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Abstract

Introduction Mutations in known predisposition genes account
for only about a third of all multiple-case breast cancer families.
We hypothesized that germline mutations in FANCD2, BRIP1/
BACH1, LMO4 and SFN may account for some of the
unexplained multiple-case breast cancer families.

Methods The families used in this study were ascertained
through the Kathleen Cuningham Foundation Consortium for
Research into Familial Breast Cancer (kConFab). Denaturing
high performance liquid chromatography (DHPLC) analysis of
the coding regions of these four genes was conducted in the
youngest affected cases of 30 to 267 non-BRCA1/2 breast
cancer families. In addition, a further 399 index cases were also
screened for mutations in two functionally significant regions of
the FANCD2 gene and 253 index cases were screened for two
previously reported mutations in BACH1 (p. P47A and p.
M299I).

Results DHPLC analysis of FANCD2 identified six silent exonic
variants, and a large number of intronic variants, which tagged
two common haplotypes. One protein truncating variant was
found in BRIP1/BACH1, as well as four missense variants, a
silent change and a variant in the 3' untranslated region. No
missense or splice site mutations were found in LMO4 or SFN.
Analysis of the missense, silent and frameshift variants of
FANCD2 and BACH1 in relatives of the index cases, and in a
panel of controls, found no evidence suggestive of
pathogenicity.

Conclusion There is no evidence that highly penetrant exonic or
splice site mutations in FANCD2, BRIP1/BACH1, LMO4 or
SFN contribute to familial breast cancer. Large scale
association studies will be necessary to determine whether any
of the polymorphisms or haplotypes identified in these genes
contributes to breast cancer risk.

Introduction
Pathogenic mutations in BRCA1, BRCA2, TP53, PTEN, ATM
and CHEK2 account for approximately a third of high-risk
breast cancer families, suggesting that other breast cancer
susceptibility genes exist [1-5]. Given the number of candidate

breast cancer susceptibility genes, any approach to their iden-
tification needs to be focussed. Genes whose products are
known to interact with BRCA1 and/or BRCA2, or are down-
regulated in breast tumours, are particularly attractive candi-
dates, and can be prioritised for investigation.
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FANCD2 is one of eight genes known to cause the fatal
human autosomal recessive disorder Fanconi anaemia (FA)
[6,7]. FA is a heterogenous condition characterised by
progressive bone marrow failure, congenital abnormalities,
hypersensitivity to DNA damaging agents and, most impor-
tantly, an increased risk of developing cancer [8]. There are
currently eight cloned FA genes (FANCA, FANCC, FANCD1/
BRCA2, FANCD2, FANCE, FANCF, FANCG and FANCL),
all of which interact with each other in a common cellular path-
way [6,7]. Five of the FA proteins (FANCA, C, E, F, and G)
form a constitutive complex in the nucleus of normal cells [9].
With the help of the recently identified ubiquitin ligase protein
PHF9 (or FANCL), this multisubunit nuclear complex mediates
the monoubiquitination of the FANCD2 protein at lysine 561 in
response to the S-phase of the cell cycle or DNA damage [6].
The activated FANCD2 protein is then translocated to chro-
matin and DNA-repair foci, where it co-localises with other
DNA repair proteins such as BRCA1, BRCA2, ATM, NBS1
and RAD51 [9]. Interestingly, this translocation has been
recently identified to be BRCA1 dependent, suggesting that
FANCD2 and BRCA1 interact in this process [6]. In response
to ionising radiation, FANCD2 is also phosphorylated by ATM
on serine 222, which leads to the activation of an S-phase
checkpoint of the cell cycle [9]. FANCD2 is located at 3p25.3
and consists of 44 exons, encoding a protein of 1,451 amino
acids. Houghtaling et al. [10] showed that FANCD2
homozygous and heterozygous mice display a high incidence
of epithelial tumours, including mammary and ovarian carcino-
mas. These mice display other features found in BRCA2
mutant mice, including germ-cell defects, small size, and peri-
natal lethality [11]. FANCD2, like BRCA2, may, therefore, play
an important role in the recombination DNA repair pathways
[10]. The FA pathway has also been implicated in ovarian can-
cer, as the FANC-BRCA pathway was shown to be disrupted
in a subset of ovarian tumour lines [12]. Furthermore, the
3p25-26 region of the human genome has been shown to
have a high incidence of loss of heterozygosity in ovarian
tumours [13]. Analysis of the FA genes (FANCA, B, C, D1,
D2, E, F, G) in 88 non-BRCA1, non-BRCA2 breast cancer
families failed to identify any penetrant mutations, but none of
these families were known to share a haplotype around the rel-
evant FANC genes, or to include cases of ovarian cancer [14].

BRIP1/BACH1 was first isolated and identified by using a glu-
tathione S-transferase fusion protein containing the BRCT
motifs and the carboxyl terminus of BRCA1. This protein was
originally named BACH1 (for BRCA1-associated carboxy-ter-
minal helicase 1), but is also known as BRIP1 (for BRCA1
interacting protein 1) [15]. The BRIP1/BACH1 gene maps to
17q22 and contains 20 exons, encoding a protein of 1,249
amino acids. Amino acid residues 888 to 1,063 of BRIP1/
BACH1 interact with the BRCT domain of BRCA1 during the
process of DNA repair [15]. Cantor et al. [15] screened the
BRIP1/BACH1 gene for mutations in 21 sporadic breast/
ovarian cancer cell lines, and 65 individuals with early onset

breast cancer. Two germline heterozygous missense variants
(p. P47A and M299I) were detected in the germlines of two
early onset breast cancer patients but no family members were
available for segregation analysis. Both variants are within the
helicase domain of BACH1 (residues 1 to 888), with P47A
located in the highly conserved nucleotide binding box, and
M299I situated between two other conserved motifs [15].
Two other studies looking at variants in the BRIP1/BACH1
gene in breast cancer families failed to find any highly pene-
trant mutations, although these studies were limited in their
sample size, and the number of available samples from addi-
tional family members, and none of the families were known to
share a haplotype around BRIP1/BACH1 [16,17].

