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ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis 

(NASH) have emerged as the leading causes of chronic liver disease-related mortality.  The prevalence of 

NAFLD/NASH is expected to increase given the epidemics of obesity and type 2 diabetes mellitus. Older patients 

are disproportionally affected by NASH and related complications such as progressive fibrosis, cirrhosis and 

hepatocellular carcinoma; however, they are often ineligible for liver transplantation due to their frailty and 

comorbidities, and effective medical treatments are still lacking.  In this review we focused on pathways that are 

key to the aging process in the liver and perpetuate NAFLD/NASH, leading to fibrosis. In addition, we highlighted 

recent findings and cross-talks of normal and/or senescent liver cells, dysregulated nutrient sensing, proteostasis 

and mitochondrial dysfunction in the framework of changing metabolic milieu. Better understanding these 

pathways during preclinical and clinical studies will be essential to design novel and specific therapeutic strategies 

to treat NASH in the elderly.  
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An aging world population with an increased prevalence 

of comorbidities, such as obesity, type 2 diabetes 

(T2DM), and hypertension, has led to the emergence of 

non-alcoholic fatty liver disease (NAFLD) as the leading 

cause of chronic liver disease-related mortality [1, 2]. In 

the United States, relative to the period 1988-1994, there 

has been more than a 160% increase in NAFLD 

prevalence [3]. The current global prevalence is 24% and 

is estimated to impact 100 million patients in the United 

States by the year 2030 [1, 4]. About 20-30% of patients 

with NAFLD can progress to non-alcoholic 

steatohepatitis (NASH) characterized by steatosis, 

necroinflammation, hepatocyte ballooning, and in 

advanced cases, fibrosis.  Clinically, patients with 

NAFLD/NASH are often asymptomatic and are 

diagnosed late in the disease process, when advanced 

fibrosis is established or when complications due to portal 

hypertension or hepatocellular carcinoma (HCC) arise 

[5]. Unfortunately, there is no approved treatment, and 

liver transplantation remains the only curative option for 

most patients. However, older patients often do not 

qualify because of frailty or comorbidities.  Advanced 

fibrosis is more common in the elderly [6, 7], and the 

presence of stage 3-4 fibrosis is the strongest predictor of 

liver-related and all-cause mortality in NASH [8].  In this 

review, our goal is to focus on specific dysregulated 

processes in the aging liver that could drive fibrosis and 

outline potential areas for future studies and treatment 

approaches.   

 

Senescence and Aging in NAFLD/NASH  

 

Replicative senescence is triggered by age-induced 

telomere shortening/erosion [9] or deficiency [10], while 

stress-induced premature senescence occurs under 

external or intracellular sublethal stress causing oxidative 
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DNA damage [11].  Senescent cells are generally 

characterized by cell cycle arrest, DNA damage response 

[e.g., presence of gamma H2A histone family member X 

(γH2AX) foci], and elevated senescence-associated -

galactosidase activity [10, 12]. The cells may have 

facultative heterochromatin enriched with histone 

modifications, known as senescence-associated 

heterochromatin foci [13]. They may acquire a 

senescence-associated secretory phenotype (SASP) with 

abundant secretion of interleukins (e.g., IL-1, IL-6), 

inflammatory cytokines & chemokines [e.g., C-C motif 

chemokine ligand (CCL2)], growth factors, and 

proteases [e.g., Matrix metallopeptidase 1 and 3 (MMP-

1, MMP-3)] [14].  However, the specific SASP changes 

are often cell-type- and/or microenvironment-dependent 

[15].   

The role of senescence and aging in NAFLD/NASH 

are relatively new areas of investigation. Interestingly, 

telomere length seems to be preserved in hepatocytes and 

cholangiocytes in healthy livers during aging [16].  

However, in NASH patients, biopsies exhibit shorter 

telomeres, a high level of p21 indicating cell cycle arrest 

at the G1/S phase, and an increased DNA damage 

response with the presence of γH2AX.  Higher hepatocyte 

p21 expression in hepatocytes correlated with disease 

stage, T2DM, and adverse outcomes [17, 18].  In a 

different study p21 gene polymorphism appeared to affect 

the development but not the progression of fibrosis [19].  

In a 6-year cohort study, in patients with T2DM who 

developed NASH, telomere shortening was observed in 

peripheral blood leukocytes, which was associated with 

an increased risk for progressive fibrosis [20]. These data 

included subjects of various ages. Therefore, it would be 

important to conduct longitudinal studies to evaluate if 

hepatocyte telomere shortening is an independent risk 

factor for more aggressive NASH in the elderly.   

