Chem Corp., Newton, MA, USA), acetone, and IPA. Finally, the GFET arrays were
annealed in Ar/H2 forming gas at 225 ◦C to remove photoresist residues.

2.3. Ionophore Membrane Preparation

Selectophore grade sodium ionophore X (4-tertbutylcalix [4]arene-tetraacetic acid
tetraethyl ester), sodium tetrakis [3,5-bis(trifluoromethyl) phenyl] borate (Na-TFPB), 2-
nitrophenyl octyl ether (2-NPOE), tetrahydrofuran (THF), and poly (vinyl chloride) (PVC)
were purchased from Sigma-Aldrich. The ionophore membrane was prepared by mixing
1 mg sodium ionophore X, 47.2 mg PVC, 90.7 µL 2-NPOE, and 0.29 mg Na-TFPB [33].
The mixture was dissolved in 1 mL THF and sonicated for 1 h, then stored at 4 ◦C for
further usage.
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2.4. Material Characterization

Micro-Raman measurements were performed by using WiTec Alpha 300 system with
a laser excitation wavelength of 532 nm. An atomic force microscope (AFM, Icon Bruker,
Tucson, AZ, USA) was used to characterize the height increase during the fabrication process.

2.5. Solution Preparation

Sodium chloride (NaCl), potassium chloride (KCl), magnesium chloride (MgCl2),
calcium chloride (CaCl2) and ammonium chloride (NH4Cl) anhydrous salts with >99%
purity were obtained from Sigma Aldrich. The desired concentrations were carefully
prepared and diluted with de-ionized water (18.2 MΩ cm, Milli-Q® 3 UV Water Purification
System). The sweat sample was collected from a cycling volunteer at different sporting
times, and stored in −20 ◦C refrigerator before testing.

2.6. Electrical Measurement

The 285 nm-thick SiO2 served as the gate dielectric, and the highly p-doped silicon
substrate acted as the back-gate electrode. No liquid gate was applied in this study. The
I-Vg characteristic measurements were performed after each functionalization step. The
probe station (FormFactor MPS 150, Livermore, CA, USA) was equipped with a customized
probe card, allowing 100 devices to be measured simultaneously. The Keithley 2400 source
meter was used to apply a bias voltage (V = 0.1 V), and the gate voltage was applied using
the Keithley 6517 model. A Python program was developed to conduct the measurement
and collect data.

3. Results and Discussion

Figure 1a shows an optical image of a GFET fabricated by the photolithographic
process. The monolayer graphene film was synthesized on a copper foil using chemical
vapor deposition, followed by a hydrolysis bubble transfer onto a SiO2/Si chip with
prefabricated Cr/Au electrodes to create an array of 100 GFETs. The graphene channel,
as shown in Figure 1b, was defined by photolithography and oxygen plasma etching.
The GFET chip was then annealed in an Ar/H2 atmosphere to remove any photoresist
residues on the graphene channels [34]. The high quality of the as-fabricated GFETs was
verified by the negligible D peak (~1345 cm−1) in the Raman spectrum (Figure 1c) [35].
The height of the GFET channel was ~0.5 nm, and there was a ~5 µm height increase after
the immobilization of the sodium ionophore membrane. The Raman spectrum and AFM
image together confirm the high quality of the as-grown CVD graphene, even after the
photolithographic process.

As seen in Figure 2, the current-back gate voltage (I-Vg) measurements show good
device-to-device uniformity across the 100 arrays. The Dirac voltage and carrier mobility
were extracted by fitting the hole branch of the I-Vg curve to the following equation [36,37]:

σ−1(Vg
)
=

[
µcg

(
VD − Vg

)]−1
+σ−1

s (1)

where cg is the gate capacitance per unit area (12.1 nF cm−2 for the 285 nm thick SiO2),
µ is the hole carrier mobility, σs is the saturation conductivity when Vg approaches −∞.
The narrow distribution of the Dirac point voltage (6.3 ± 4 V) and hole carrier mobility
(2400 ± 600 cm2 V−1 s−1) indicates a low doping effect induced by the fabrication process.
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Figure 1. (a) Optical image of as-fabricated GFETs, (b) Optical image of the graphene channel and
source/drain electrode. (c) Raman spectrum of a graphene channel after the fabrication process. Two
characteristic peaks were found: G peak at ~1580 cm−1 and 2D peak at ~2700 cm−1 (d) The line scan
profile of the as-annealed GFET, Inset: AFM image with scan line indicated. The thickness of the
graphene channel is ~0.5 nm.

The as-fabricated GFETs were then functionalized with the prepared sodium selective
membrane, as shown in Figure 3. Briefly, the sodium ionophore X was dissolved and mixed
with ion-selective membrane (ISM) cocktails (see Materials and Methods). An amount of
25 µL of the solution was drop-cast on the GFET surface, followed by air-drying overnight,
to obtain the G-ISFET. The I-Vg characteristics was measured after the ionophore deposition,
where the deposition of the ionophore leads to a negative Dirac point shift (Figure 2d).
During sensing, the intrinsic structure of ionophore X, namely the calix [4] arenes, provides
a scaffold with an optimum cavity for the complexation of sodium ions [38,39]. The
captured ion in the sodium-selective membrane resulted in a surface potential change and
the Dirac voltage shift in the characteristics curve.