LMO4 is a member of the LIM-only (LMO) family of transcrip-
tion regulators. The four known members of this group (LMO1
to LMO4) are composed of two LIM domains and are thought
to function as transcriptional cofactors via protein-protein
interactions (reviewed in [18]). LMO1 and LMO2 overexpres-
sion is linked to T-cell tumourigenesis and LMO4 has been
associated with breast oncogenesis, where overexpression is
observed in approximately 50% of breast cancer cell lines and
primary breast cancers [19]. Furthermore, overexpression of
LMO4 induces mammary hyperplasia in transgenic mice and
may be a predictor of poor outcome in breast cancer [20]. The
presence of LMO4 in a complex containing the binding part-
ners Ldb1, CtIP and the familial breast cancer tumour sup-
pressor BRCA1 provides further compelling evidence for
LMO4 playing a significant role in breast cancer pathogenesis
[21], and activating mutations might be predicted to occur in
some tumours and even in the germline of some patients.
Although no activation mutations have been found, one
somatic truncation mutation of LMO4 has been reported in a
sporadic breast tumour [22]. This finding, as well as the dereg-
ulation of LMO4 expression in breast cancer and the interac-
tion between LMO4 and the tumour suppressor BRCA1,
prompted us to screen non-BRCA1/2 familial breast cancer
cases for genetic alterations in LMO4 that may contribute to
pathogenesis.

Stratifin (SFN; 14-3-3 σ; HME1) was first identified by serial
analysis of gene expression (SAGE) analysis as an epithelial
specific marker that was expressed at seven-fold lower levels
in breast cancer cells compared to normal breast epithelium
[23]. Recently, hypermethylation of SFN was detected in more
than 90% of invasive breast cancers and was specifically
associated with lack of expression [24]. In addition, methyla-
tion of this gene was detected in 83% of ductal carcinoma in
situ and 38% of atypical hyperplasias but was unmethylated in
all hyperplasias without atypia and normal breast epithelium
obtained from patients without breast cancer [25]. Of most
interest was the fact that SFN hypermethylation was also
detected in the histologically normal adjacent breast epithe-
lium in patients with breast cancer, suggesting that methyla-
tion of this gene may be an early event in breast cancer



Available online http://breast-cancer-research.com/content/7/6/R1005

R1007
development. SFN is a negative regulator of cell cycle pro-
gression and is suggested to have an important function in
preventing breast tumour cell growth, particularly at the G2
cell cycle checkpoint [26]. BRCA1 is a co-activator of SFN,
and the expression of SFN is modulated by the BRCA1 status
of the cell and requires intact BRCA1 and p53 to synergisti-
cally induce the optimal level of stratifin required for DNA dam-
age response [27]. Interestingly, there is a nine-fold decreased
expression of SFN in BRCA1- and BRCA2-related tumours
compared to sporadic breast tumours [28]. SFN is located on
1p36.11 and is encoded by a single 747 base pair (bp) exon;
1p36 is a target of loss of heterozygosity in 16% to 37% of
sporadic breast tumours [29,30] and in 32% to 35% of familial
tumours [31]. To our knowledge there has been no report of
mutation analysis of SFN in familial breast cancer.

We sought to carry out mutation analysis of FANCD2, BRIP1/
BACH1, LMO4 and SFN in a large number of non-BRCA1/2
breast cancer families. For the biggest genes, FANCD2 and
BRIP1/BACH1, we screened a smaller number of families,
but included those in which the affected family members
shared a haplotype around the gene of interest. We also
screened additional index cases for mutations in the FANCD2
exons that contain the ATM phosphorylation (S222) and the
FANCD2 monoubiquitination regions (K561), and the BRIP1/
BACH1 exons that contained the previously reported breast
cancer-association variants, p. P47A and p. M299I.

Materials and methods
Multiple-case breast cancer families
Multiple-case breast cancer families were ascertained through
the Kathleen Cuningham Foundation Consortium for Research
into Familial Breast Cancer (kConFab) [32]. The ascertain-
ment criteria for families without mutations in BRCA1 or
BRCA2 were four or more cases of breast or ovarian cancer
(Criteria 1), or two or more if one has 'high risk' features, such
as breast cancer diagnosis at less than 40 years, male breast
cancer, bilateral breast cancer, or ovarian and breast cancer in
the same woman (Criteria 1B). In both cases, the criteria also
require that two or more affected women are alive and that the
families have four or more living, female, unaffected first or sec-
ond degree relatives over the age of 18. The index cases,
defined as the youngest available breast cancer case, were
tested by diagnostic laboratories for mutations in BRCA1 and
BRCA2 by a variety of methods estimated to be 75% sensi-
tive, and a subset were fully sequenced for BRCA1 and
BRCA2.

A subset of the index cases screened for mutations were
included in a 10 cM genome-wide search for novel breast can-
cer susceptibility genes in multiple case breast cancer families
from which BRCA1 and BRCA2 mutations had been
excluded by high-sensitivity methods and in which no haplo-
type was shared at either locus (data not shown). The index
cases qualified for FANCD2 and BRIP/BACH1 mutation

analysis if an individual family logarithm of the odds (LOD)
score under heterogeneity or a non-parametric LOD score of
≥0.5 had been obtained at any of the markers closest to or
flanking the FANCD2 (D3S1304, D3S1263, D3S2338) or
BRIP/BACH (D17S944, D17S949, D17S787) genes.