In an animal model of telomerase reverse 

transcriptase (Tert)-deficiency there was a failure to 

activate genes involved in the metabolic response to a 

high-fat diet leading to hepatocyte injury and steatosis.  

Interestingly, glucose metabolism was not altered in these 

mice; however, in Tert−/− hepatocytes the citric acid cycle 

(TCA) was dysregulated, with altered reduced 

nicotinamide adenine dinucleotide phosphate (NADPH)/ 

nicotinamide adenine dinucleotide phosphate (NADP+) 

ratios.   Chemical inhibition of telomerase recapitulated 

the phenotype.  These studies highlight the metabolic role 

of telomere enzyme dysfunction [21].  Destroying 

senescent cells by suicide gene-meditated ablation of 

p16Ink4a-expressing cells or using senolytic drugs 

improved steatosis in two NASH models [18, 22].  

Targeting the urokinase-type plasminogen activator 

receptor (uPAR, that was induced during senescence) by 

Chimeric antigen receptor (CAR)-T cells, efficiently 

ablated senescent cells in vitro and in vivo, improving 

liver fibrosis in a NASH model [23].  Also, a recent study 

demonstrated that senescent cells/SASP-driven 

proinflammatory M1 macrophages exhibit an increased 

cluster of differentiation (CD38) expression, and 

enhanced nicotinamide adenine dinucleotide nucleosidase 

(NADase) activity, resulting in low NAD+ in the liver 

[24].  To increase NAD+ levels in vivo, natural NAD+ 

precursors, such as nicotinamide riboside could be used 

and converted into bioavailable NAD+.  Nicotinamide 

riboside treatment could improve mitochondria-specific 

unfolded protein response (UPR) and ameliorate liver 

steatosis and injury in NASH [25].   

Senescent hepatic stellate cells (HSC), the primary 

liver's primary fibrogenic cells, have been investigated in 

several recent studies.  Senescence-activated HSC 

accumulate in fibrotic livers and represent a 

proinflammatory and anti-fibrogenic phenotype, with 

decreased secretion of extracellular matrix (ECM) 

components, and an increase in ECM-degrading enzymes 

[26]. Activity of the key senescence regulator p53 was 

essential for senescence, and HSC lacking p53 continued 

to proliferate propagating fibrosis in the CCl4 model [27]. 

Furthermore, Insulin-like growth factor 1 (IGF-1) 

treatment induced HSC senescence in a different model, 

limiting fibrosis in a p53-dependent manner [28]. These 

studies point to the essential physiological role of HSC 

senescence limiting fibrosis progression albeit with a 

proinflammatory effect.  These findings should be further 

substantiated in NASH models in aged animals.   

Another critical aspect of HSC senescence is that it 

could be linked to carcinogenesis in NASH [29]. In the 

study by Yoshimoto et al. an increase in the gut 

microbiota-derived deoxycholic acid promoted SASP by 

HSC.  Blocking deoxycholic acid production or depleting 

senescent HSC prevented HCC progression [29].  In a 

recent study evaluating the BET family protein degrader 

as a potential senolytic drug showed promise in 

eliminating senescent HSC in steatotic livers, and reduced 

tumorigenesis [30]. In human NASH-related HCC, 

cancer-associated fibroblasts (CAF) demonstrated 

increased expression of SASP compared to those from 

HCC of other etiologies such as viral hepatitis [31]. These 

findings highlight a critical role of senescent HSC/CAF in 

promoting tumor growth, but further work is needed to 

consider the heterogeneity of HSC and CAF.  Developing 

senolytics is an intense area in drug development [32]. 

However, in NASH/aging, more mechanistic studies are 

needed to elucidate the bidirectional crosstalk of 

senescent hepatocytes and HSCs and the effects on the 

immune microenvironment to avoid potential off-target 

effects.  
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Nutrient Sensing and Proteostasis in Aging and 

NAFLD/NASH 

 

Nutrient sensing   

 

Cells sense nutrients either by engagement of specific 

sensors or by indirect detection of surrogate metabolites.  

Several nutrient-sensing pathways are key to aging-

related diseases, including the mammalian target of 

rapamycin (mTOR) [33-35], adenosine monophosphate-

activated protein kinase (AMPK) [36], general control 

nonderepressible 2 (GCN2) [33], and IGF-1 [34, 37].  

