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Abstract

The prevailing method of analyzing GWAS data is still to test each marker individually, although from a statistical point of
view it is quite obvious that in case of complex traits such single marker tests are not ideal. Recently several model selection
approaches for GWAS have been suggested, most of them based on LASSO-type procedures. Here we will discuss an
alternative model selection approach which is based on a modification of the Bayesian Information Criterion (mBIC2) which
was previously shown to have certain asymptotic optimality properties in terms of minimizing the misclassification error.
Heuristic search strategies are introduced which attempt to find the model which minimizes mBIC2, and which are efficient
enough to allow the analysis of GWAS data. Our approach is implemented in a software package called MOSGWA. Its
performance in case control GWAS is compared with the two algorithms HLASSO and d-GWASelect, as well as with single
marker tests, where we performed a simulation study based on real SNP data from the POPRES sample. Our results show
that MOSGWA performs slightly better than HLASSO, where specifically for more complex models MOSGWA is more
powerful with only a slight increase in Type I error. On the other hand according to our simulations GWASelect does not at
all control the type I error when used to automatically determine the number of important SNPs. We also reanalyze the
GWAS data from the Wellcome Trust Case-Control Consortium and compare the findings of the different procedures, where
MOSGWA detects for complex diseases a number of interesting SNPs which are not found by other methods.
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Introduction

Recently there has been growing interest in model selection

approaches to GWAS analysis. Although it is still common

practice in published GWAS to perform statistical analysis for each

SNP individually, there is increasing awareness that this kind of

single marker analysis has certain deficiencies in case of complex

traits. Several authors have commented that marginal tests will

suffer from lack of power to detect SNPs because the effect of other

causal SNPs remains unaccounted for [23,29]. It has been argued

that this shortcoming of single marker tests might play a significant

role in the widely discussed phenomenon of ‘‘missing heritability’’

in GWAS [43].

A slightly more sophisticated and less known problem is that

single marker tests have serious difficulties to rank important SNPs

correctly [23]. This is obvious for SNPs which are not directly

associated with a trait, but which have an important effect

conditional on the presence of other SNPs. However, even in case

of SNPs with marginal effects it turns out that due to small sample

correlations some important SNPs might have rather small

probability to be detected, whereas other SNPs which are not

associated at all with the trait might be selected with large

probability. This result puts in question the common practice to

report those SNPs in GWAS which have lowest ranking marginal

p-values.

Given these deficiencies of single marker tests one can expect

that the use of multi marker models to analyze GWAS will become

more and more important. Multiple linear regression models for

quantitative traits and logistic regression models for case control

studies have a long history in genetic association studies. To

facilitate their use for GWAS there is a strong demand of two

things: A thorough theoretical understanding of different model

selection strategies in high dimensions to find the regression model

which includes important SNPs, as well as the availability of

software packages which make modern statistical methodology

applicable to GWAS analysis.

Concerning the theory of high dimensional data analysis the last

two decades have seen a large number of innovations. One

milestone was the development of LASSO [39], which paved the
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way for a large number of other new approaches to model

selection. Bühlmann and van de Geer [12] give a comprehensive

presentation of the theoretical foundations of LASSO and its many

extensions like adaptive LASSO, group lasso or the elastic net. In

the context of GWAS several algorithms have been implemented

based on LASSO or one of its extensions [26,30,42].

From a Bayesian perspective the LASSO is equivalent to model

selection with a double exponential (DE) distribution as shrinkage

prior. Among the first software packages which allowed to perform

multi marker analysis of GWAS was HLASSO [29], which uses

not only DE priors, but alternatively considers normal exponential

Gaussian (NEG) priors. The NEG distribution is more pointed

than DE at 0, resulting in the selection of potentially smaller

models. More recently a Bayesian version of the LASSO was

introduced for GWAS analysis [31].

The LASSO itself was originally developed for model selection

problems of moderate size, whereas in GWAS one usually is

confronted with up to a million SNPs or more. For such ultra-high

dimensional problems, Fan et al. [17] suggested sure indepen-

dence screening (SIS) as a convenient way of dimension reduction.

In case of regression models SIS is nothing else but preselecting a

certain number of markers based on marginal tests. After SIS

more refined methods like LASSO or SCAD can be applied to

select a model. Using tests conditional on that selected model over

all remaining markers one can apply another SIS step. Iterating

SIS and refined model selection gives the procedure called ISIS.

A startlingly simple but computationally intensive method to

improve the performance of model selection procedures in high

dimensions is stability selection [33], where random subsamples of

the data are drawn repeatedly and a given model selection

procedure like LASSO is performed on each of these subsamples.