All 44 coding exons of FANCD2 were evaluated in 33 index
cases from 30 non-BRCA1/2 multiple case breast cancer
families. Three families contained two cases with the same age
of onset of breast cancer and so both cases were screened.
The families were selected because they contained one or
more cases of ovarian cancer (n = 18), or because all of the
affected individuals in the family shared a haplotype around the
3p25 region (n = 12). The entire BRIP1/BACH1 coding
sequence (19 exons) was evaluated in the index case of 75
breast cancer families in which all the affected individuals
shared a haplotype around BRIP1/BACH1 on chromosome
17q (n = 7), or which had undergone complete sequencing of
BRCA1 and BRCA2 (n = 68). All three coding exons of
LMO4 were screened in the index cases from 247 non-
BRCA1/2 breast cancer families, and the single coding exon
of SFN was screened in the index cases from 92 non-BRCA1/
2 breast cancer families. Index cases from an additional 164
families were screened for just 639 bp of the single SFN exon.
Eight index cases were fully screened for FANCD2, BRIP1/
BACH1 and LMO4 genes (and six of these for SFN as well),
and 227 individuals from 222 families were screened for both
LMO4 and SFN.

In addition, 399 index cases, from 356 non-BRCA1/2 breast
cancer families (some had more than one index case because
multiple women were affected at the same age), were
screened for FANCD2 mutations in the ATM phosphorylation
(exon 9) and the FANCD2 monoubiquitination (exon 19)
regions. Of these additional index cases (from 231 families)
that were used for additional FANCD2 screening, 253 were
also screened for BRIP1/BACH1 mutations in exons 3 and 7,
where the p. P47A and p. M299I breast cancer-associated
variants are located.

We used as controls DNA from 93 unrelated, adult, female
monozygotic twins (only one from each pair) selected from a
sample of 3,348 twin pairs. The twins were almost exclusively
of European origin and had been recruited through the Austral-
ian Twin Registry. Approvals were obtained from the Human
Research Ethics Committees of the Queensland Institute of
Medical Research, and for kConFab from the Peter MacCal-
lum Cancer Centre and all other committees to which kCon-
Fab reports.

Mutation analysis
Primers were designed using the web-based program Primer3
[33] to amplify 43 amplicons covering the 44 exons of
FANCD2 [GenBank: NT005927], 21 amplicons covering 19
exons of BRIP1/BACH1 gene [GenBank: NT010783.13],
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Table 1

FANCD2, BRIP1/BACH1, LMO4 and SFN primers

Gene Exon Forward primer Reverse primer Annealing 
temp (°C)

Amplicon 
size (bp)

DHPLC 
temp (°C)