Rapamycin has been reported to improve the health-span 

of aging mice [38], and using rapamycin accelerated 

hepatic protein turnover and attenuated oxidative stress 

[39, 40].  Even though rapamycin is an FDA-approved 

drug with considerable clinical experience and despite 

several positive studies in murine models linking it to an 

increase in lifespan [41, 42], no studies have yet been able 

to confirm a clear effect in patients.  

AMPK plays a central role in regulating energy 

homeostasis [43].  Although studies in the aging 

population with NASH are still limited, it is tempting to 

speculate that dysregulated AMPK activation and 

responsiveness are key to aberrant nutrient sensing [44]. 

Liver-specific AMPK knockout (AMPK KO) exacerbated 

diet-induced NASH in mice, and genetically or 

pharmacologically activating AMPK corrected NASH-

related inflammation, steatosis, and fibrosis [45-47]. 

AMPK KO increased caspase 6 activation, generating a 

feedforward loop to sustain the caspase cascade and 

apoptosis. Activation of AMPK or inhibition of caspase-

6 improved liver damage and fibrosis in NASH [46].  

These studies suggest that AMPK is a druggable target for 

NASH, though achieving liver specificity is still a 

significant challenge. AMPK/mTOR could also be 

targeted by peroxisome proliferator-activated receptor 

(PPAR) δ, reducing the intrahepatic lipid content and 

stimulating β-oxidation involving an autophagy-

lysosomal pathway [48]. As PPARδ activators (PPARα/δ, 

Elafibranor) are being investigated in NASH in a current 

Phase 3 trial, extending these studies to the aging NASH 

population would be interesting. 

GCN2 is central to sense stress signals such as amino 

acid starvation and coordinates nutrient sensing and redox 

responses.  In aged mice, GCN2-deficiency exacerbated 

fat consumption at the expense of carbohydrate intake and 

prevented increased protein consumption [49].  Therefore, 

GCN2 signaling might be an ancient pathway 

contributing to macronutrient selection and food 

preference. GCN2-deficient mice are partially protected 

from high-fat-diet-induced liver dysfunction, steatosis, 

and insulin resistance [50], although these studies were 

done in young mice. GCN2 can also control oxidative 

stress via the regulation of glutathione peroxidase 1 and 

the amount of carbonyl radicals in the liver [51].  In the 

gut, GCN2 protects against inflammasome activation 

[52].  Given the role of GCN2 in several organs, its role 

in NAFLD/NASH in aged subjects would require further 

investigation. 

In addition to the pathways mentioned above, Sirtuins 

(SIRTs), NAD+-dependent deacetylases, have emerged as 

important sensors/regulators of metabolic pathways, 

especially during aging. Studying the age-dependent 

metabolic changes in the circadian hepatic transcriptome 

in young and old mice, calorie restriction was shown to 

improve NAD+ availability, SIRT1 activity, and restore 

global protein acetylation over the circadian cycle in old 

mice [53].  In the context of NASH, systematic SIRT1 

ablation or hepatocyte SIRT1 deletion led to hepatic 

steatosis and inflammation [54, 55], and SIRT1 

overexpression protected against diet-induced steatosis 

[56, 57]. Taken together, restoring dysregulated SIRT1 

activity potentially could reduce NASH progression in 

older patients.   

 

Proteostasis  

 

The proteostatic process is regulated by multiple 

mechanisms including chaperons, the ubiquitin-

proteasome, and the autophagy-lysosome systems [58].  

Autophagy is generally considered an evolutionarily 

conserved adaptive process when cells eliminate 

potentially toxic material in response to stress.  It can be 

classified into macroautophagy, microautophagy, and 

chaperone-mediated autophagy (CMA). CMA controls 

the degradation of selective proteins into lysosomes and 

is impaired during aging, resulting in reduced proteostasis 

and stress resistance [59].  Modulating the lysosomal 

receptor for CMA that was shown to decrease with age 

reversed CMA and improved liver function [60].  It is also 

notable that while the dysregulated CMA function could 

be compensated by other proteolytic systems in young 

animals, a decline in this compensation during aging led 

to perturbed proteostasis and stress resistance [61].  