A real-time measurement of the drain-source current through the ISM without the
graphene channel against different sodium solutions (10−5, 10−3, and 10−1 M) was con-
ducted, as shown in Figure S2, and the leaking current between the source and drain
electrodes was found at the sub-nA level, which did not affect our study. The G-ISFET
was tested against a series of sodium concentrations, from 10−8 to 10−1 M, to confirm
the sensor response. The ion sensitive membrane provided a cation exchange site and
created a barrier that prevented nonspecific ions from reaching the sensing surface. As a
result, only sodium ions were able to permeate and pass through the selective membrane
to reach the ISM–graphene interface. Accordingly, the sodium ion accumulation on the
graphene surface caused a doping effect. This G-ISFET response is shown in Figure 4. A
fixed bias voltage of 100 mV was applied during the sensing measurements. As the sodium
concentrations increased, there was a consistent trend of negative shifts in the transport
curves. This Dirac point shift was attributed to the increase in the electron concentration on
the graphene’s surface, due to the accumulation of positively charged Na+ ions, thereby
driving the Fermi level closer to the charge neutrality point through chemical gating, and
consequently decreasing the Dirac point. The dependence of VD on varying Na+ values is
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plotted in Figure 4b, where the dotted line represents a linear fit. The slope of calibration fit-
ting reflects the sensitivity of the G-ISFET, i.e., 152.4 mV/dec. The sensitivity is comparable
to that of recent reports (see Table S1) [20,36,40], presumably attributed to the atomically
thin nature of the graphene and the scalable fabrication of high-quality sensor arrays based
on CVD graphene.
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Figure 4. (a) Transport characteristic curves of G-ISFET against different Na+ concentrations from
10−8 to 10−1 M with a bias voltage of 100 mV. (b) G-ISFET response as a function for different target
sodium concentrations at the logarithmic scale. A response of 152.4 mV/dec was observed.

We next investigated the real-time response of G-ISFET against various sodium con-
centrations, by measuring IDS versus sensing time with a fixed gate voltage (Vds = 100 mV).
As shown in Figure 5a, the source-drain current decreased with the increasing Na+ con-
centration, in agreement with the n-doping effect by positively charged Na+ ions. The
linear response in IDS is plotted in Figure 5b, and the fitting indicates a response of
2.2 ± 0.08 µA/dec, consistent with previously reported ISFETs [41–43].
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trations (Vg = 0 V). (b) The linear response in IDS with different sodium concentrations from the
real–time measurements in panel a.

Selectivity is a crucial factor in evaluating the performance of an ion sensor. We further
carried out interference experiments to verify the effectiveness of our G-ISFET. As shown
in Figure 6, several non-specific ions were tested, including Ca2+, K+, Mg2+ and NH4

+, and
the relative Dirac point shift was plotted. In sharp contrast to the large Dirac voltage shift
for sodium ions, the as-fabricated G-ISFET displays a negligible response to the interfering
ions, indicating that the ion-selective membrane specifically captured the target ions, and
possessed excellent selectivity against nonspecific ions. We also performed measurements
with a real sample, i.e., human sweat. As shown in Figure 6b, the source-drain current
decreased with the increasing concentration of sodium ions (from 47.91 mM to 49.62 mM).
This result confirmed the high selectivity and rapid response of the G-ISFET, which offers a
pathway toward health evaluation through sweat.
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4. Conclusions

We developed a graphene-based ISFET, incorporated with an ion-selective mem-
brane, that can selectively detect sodium ions with high sensitivity. We grew large-area,
high quality monolayer graphene by chemical vapor deposition, followed by a scalable
photolithographic process, to fabricate the GFETs. The as-fabricated GFETs were then
functionalized with sodium ionophore to sensitively capture sodium ions. We detected
sodium ions with a wide range of concentrations, from 10−8 to 10−1 M, and achieved a
sensitivity of 152.4 mV/dec, comparable to previously reported ISFET sensors. Neverthe-
less, the back-gate architecture of G-ISFET eliminates the usage of reference electrodes,
offering a way to miniaturize the ISFET device. We further conducted time-dependent
measurements and interfering experiments to demonstrate the real-time response and
selectivity capabilities of our G-ISFETs, showing a fast response to changes in concentration,
and exhibiting excellent selectivity against interference ions, including Ca2+, K+, Mg2+

and NH4
+. The scalability, sensitivity and selectivity synergistically make our G-ISFET a

promising candidate for sodium sensing in health monitoring.
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www.mdpi.com/article/10.3390/nano12152620/s1, Figure S1: Illustration of the scalable fabrication
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Table S1: Comparison of ion sensitivities for sodium sensing.
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