FANCD2 1 GGTGAGCCCAGCTTATTGC GCCTCGAGAGACTACGACCA 55 188 64

2 CTTCAGCAACAGCGAAGTAGTCTG GATTCTCAGCACTTGAAAAGCAGG 50 421 56

3 GGACACATCAGTTTTCCTCTC GAAAACCCATGATTCAGTCC 50 308 56

4 & 5 TCATCAGGCAAGAAACTTGG GAAGTTGGCAAAACAGACTG 50 466 53, 58

6 GAGCCATCTGCTCATTTCTG CCCGCTATTTAGACTTGAGC 50 282 56

7 CAAAGTGTTTATTCCAGGAGC CATCAGGGTACTTTGAACATTC 50 342 55, 60

8 GACCAGAAAGGCTCAGTTCC CTGCAGCACATTACCCAGAA 55 463 51, 56

9 CAGCTCTGCATTTCACACGTA TGCAGTGATAGAACCCCCATA 55 265 60, 62

10 TGCCCAGCTCTGTTCAAACC AGGCAATGACTGACTGACAC 50 219 59

11 TGCCCGTCTATTTTTGATGAAGC TCTCAGTTAGTCTGGGGACAG 50 391 56

12 TCATGGTAGAGAGACTGGACTGTGC ACCCTGGAGCAAATGACAACC 55 432 53, 58

13 ATGGCAGGAACTCCGATCTT CCTTATTCAGCATGCCCTGT 55 363 56

14 GGGCATGCTGAATAAGGTGT GACAGTGGGAAGGCAAGCTA 55 189 57

15 GGGAGTGTGTGGAACAAATGAGC AGTTTCTACAGGCTGGTCCTATTCC 50 513 56

16 AACGTGGAATCCCATTGATGC TTTCTGTGTTCCCTCCTTGC 58 378 57

17 GATGGTCAAGTTACACTGGC CACCTCCCACCAATTATAGTATTC 54 381 57

18 CTATGTGTGTCTCTTTTACAGGG AATCTTTCCCACCATATTGC 50 233 52, 57

19 CATACCTTCTTTTGCTGTGC CCACAGAAGTCAGAATCTCCACG 48 198 59

20 ACACACCGGGGAATGTTGT CTGCAGGTTGGGTGACAGAG 53 341 49, 54, 59

21 GAGTTTGGGAAAGATTGGCAGC TGTAGTAAAGCAGCTCTCATGC 54 231 59

22 ACACTCTGCACTGCCCTTTT GAAAGAAGCTGTGGGACTGG 55 239 60

23 TGGTTTTCCCTGTAGCCTTG CTCAACTTCCCCACCAAGAG 55 294 60

24 TTGTGTTCCCTATGTATGTGGAG TTGATCTGCCCTTTCCCTAA 54 269 58

25 CAGCTAGCTCCAGAGGCAAC TGCACAATAAGTGAAACATCCT 54 229 58

26 TTCATAGACATCTCTCAGCTCTG GTTTTGGTATCAGGGAAAGC 52 283 52, 57

27 GCCATGCTTGGTAATTTTGG TTCCAATTACTGATGCCATGAT 55 319 57

28 TTGTTTTCTGAGGGCAATGA TGGGATGTCACAAACCTTCA 55 230 52, 57

29 GGTCTTGATGTGTGACTTGTATCCC CCTCAGTGTCACAGTGTTCTTTGTG 58 446 51, 56

30 CATGAAATGACTAGGACATTCC CTACCCAGTGACCCAAACAC 52 280 60

31 GACTCCATTGCGAACCCTTA CAGCCAAAAATGAAACCTCA 55 260 58

32 TGAGGTTTCATTTTTGGCTGA GTGCCTTGGTGACTGTCAAA 55 268 58

33 TTGATGGTACAGACTGGAGGC AAGAAAGTTGCCAATCCTGTTCC 50 273 58

34 AGCACCTGAAAATAAGGAGG GCCCAAAGTTTGTAAGTGTGAG 52 342 52, 57

35 TGTTAGACCGGGAACGTCTT TTGGCTCATTGGAAGAAACC 55 257 54, 59

36 TCTTCCAATGAGCCAAATAGC CCCAGCCTGATGATGATTCT 55 450 58

37 AGAGGTAGGGAAGGAAGCTAC CCAAAGTCCACTTCTTGAAG 50 232 60

38 GATGCACTGGTTGCTACATC CCAGGACACTTGGTTTCTGC 52 274 58

39 ACACTCCCAGTTGGAATCAG CTTGTGGGCAAGAAATTGAG 54 369 54, 59
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three amplicons for the three exons of LMO4 [GenBank: NM
006769] and three amplicons for the single coding exon of
SFN [GenBank: NM006142]. PCR products were amplified
from 15 ng of genomic DNA using AmpliTaq Gold (PE Applied
Biosystems, Forest City, CA, USA) in a final volume of 20 µL.

The amplification of fragments was optimised as needed by
adjusting the MgCl2 concentration, adding 1 M Betaine, or by
lowering the annealing temperature.

40 TGGGCTGGATGAGACTATTC CCAAGGACATATCTTCTGAGCAAC 52 222 59

41 TGATTATCAGCATAGGCTGG GATCCCCCAATAGCAACTGC 52 270 54, 59

42 CATTCAGATTCACCAGGACAC CCTTACATGCCATCTGATGC 54 226 59

43 AACCTTCTCCCCTATTACCC GGAAAATGAGAGGCTATAATGC 52 434 58

44 TGTATTCCAGAGGTCACCCAGAGC CCAGTAAGAAAGGCAAACAGCG 59 234 58

BRIP1/ BACH1 2 TTCTTTGTAAGGCGTGTCTCAA ATACTCAATGTACTTTATGGGTCA 50 246 55

3 TTGTTGTGTTCCCTGGAGTG GACAGCATGGCTGAACCAGT 55 325 56

4 CTGGGTGAACTGGGCTGTAG CAACTGACCCAGGCAAAATA 55 281 52, 57

5 AAGCCTTACATCCTGGTTCC CTAACTGGGTTATTTACTGCCAAT 54 254 55

6 GAGCTGTTTTGGCCTTTGAG TTCCTTCTTTAAAACTGAACAATGG 55 239 56

7 TTCCATGTGAGGTTTGATAACG GCAGTTAATTTGATTTTCCGAAG 55 481 53, 58

8 GCCTTGTGGCTTTAATGATG CATCTCCATGAGTAGGAAGAAGGT 55 373 57

9 TGAAATATCTTGCCTGCTGTTG TTTTTCATATAAAGGCAGCACAA 55 321 52, 57

10 GATCAACGCATGACAATAATGA AATTCACTAAATACGTTTCACAGGT 50 270 55

11 CCCTCCCAACCCCTCTATAC TGCTAGCATCCAAATTAGGCTAT 55 258 54

12 TGGGAAGGTACCAGCTCTTT TGCTGGTACTGAGCAAGAAGAC 55 333 56

13 TCAGACTCCTAGACTCAAGCGAT TTACTTGCTGGCACTTCAGG 54 364 54, 59

14 CATGCCTTTTTCAGGCATAA TTGCCTCTACCCTAGGAAGC 50 318 53, 58

15 GCCGTAGTCACATTGGCTTA TTTTCACCAGACCATGAAATAA 50 278 56

16 TTCTGAGAATTTTGGATATGCTTTT TGCTGAAAGACTTGCACAATG 55 319 57

17 TTGAGATCACACAGCTGATTAGTTA CCAGTTCCTATGGTTCCAGTT 55 458 50, 55

18 CTGTCCCACTGGAAAACTGG TCTGCTGTGAAATACTGTGCTT 50 297 54

19 GGTTACTTCACTAGAAAAAGCAAGTG TCAAAGGTAAATGGGAAGAACTTT 55 456 56

20a GCAATTATGTTAGCTAGGAGCAGA TCAAAATCTCTATTTGAAGTGGACTG 55 516 52, 57

20b TGAACATCCGCTCTGTTCTG TGCAATCCTCAGCTTTCACT 55 305 55

20c AACAATTCAGATTGCATTTTAGC GAGTTTAACATAAGCATGATGAC 50 328 53

LMO4 2 TTTCTCTCCCTGTCCCCTTC CCCCATCTCCAGGAAAGAC 55 304 59,64

3 CCAAAGGGATGCCCAGAGT GCCCCCATGTAGGTAGGAAA 64 254 55,60

4 CCTTGTTTTCAGTGGGTTTG GGTTGAACCTTCCAACTTGC 55 246 59

SFN 1a GCCAAGAGCAGGAGAGACAC ATGCGCTTCTTGTCGTCAC 60 510 63

1b.1 GAGAGCCGGGTCTTCTACCT TGATGAGGGTGCTGTCTTTG 62 316 62

1b.2 TCTCTCTGGCCAAGACCACT TCCCACCCCATACTAGTCCTC 64 249 63

DHPLC, denaturing high performance liquid chromatography.