Other forms of autophagy, macroautophagy and its 

specialized form lipophagy involved in the degradation of 

intracellular lipids, are also downregulated in hepatocytes 

in NASH, and excellent reviews are summarizing the key 

pathways [62, 63].  It is possible that in older animals with 

NASH these pathways could be further exacerbated, and 

interventions such as calorie restriction, physical exercise, 

and genetic/pharmacologic induction of autophagy could 

restore liver proteostasis and could be useful in treating 

NASH in aged subjects. Indeed, intermittent calorie 

restriction was shown to improve NAFLD in aged mice 

[64].  Caffeine that modulates lipophagy and 

mitochondrial β-oxidation was shown to have hepato-
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protective effects in NAFLD [65].  Furthermore, several 

pharmacological activators of autophagy exerted 

beneficial effects, including ezetimibe that can induce 

AMPK activity [66], glucagon-like peptide 1 (GLP-1) 

analogues that can promote macroautophagy [67], and 

trehalose that can inhibit glucose transport, and also 

induce Sequestosome 1 (p62) upregulation activating the 

Kelch-like ECH-associated protein 1 (Keap1)-Nuclear 

factor-erythroid factor 2-related factor 2 (Nrf2) pathway 

with anti-oxidant effects [68].  

When the protein folding capacity of ER is exceeded, 

known as “endoplasmic reticulum (ER) stress”, 

accumulation of unfolded or misfolded proteins could 

elicit signal transduction pathways known as UPR to 

restore the protein homeostasis [69]. UPR is activated by 

three sensors including inositol-requiring protein 1, 

protein kinase RNA-like ER kinase, and activating 

transcription factor 6, and maladaptive UPR leads to 

apoptosis [70].  ER stress-related proteins increase in the 

liver during aging, associated with increased hepatic 

insulin resistance, and increased liver glucose in response 

to pyruvate challenge and hyperglycemia in old rats [71].  

Obesity-induced ER stress was shown to impair insulin 

resistance via downregulating liver X-box binding 

protein 1, hyperactivating c-Jun N-terminal kinase, and 

subsequently phosphorylating the insulin receptor 

substrate 1 [72].  ER stress was linked to the 

downregulation of the farnesoid X receptor, a key 

regulator of hepatic lipid metabolism via the inhibition of 

hepatocyte nuclear factor 1α transcriptional activity, 

exacerbating age-related steatosis [73].  ER stress was 

also shown to promote fibrosis via inducing hepatocyte 

apoptosis leading to myofibroblast activation, and 

macrophage polarization [74], though further direct 

evidence in NAFLD/NASH and aging is still required.   

 

Mitochondrial Dysfunction in Aging and NASH  

 

Age-related mitochondrial changes may contribute to the 

progression of NAFLD/NASH in patients, though direct 

evidence is still limited. Assessment of the mitochondrial 

functional status and adaptive events are complex, and 

results can vary upon the methods used, age differences, 

gender, and stages of disease.  Therefore, it is not 

surprising that there are contradicting observations about 

the role of mitochondrial function in aging and 

NAFLD/NASH [76, 77].  

 

Mitochondrial quality  

 

Mitochondrial quality control involves several processes 

such as proteostasis, discussed earlier, biogenesis, 

dynamics, and mitophagy, reviewed in Zhou et al. recent 

publication [78].  During aging there is a slow turnover of 

mitochondria due to dysregulated biogenesis, 

fission/fusion, and/or defective autophagic clearance. 

Mitofusin 2 (Mfn2) deficiency, for instance reduces 

phosphatidylserine transfer and phospholipid synthesis, 

thereby leading to ER stress and the development of a 

NASH and HCC [79].  Age-related Mfn2 decrease has 

been appreciated in the muscle [80], obesity, and T2DM 

[81].  Whether Mfn2 depletion really occurs during aging 

in the liver and is a causative factor in NASH, should be 

further investigated.  Mitophagy is a mitochondria-

specific form of autophagy, and is considered as a 

protective mechanism in NAFLD/NASH [82]. Due to the 

dynamic nature of autophagy/mitophagy, accumulation of 

substrates like p62 and microtubule-associated proteins 

1A/1B light chain 3B (LC3) could result from induced 

autophagy initiation or inhibited autophagy degradation, 

so one must be cautious with interpreting the 

autophagy/mitophagy flux status especially in vivo [83].  

Nevertheless, several pathways could be involved linking 

defective mitophagy to NASH and aging.  LC3 receptors 

that are located on the mitochondria can directly bind to 

LC3 and recruit damaged mitochondria to the 

autophagosomes. For instance, proteins such as Nip3-like 

protein X (NIX) and BCL2/Adenovirus E1B 19 kDa 

Interacting Protein 3 (Bnip3) can interact with LC3 and 

play a role in regulating mitochondrial integrity and lipid 

metabolism [84]. 

 

Mitochondrial metabolism 

 

There is also ample evidence that during aging 

mitochondrial metabolism is altered, and related 

transcripts [e.g. oxidative phosphorylation (OXPHOS), 

fatty acid (FA) β-oxidation, mitochondrial biogenesis] 

[85], and respiratory control ratio, indicating 

mitochondrial function, decrease with age [86].  High-fat 

diet decreases OXPHOS activity and destabilizes its 

subunits, contributing to impaired electron transport chain 

activities and ATP synthesis [87, 88].  Mitochondrial β-

oxidation is key to free fatty acid (FFA) metabolism into 

acetyl-CoA.  Carnitine palmitoyl transferase 1 α (Cpt1a) 

and acyl-CoA oxidase 1 (Acox1) were downregulated 

during aging [89], owing to the decreased transcriptional 

activity of PPARα.  Mice with hepatocyte-specific 

PPARα KO had impaired FA catabolism, leading to lipid 

accumulation even on a standard chow diet during aging 

[90].  Whether HSC are activated in this model would 

need to be further investigated, especially that PPARα 

agonist was shown to reduce inflammation and fibrosis in 

NASH in younger animals [91]. PPARα downregulation 

could also be linked to the advanced glycation end product 

receptor (RAGE) in older mice, and its downregulation 

improved PPARα, mitochondrial β-oxidation and 

steatosis [78].   

https://www.sciencedirect.com/topics/medicine-and-dentistry/trehalose
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Perturbed mitochondrial β-oxidation leads to lipid 

peroxidation with diverse toxic effects in NASH  [92]. A 

study in patients revealed that mitochondrial function 

initially shifts to adapting to the increasing bioenergetics 

demand (“hepatic mitochondrial flexibility”), but then 

continued FFA overload overwhelms both TCA and FA 

catabolism, and this adaptation is lost in late NASH [93].  

Whilst this study was performed in younger patients, it is 

likely that the maladaptive responses to FFA load are 

more enhanced during aging, and this would require 

carefully designed studies in older patients with NASH.  

Oxysterols, the oxidative products of cholesterol are also 

linked to decreased respiration in isolated liver 

mitochondria, down-regulation of transcription factors 

involved in mitochondrial biogenesis and to apoptosis of 

hepatocytes.  This in turn can trigger the HSC activation 

and liver fibrosis [94, 95]. 

 

Mitochondria-associated membranes (MAM) 

 

MAM, also known as mitochondria-endoplasmic 

reticulum contact sites, refer to an ER region dynamically 

tethered to the mitochondria. This subcellular 

compartment is important in the communication between 

mitochondria and ER, regulating Ca2+ trafficking, lipid 

metabolism, redox signaling, autophagy/mitophagy [96].  

Dysfunctional MAM is implicated in senescence, and 

aging [97, 98], and could thus be involved in NASH 

pathogenesis via the following mechanisms:  (1) enriched 

MAMs can lead to Ca2+ overload thus compromising 

mitochondrial function [99, 100]; (2) impaired MAM 

integrity could interrupt hepatic glucose sensing and 

insulin sensitivity [101, 102]; (3) impaired MAM integrity 

may disable mitochondrial adaptation in response to 

glucose availability [102]. Drugs like rosiglitazone, 

troglitazone, and metformin show therapeutic effects on 

NAFLD in rodents restoring their MAM composition or 

function [103].   

 

Mitochondrial DNA (mtDNA) 

 

Finally, aging is known to correlate with accumulating 

mtDNA mutations, deletions [104, 105], and decreased 

mtDNA copy numbers [106]. Mice that express a 

proofreading-deficient form of a nuclear-encoded 

mitochondrial DNA polymerase, display a higher number 

of mitochondrial point mutations and deletions, as well as 

shortened life span [107].  Increased circulating mtDNA 

has been observed in older patients [108], and in 

NAFLD/NASH patients it was positively associated with 

disease severity [109].  Hepatocyte-derived mtDNA 

during NASH is linked to sterile inflammation in a Toll-

like receptor 9 (TLR9)-dependent manner [110], and was 

also shown to drive liver fibrosis by activating HSCs 

[109].   