Table 1 (Continued)

FANCD2, BRIP1/BACH1, LMO4 and SFN primers
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For LMO4, cycling conditions for the exon 2 and exon 4 ampli-
cons were 94°C for 12 minutes, followed by four sets of four
cycles of 94°C for 30 s, 63°C to 57°C for 45 s and 72°C for

30 s, with the annealing temperature dropping 2°C after each
set of four cycles, followed by 30 cycles of 94°C for 30 s,
55°C for 45 s and 72°C for 30 s, and a final extension of 72°C

Table 2

Mutation Analysis of FANCD2

Segment Nucleotide changea Protein effect No. of heterozygous 
cases

Frequency in controls 
(n = 93)

Reported in SNPperb or FA 
database

- -82 G>A 1/33 Not tested No

- -155 G>A 1/33 Not tested No

- -157 G>A 9/33 Not tested No

- -158 C>T 1/33 Not tested No

- -160 G>A 1/33 Not tested No

Intron 5 379-6 del TT 11/33 Not tested No

Exon 9 633 C>T I211I 1/432 Not tested No

Intron 9 694+17 G>C 127/432 Not tested No

Intron 10 784-19 C>T 11/33 Not tested No

Intron 12 990-38 C>G 11/33 Not tested No

Exon 14 1122 A>G V374V 11/33 Not tested Yes

Intron 16 1414-9 C>T N/A Not tested No

Intron 16 1414-23 T>C N/A Not tested No

Intron 16 1414-89 T>A N/A Not tested Yes

Intron 16 1414-117 A>T N/A Not tested No

Intron 16 1414-125 G>A N/A Not tested No

Intron 16 1414-136 C>T N/A Not tested No

Exon 17 1440 T>C H480H N/A Not tested Yes

Exon 17 1509 C>T N503N N/A Not tested Yes

Intron 21 1828+34 C>T 2/33 Not tested No

Intron 22 2021+10 G>T 1/33 Not tested No

Intron 22 2021+31 C>T 16/33 Not tested Yes

Intron 22 2021+100 A>G 1/33 Not tested No

Exon 23 2148 C>G T716T 1/33 Not tested No

Intron 24 2270-28 G>T 11/33 Not tested No

Intron 30 2976+36 T>C 11/33 Not tested Yes

Intron 30 2977-39 C>T 1/33 Not tested No

Exon 35 3558 C>G L1186L 1/33 0/93 No

Intron 38 3850-203 C>T 11/33 Not tested No

Intron 42 4185+33 T>C 11/33 Not tested Yes

Intron 43 4281+97 A>G 11/33 Not tested No

3' UTR 4359 C>T 3' UTR 15/33 Not tested No

aGenBank accession number NT005927. bVariants have been previously reported in the SNP database SNPper [44] or Fanconi Anemia (FA) 
Mutation Database [45]. UTR, untranslated region.
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for 7 minutes. Cycling conditions for exon 3 were 94°C for 12
minutes, followed by four sets of 4 cycles of 94°C for 30 s,
72°C to 66°C for 45 s and 72°C for 30 s, with the annealing
temperature dropping 2°C after each set of 4 cycles, followed
by 30 cycles of 94°C for 30 s, 64°C for 45 s and 72°C for 30
s, and a final extension of 72°C for 7 minutes. The same four-
step touchdown protocol used for the amplification of LMO4
was also used for screening FANCD2, BACH1 and SFN
(Table 1). The SFN exon was screened in three PCR frag-
ments. SFN1a and SFN1b.1 were screened by denaturing
high performance liquid chromatography (DHPLC) in 267
index cases. SFN1b.2 could not be screened successfully
using DHPLC and so a subset of 92 cases, chosen based on
DNA availability, were sequenced directly for this amplicon.

Amplicons were then denatured at 95°C for five minutes and
cooled to 60°C over 30 minutes (1°C/minute) prior to injection
onto the Varian Helix System (Varian, Walnut Creek, CA,
USA). DHPLC was carried out at the recommended melt tem-
perature for each exon (Table 1) as determined by the Stan-
ford melt algorithm [34,35]. Analysis of the DHPLC results
was performed using the Star Workstation version 5 (Varian).
Samples that produced a heterozygous peak or an aberrant
shift in retention time and/or peak shape were confirmed by
DHPLC and re-amplified for sequencing. DNA sequencing
was performed with both forward and reverse primers using
the ABI Prism Big Dye Terminator cycle Sequencing Ready
reaction kit (PE Applied Biosystems) and analysed on an ABI
377 sequencer. Coding variants and variants located near the
exon/intron boundary, were analysed in silico for amino acid

Table 3

In silico analysis of novel synonymous and 3' UTR alterations in FANCD2, BRIP1/BACH1 and STN

Gene Sequence 
variant

Location Conserved in 
mousea

Predicted effect on 
mRNA structureb

Predicted effect on 
consensus splice sitesc

Predicted effect on 
exonic splice sited

FANCD2 633C>T Exon 9 Yes None None No change

2148C>G Exon 23 No None None Gains SRp55, changes 
SF2/ASF

3558C>G Exon 35 No Slight shortening of side 
branch

Loss of exon 35 donore Gains SC35, loses SF2/
ASF

BRIP1/ BACH1 430 G>A Exon 5 Yes None None Loses SRp55 and 
SRp40, gains SF2/
ASF

584T>C Exon 6 No Completely changes 
mRNA structure

None Loses SRp40

3401 delC Exon 20 Yes None None No change

3464 G>A Exon 20 No Loss of one cluster of 
stem loops, gain of 
another

None Loses SRp40 and SF2/
ASF

3782T>C 3' UTR No Additional stem loop in 
middle of structure

SFN 748G>C 3' UTR No Change in branch 
position

765C>T 3' UTR Yes Change in branch 
position

766C>A 3' UTR Yes Loss of major side 
branch

767C>T 3' UTR Yes No change

775C>A 3' UTR Yes No change

776C>T 3' UTR Yes No change

777C>T 3' UTR Yes No change

786C>A 3' UTR Yes Change in branch 
position

787C>A 3' UTR Yes No change

792C>T 3' UTR Yes No change

aAccording to UCSC Genome Bioinfomatics [36]. bAccording to mFOLD [39].
cAccording to SpliceSiteFinder [41] and BDGP Splice Site Prediction [37].
dAccording to ESE Finder [38]. eAccording to BDGP Splice Site Prediction [37], but not SpliceSiteFinder [41]. UTR, untranslated region.
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changes, conservation in the mouse homologue (UCSC
Genome Bioinfomatics [36]), predicted splicing defects
(BDGP Splice Site Prediction [37], SpliceSiteFinder [41], and
ESE Finder [38]), and predicted mRNA folding changes
(mFOLD [39]).

All available family members' DNA samples were genotyped
for any missense and frameshift variants, and for variants that
appeared to lose a splice site, or have exonic splicing
enhancer and/or mRNA folding changes, as predicted by the
above web-based programs. Frameshift variants, missense
variants, or variants predicted to affect splicing were further
screened by DHPLC in 93 controls. Individuals carrying the
rare FANCD2 variants, c. 633 C>T, c. 1828+34 C>T, c.
2148 C>G, c. 2021+10 G>T, and c. 3558 C>G, were also
sequenced for the common c. 694+17 G>C variant in exon 9
to determine on which haplotype these rare variants occurred.

Results
FANCD2
DHPLC analysis of FANCD2 in the 33 index cases from 30
breast and ovarian cancer families, and of exons 9 and 19
(containing the ATM phosphorylation site and the FANCD2
monoubiquitination site, respectively) in a further 399 non-
BRCA1/2 index cases, identified 32 germline sequence alter-
ations, most of which were novel (Table 2). Analysis of
sequencing results identified 25 intronic variants, 6 silent cod-
ing variants, and another variant located within the 3' untrans-
lated region (UTR).

The c.633 C>T and c. 2148 C>G variants did not appear by
in silico analyses to affect mRNA folding or the concensus
splice site sequences, as predicted by the BDGP Splice Site
Prediction, SpliceSiteFinder, and mFOLD web-based pro-
grams (Table 3). c.2148 C>G was predicted to change the
SF2/ASF exon enhancer sites and gain a SRp55 enhancer
site. Because this nucleotide is not conserved in the murine
Fancd2 gene, however, the functional significance of these
changes remains unclear. The c. 3558 C>G (L1186L) variant,
located 3 bp 5' of the end of exon 35, was predicted to result
in a gain of a SC35 exonic splicing enhancer site, and a loss
of a SF2/ASF site, and also subtly changing the predicted
mRNA folding. In addition, the BDGP Splicing program pre-
dicted that the variant causes a complete loss of the donor site
for exon 35 splicing, although this was not predicted by
SpliceSiteFinder, consistent with the more sensitive algorithm
of the BDGP splicing program [37]. To address this further we
performed RT-PCR analysis with lymphoblastoid cell line RNA
but found no evidence for altered splicing of this transcript
(data not shown). The c. 3558 C>G variant was found in a
family with five cases of breast cancer, of whom two also had
ovarian cancer. DNA was available from two additional
affected relatives of the index case (her daughter and cousin).
The variant was carried by the daughter (affected at age 27
years) but not by the cousin (affected at age 34 years), nor by

any of the four unaffected female relatives (ages 22 to 57
years), nor by four male unaffected relatives. The c. 3558 C>G
variant was not found using DHPLC in any of 93 matched twin
controls. The other FANCD2 coding variants, c. 1122 A>G, c.
1440 T>C, c. 1509 C>T, and the 3' UTR variant c. 4359 C>T
were all common and/or previously reported as a single nucle-
otide polymorphism (SNP) and, therefore, no in silico analyses
were conducted.

Two common haplotypes of FANCD2 were identified, repre-
sented by c. 379-6 delTT, c. 694+17 C>G, c. 784-19 C>T,
c. 990-38 C>G, c. 1122 A>G, c. 2270-28 G>T, c. 2976+36
T>C, c. 3850-203 C>T, c. 4185+33 T>C, and c. 4281+97
A>G (Table 4). We were unable to calculate the exact fre-
quencies of each of the haplotypes because DHPLC did not
distinguish the two homozygotes from each other. Sequenc-
ing showed that the rare variants, c. 633 C>T, c. 1828+34
C>T, c. 2148 C>G, c. 2021+10 G>T and c. 3558 C>G,
were all found on the common haplotype that corresponds to
the reference sequence found on the NCBI database [42].