 

 

Liver Fibrosis and Aging in NASH  

 

Aging is clinically associated with accelerated fibrosis in 

NASH patients [10, 111-116].  Fibrosis strongly depends 

on the dynamic cell-cell communication in the fibrotic 

niche [117], involving crosstalk between hepatocytes, 

HSC, liver sinusoidal endothelial cells (LSECs), 

cholangiocytes, and immune cells.  There are several 

excellent reviews discussing liver fibrosis in the context 

of aging [118, 119].  Here our goal is to highlight 

pathways that could be pertinent to NASH, focusing on 

HSC and LSECs. 

HSC are activated in response to injury and 

differentiate into alpha-smooth muscle actin (SMA)-

expressing, proliferating, and migrating myofibroblast-

like cells that synthesize ECM proteins. In several mouse 

models activated HSC undergo senescence, characterized 

by decreased proliferation, ECM production and induced 

SASP components, including fibrolytic MMPs and 

cytokines, favoring immune clearance and thus fibrosis 

resolution [120]. Senescent HSC as mentioned earlier 

may play various roles in NASH: they could be protective 

against fibrosis while exacerbating inflammation [27, 28] 

and could be linked to an increased risk of tumorigenesis 

[29].  Recently it was shown that in the aging liver, 

mechanosensing via integrin α5/β1 by HSC was 

dysregulated and HSC acquiring a senescent phenotype 

had reduced hepatocyte growth factor release impacting 

regenerative responses [121]. This highlights the 

multifaceted role of HSC that should be further explored 

in the context of aging.  

During aging liver fibrosis/HSC activation-related 

transcripts were amongst the top canonical pathways that 

were induced in mice on high-fat diet [119].  Production 

of ROS is strongly linked to HSC activation [122], and 

NADPH oxidases (NOXs) are essential sources of 

superoxide or in the case of NOX4 hydrogen peroxide 

[123].  NOX1, NOX2, and NOX4 were identified as the 

most important homologues in the liver [124, 125].  The 

nonphagocytic NOX1 and NOX4 are increasingly 

recognized as key enzymes in oxidative injury and wound 

healing, and they were found to be induced during aging 

[119, 126], playing an important role in redox-mediated 

HSC activation [127, 128].  On the other hand, the NOX2 

complex can be induced in the aging hepatocytes in 

NASH in a non-phagocytic manner by  directly binding 

the aging protein p52Shc to the p47phox subunit [129], 

thereby assembling and activating the enzyme complex 

leading to fibrosis.  Targeting the NOX4-Nrf2 imbalance 

successfully reduced fibrosis in idiopathic pulmonary 
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fibrosis [130] and NOX1/4 inhibition improved liver 

redox injury and fibrosis in NASH models [126, 131], 

thus pharmaceutical approaches for NOX enzymes could 

be explored to treat aging-related fibrosis progression 

[132].   

Long non-coding RNAs have been mapped in the 

aging liver and were found to be differentially regulated 

(e.g. Meg3, Rian, and Mirg) [133].  In other systems these 

were related to stress response, inflammatory and 

fibrogenic pathways.  It would be interesting to see 

whether these can specifically be involved in NASH 

during aging, dysregulating fibrogenic activity.  

There are fewer studies that focus on fibrosis 

resolution during aging.  While developing drugs that 

limit HSC activation is an important goal, many patients 

with advanced fibrosis and crosslinked ECM may not 

benefit from these.  Hence ECM turnover needs to be 

extensively studied during aging.  There is experimental 

evidence that ECM remodeling is affected in old rats, type 

I and II collagen turnover was significantly reduced, 

whereas type IV and V collagen degradation biomarkers 

were induced [134].  In a CCl4-induced fibrosis model, in 

old mice fibrolysis was hampered due to reduced MMP13 

and collagenase activity.  In the same model, striking 

differences were observed in macrophage polarization, in 

young livers macrophages exhibited a remodeling 

phenotype, whereas macrophages from older livers had a 

pro-fibrogenic phenotype with higher Transforming 

growth factor beta (TGF-β) expression. [135].  Activation 

of Lysyl oxidase-like 2 (LOXL2), Transglutaminase 

type 2 (Tg2) and A disintegrin and metalloproteinase with 

thrombospondin type 1 motif 2 (Adamts 2) that are 

involved in collagen crosslinking were more induced in 

old mice [135].  These findings suggest that matrix 

remodeling during aging is significantly affected and 

would need to be studied further, in the context of NASH.  