BRIP1/BACH1
A total of 10 nucleotide variants, four of which have not been
previously reported, were identified in BRIP1/BACH1 among
75 non-BRCA1/2 index cases (Table 5). Six of these variants
were exonic, of which one was a single base-pair deletion, four
resulted in amino acid substitutions and one was silent (Table
5). Three of the missense variants, c. 430 G>A (p. A144T), c.
584 T>C (p. L195P) and c. 3464 G>A (p. G1155E), and the
deletion variant c. 3401delC were absent in 93 controls. The
c. 584 T>C (p. L195P) variant has been reported previously in
an early onset breast cancer case, but not in controls [17]. In
silico analyses of c. 430 G>A (p. A144T), c. 584 T>C (p.
L195P) and c. 3464 G>A (p. G1155E) predicted that they

Table 4

FANCD2 haplotypes

Haplotype Common or rare

A - - CTGGTCTCGCCGCC Common

B TTGCCAGTCTACCGCC Common

C TTGCCAGTCTATCGCC Rare

D TTGCCAGTCTACTGCC Rare

E TTGCCAGTCTACCTCC Rare

F TTGCCAGTCTACCGGC Rare

G TTGCCAGTCTACCGCG Rare

The two common haplotypes were distinguishable by the single 
nucleotide polymorphisms c. 379-6 delTT, c. 694+17 C>G, c. 784-
19 C>T, c. 990-38 C>G, c. 1122 A>G, c. 2270-28 G>T, c. 
2976+36 T>C, c. 3850-203 C>T, c. 4185+33 T>C, and c. 
4281+97 A>G. The rare haplotypes all occurred on the haplotype B 
background and were represented by the rare variants, c. 633 C>T, 
c. 1828+34 C>T, c. 2021+10 G>T, c. 2148 C>G, and c. 3558 
C>G. Letters A-G represent the seven different FANCD2 
haplotypes.
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may affect mRNA folding and exonic splicing enhancers, but
have no affect on the consensus splice sites (Table 3). The 3'
UTR variant c. 3782T>C was predicted to cause the addition
of a stem loop at the position of the variant. This nucleotide is
not conserved in the murine Bach1/Brip1 gene, however, so
may not, therefore, be functionally significant. The 3401delC
variant was predicted to cause a frameshift resulting in a pre-
mature stop codon 15 amino acids downstream. This would
truncate the protein by 100 amino acid residues. The intronic
changes and the other exonic variants, c. 517 C>T (p. R172C)
and c. 3411 T>C (p. T1137T), were all found in at least one
control, indicating that they are likely to be benign
polymorphisms.

DNA samples from additional family members of the c. 430
G>A, c. 584 T>C, c. 3464 G>A, and the c. 3401delC carriers
were available for analysis, but none of these variants were
found to segregate with breast cancer in the families. Both the
c.430 G>A and c.3401delC variants were inherited from the
father of the index case who had no personal or family history
of breast cancer, and not from the affected mother with a
strong family history. The c.584 T>C variant was identified in
only the unaffected father and uncle of the index case, and not
in 24 other relatives (including two other affected females).
Finally, the c.3464 G>A variant was found in a family in which
the index case shared a haplotype around BRIP1/BACH1
with four affected maternal relatives, but only the index case
carried the variant, indicating that it was inherited from her
father who had no personal or family history of breast cancer.

Analysis of exons 3 and 7 of BRIP1/BACH1 in a further 253
non-BRCA1/BRCA2 breast cancer index cases did not iden-
tify the p. P47A and p. M299I variants previously reported, or
any other variants.

LMO4
Index cases from 247 families were screened by DHPLC
across the three coding exons of LMO4. Using the primers
designed to amplify exon 3, two intronic variations were
observed in two individuals each, c.237-72T>G and c.237-
51_237-46delTTCTTT, but no coding variants were identified.

SFN
DHPLC analysis of most (639/747 bp) of the coding exon of
SFN of the youngest available member affected with breast
cancer of each of 256 families identified one silent variant,
c.621 C>T (T207T) in 23 index cases. One individual was
found to carry three missense alterations (c.594C>A (F198L),
c.653C>A (L218I) and c.730C>A (Q244K)). In the 92 indi-
viduals screened for the remaining 89 bp SFN coding region,
10 different alterations were observed in the 3' UTR in 11
cases (c.748G>C, c.765C>T, c.766C>A, c.767C>T,
c.775C>A, c.776C>T, c.777C>T, c.786C>A, c.787C>A,
and c.792C>T). Several of these were predicted to affect the
secondary structure of the corresponding transcript (Table 3).

Discussion
Previous analyses of FANCD2 and BRIP1/BACH1 in non-
BRCA1/2 families failed to identify any pathogenic mutations
[14,16,17]; however, these studies did not choose the families
to be screened on the basis of haplotype sharing, or the occur-
rence of other cancers (e.g. ovarian cancer in the case of
FANCD2) in the family. Furthermore, some of these studies
were limited by the fact that DNA from additional family
members was not available for genotyping. To our knowledge,
LMO4 and SFN have not been previously examined as
BRCAx candidate genes. We therefore hypothesized that
germline mutations in the BRCA1-interacting genes,
FANCD2, BRIP1/BACH1, LMO4 and SFN, may account for