In addition, the ECM of the aging liver is thought to be 

less perfused.  Mechanical stretching of endothelial cells 

can induce angiocrine signals that support hepatocyte 

proliferation and survival [136], and therefore in aging 

these processes could be impacted leading to decreased 

regenerative responses.   

 

 
Figure 1. Schematic summary of aging-related events predisposing to fibrogenic injury in NASH. Aging-mediated changes in 

several adaptive pathways exacerbate NASH with enhanced necroinflammation, fibrogenic processes, and reduced fibrolysis.  These 

include cellular senescence, that has distinct, cell type-dependent effects, dysregulated nutrient-sensing pathways (e.g., mTOR, 

AMPK, GCN2, SIRTs), loss of proteostasis, impaired autophagy, and mitochondrial dysfunction.  These either alone or in 

combination can drive the activation of stellate cells and progression of fibrosis. AMPK, AMP-activated protein kinase; GCN2, 

general control nonderepressible 2; mTOR, mammalian target of rapamycin; SIRT, Sirtuin; HSC, hepatic stellate cell; KC, Kupffer 

cell; LSEC, liver sinusoidal endothelial cell; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NOX, 

NADPH oxidase; ROS, reactive oxygen species; SASP, senescence-associated secretory phenotype. 

LSECs are important contributors to the fibrogenic 

process, and development of portal hypertension.  LSECs 

lose their fenestrae and form a basement membrane, 

called "capillarization", early in the pathogenesis of 
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NASH [137-139].  The LSEC phenotype in aging is 

linked to the downregulation of vasodilatory pathways 

(nitric oxide, heme oxygenase), and angiocrine mediators 

[stabilin-2, CD32b, and vascular endothelial growth 

factor receptor 2 (VEGFR2)], as well as increased portal 

pressure [116].  The loss of LSEC fenestrations is also 

thought to be one of the hallmarks of aging [10], therefore 

it could be assumed that capillarized LSECs both drive 

fibrosis and have a decreased ability to clear toxins.  For 

example, oxidized low-density lipoproteins (OxLDLs) 

and advanced glycation end products-modified proteins 

are scavenged by LSECs and if they are not properly 

cleared, this can result in elevated OxLDL levels [140-

142] that were found to be increased in the plasma of 

elderly patients [143]. LSEC senescence is also closely 

linked to aging.  In a recent paper using a tamoxifen-

inducible p16 reporter mouse, LSECs were the most 

positive cells for p16, and the depletion of these cells 

ameliorated steatosis and inflammation in a NASH model 

[144]. However, if senescent LSECs are not replaced by 

non-senescent cells, their removal may activate a 

fibrogenic response [145].  Various agents were studied 

and found to increase the fenestrations in LSECs from old 

mice [10, 146-148]. Hunt et al. showed drugs targeting 

NO, actin, or lipid rafts promote fenestration changes in 

mouse LSECs [147]. This implies that age-related 

defenestration can be pharmacologically reversed, which 

has a potential therapeutic link to dyslipidemia and insulin 

resistance [147].  

 

Summary and Future Perspectives  

 

The global increase in aging populations and the 

epidemics of obesity and T2DM are expected to lead to an 

exponential increase in NASH in the next decade, and 

complications of advanced liver disease will 

disproportionally affect the elderly.  Lifestyle changes 

may cause some improvement in necroinflammatory 

activity and fibrosis in some patients, but these effects 

often are not sustained.  Novel therapies that address 

dysregulation of metabolic pathways, increase 

regenerative capacity in advanced stage disease and/or 

reduce fibrosis progression are highly needed to improve 

mortality.  While several exciting new modalities are in 

the pipeline, these are tested in patients of all age groups.  

Therefore, further studies are needed to evaluate whether 

these drugs would be effective and well tolerated in the 

elderly population who often have significant 

comorbidities.  Specific targeting of the primary drivers 

of age-associated pathways such as senescence and 

associated SASP activity, deficits in mitochondrial 

capacity or autophagy/mitophagy, will be as important as 

directly targeting fibrosis/fibrolysis, and likely only 

combined strategies will be effective (Fig. 1).  

Furthermore, improved understanding of the 

pathobiology of the aging liver through complementary 

approaches, from patient samples (single cell/nucleus 

transcriptomics, metabolomics and lipidomics) and 

models with aged animals will be necessary to define key 

pathways that could be targeted for reversal of NASH.  
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