Table 5

Mutation analysis of BRIP1/BACH1

Segment Nucleotide changea Protein effect No. of heterozygous 
cases

Controls Reported in SNP perb

Intron 4 379-28 G>A 1/75 1/93 Yes

Exon 5 430 G>A A144T 1/75 0/93 No

Intron 5 508-31C>G 23/75 26/93 Yes

Exon 6 517C>T R173C 1/75 1/93 Yes

Exon 6 584T>C L195P 1/75 0/93 Yes

Intron 12 1795-47 C>G 27/75 Not tested Yes

Exon 20 3401 delC frameshift 1/75 0/93 No

Exon 20 3411 T>C T1137T 40/75 34/93 Yes

Exon 20 3464 G>A G1155E 1/75 0/93 No

Exon 20 3782 T>C 3' UTR 1/75 Not tested No

aGenBank accession number NT010783.13. bVariants have been previously reported in the SNP database SNPper [42]. UTR, untranslated 
region.
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some non-BRCA1/2 multiple-case breast cancer families.
LMO4 and SFN are both small genes and so 247 and 267
index cases, respectively, were screened for these two genes.
Because of the large size of the FANCD2 and BRIP1/BACH1
genes, however, we screened a smaller number of non-
BRCA1/2 breast cancer families for mutations in these genes
(30 and 75 families, respectively), but they were selected on
the basis of all the available affected individuals sharing a hap-
lotype around FANCD2 or BRIP1/BACH1, having at least
one case of ovarian cancer (FANCD2), or having had full
sequence analysis of BRCA1 and BRCA2 (BRIP1/BACH1).
In addition, we screened a further 399 and 253 cases, respec-
tively, for specific regions of the FANCD2 and BRIP1/BACH1
genes that contained functionally important domains, or vari-
ants previously found in the germline of breast cancer cases.

DHPLC analysis the FANCD2 gene indicated a high level of
conservation in the coding sequence, indicated by a paucity of
missense changes. Only six coding variants (c. 633 C>T,
1122 A>G, 1440 T>C, 1509 C>T, 2148 C>G and
3558C>G) were identified in the FANCD2 gene, all of which
were silent. c.633 C>T and 2148 C>G did not appear to dra-
matically affect the predicted RNA splicing or folding by in sil-
ico analyses and were, therefore, assumed to be neutral
SNPs. 3558 C>G (L1186L) was suggested by the BDGP
Splice site predictor program (but not SpliceSiteFinder) to
result in the complete loss of the donor site, possibly resulting
in the misplicing of exon 35. RT-PCR analysis of a lymphoblas-
toid cell line from the carrier failed, however, to identify any
aberrant transcripts, suggesting that this variant is unlikely to
be pathogenic. The L1186L variant was not identified in any of
93 controls, but it did not segregate with breast cancer in the
single family in which it was found. Therefore, this variant was
also assumed to be a rare, neutral SNP.

Two common haplotypes of the FANCD2 gene were identi-
fied, one of which (haplotype B) was identical to the reference
sequence obtained from the NCBI database. All of the rare
variants were found to occur on haplotype B. Even though
individually these variants were classified as neutral SNPs, an
association study designed to test whether the two haplotypes
confer different breast cancer risks would be worthwhile.

In the analysis of the BRIP1/BACH1 gene, we did not observe
the two previously reported variants, p. P47A and p. M299I, in
the 253 non-BRCA1/2 breast cancer cases [15]. However,
we did identify three non-conservative missense variants (p.
A144T, p. L195P, and p. G1155E) and one novel frameshift
mutation (c. 3401delC) in the 75 selected non-BRCA1/
BRCA2 breast cancer index cases. None of these variants
were found in 93 controls. Additional genotyping of a total of
68 family members indicated, however, that these variants are
not the underlying cause of breast cancer in these families, as
none of the other affected relatives carried the variants. Never-
theless, it is possible that these variants are low-risk breast

cancer susceptibility alleles, in which case further investigation
may be warranted. The 3782 T>C 3' UTR variant of BRIP1/
BACH1 is predicted to alter the folding of the transcript; how-
ever, the biological significance and frequency of this change
in the normal population has yet to be determined.

Mutation analysis of 82 sporadic tumours previously revealed
one somatic frameshift mutation of LMO4 [22]. No activating
or inactivating coding or splice site mutations of LMO4 were
found by DHPLC analysis of 247 index cases from non-
BRCA1/2 families. Two intronic variants were found, each in
two index cases. Their recurrent nature in two families and
apparent lack of effect on splicing suggests that they are rare
SNPs.

SFN is markedly down-regulated in breast cancer tissue com-
pared to normal mammary epithelium but to our knowledge
has not been evaluated for germline mutations in familial
breast cancer. We screened the majority of the coding region
of the gene in 267 index cases and found one silent change,
T207T, in 23 index cases. This silent change has been previ-
ously reported (rs11542704) [43]. We also found some vari-
ants in the 3' UTR, and three different missense changes in
one individual (F198L, L218I and Q244K) that were consid-
ered unlikely to be pathogenic because of the multiple occur-
rences in one individual. None of these variants have been
previously reported.

Conclusion
Mutation analysis of the BRCA1-interacting genes FANCD2,
BRIP1/BACH, LMO4 and SFN in a large number of non-
BRCA1/2 breast cancer families did not identify any highly
penetrant, pathogenic mutations. Given that DHPLC is a
robust and sensitive screening technique, we consider it
unlikely that we missed any coding or splice site pathogenic
mutations among the index cases analysed. In particular, we
analysed each PCR fragment at all the temperatures recom-
mended by the DHPLC melt algorithm and under these condi-
tions DHPLC has been reported to have a sensitivity of 99.4%
[40]. It appears unlikely, therefore, that FANCD2, BRIP1/
BACH, LMO4 and SFN account for more than a small propor-
tion of inherited forms of breast cancer. Many novel SNPs
were identified in these genes, however, and large association
studies of breast cancer cases and controls is warranted to
determine whether any of these variants confer small risks of
breast cancer.
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