The final model is then obtained by considering those regressors

which have appeared consistently over the repeated samples.

One of the more prominent model selection packages for

GWAS is GWASelect [26], which combines ISIS with stability

selection based on 50 random subsamples, where the refined

model selection procedure in ISIS is LASSO. GWASelect itself

uses a prespecified size of the model, but there exists a ‘dynamic’

version d-GWASelect which uses cross-validation to fit the

LASSO parameter and which determines the number of selected

SNPs using stability selection. Thus in this article GWASelect

actually refers to d-GWASelect, the algorithm which allows to

determine the number of interesting SNPs.

An alternative approach to model selection in high dimensions

which is currently gaining popularity is based on information

criteria. Among the large number of SNPs genotyped in GWAS

one expects only a moderate number of SNPs to have a strong

effect. In such a sparse setting classical information criteria like

Akaike’s AIC or Schwarz’s Bayesian information criterion (BIC)

[38] have been shown to select too large models [11].

Consequently, Bogdan et al. [8] introduced a modification of

BIC called mBIC which is designed to control the family wise

error rate (FWER) of selected markers in sparse regression [9]. A

rather similar criterion called EBIC was presented by Chen and

Chen [14], where consistency results for EBIC under sparsity were

shown even in case when the number of markers is growing faster

than the number of observations.

Here we will focus on mBIC2, a modification of BIC which has

the property of controlling the false discovery rate (FDR). The

false discovery rate is the expected proportion of incorrectly

rejected null hypotheses, and was introduced by Benjamini and

Hochberg [6] as a measure of type I error control in multiple

testing which is less stringent than the family-wise error rate.

Frommlet et al. [21] introduced the criterion mBIC2 to control the

FDR in a model selection context. Further background informa-

tion on mBIC2 is given by Frommlet et al. [23], where extensive

GWAS simulations of quantitative traits based on real SNP data

show that mBIC2 is considerably more powerful to detect causal

SNPs than mBIC, while controlling the FDR at a fixed level.

In this article we will focus on case control studies, where the

model selection task is performed using logistic regression models.

Modifications of BIC for generalized linear models were studied

already in the context of QTL mapping [45]. However, for

GWAS the task of minimizing the criterion over all possible

models is much more challenging than in QTL mapping due to

the much larger number of genetic markers involved. In case of

logistic regression computing maximum likelihood estimates for

each model becomes much more time consuming than for

quantitative traits, and therefore one needs to develop rather

involved search strategies trying to find models which minimize

mBIC2. The resulting algorithm is implemented in the software

package MOSGWA, and we compare its performance with single

marker tests and with other variable selection methods, in

particular with HLASSO [29] and GWASelect [26]. The main

reason for this choice is that He and Lin [26] performed already a

comparison with several other methods for GWAS analysis, where

HLASSO and GWASelect gave the most convincing results. We

will report results from an extensive simulation study to compare

the performance of the different procedures, and we will reanalyze

the GWAS data from the Wellcome Trust Case-Control

Consortium (WTCCC) [41].

Methods

Selection criterion
Before describing the algorithmic details of MOSGWA we will

formally introduce the selection criterion mBIC2. Consider a

GWAS based on p SNPs and n individuals. For a given model

including kM SNPs our model selection criterion is of the form

mBIC2~{2 log L�MzkM log (np2=4){2 log (kM !) : ð1Þ

Each set of SNPs forms a potential model M, and MOSGWA tries

to find that model which minimizes mBIC2. Here L�M is the Firth

corrected maximum likelihood, which will be discussed in more

detail below.

The penalty of the mBIC2 criterion was introduced by

Frommlet et al. [21], where its derivation was based on ideas of

Abramovich et al. [1]. In particular mBIC2 is closely related to the

Benjamini-Hochberg multiple testing procedure [6], and it

controls the false discovery rate of detected SNPs. In the context

of linear regression certain asymptotic optimality properties of

mBIC2 were shown [7,21]. Roughly speaking selection based on

mBIC2 minimizes the misclassification error when both p and n

are large, while the number of regressors of the correct model is

relatively small.

An extensive motivation of mBIC2 can be found in Frommlet et

al. [23], where the criterion is applied for linear regression models

to analyze GWAS with quantitative traits. In contrast we will focus

here on case-control studies, and just like HLASSO [26] and

GWASelect [29] we make use of logistic regression to model the

disease risk of SNPs. To this end let Yi denote the disease status of

individual i[f1, . . . , ng (Yi~1 for a case, Yi~0 for a control), and

let xij denote the genotype of SNP j[f1, . . . , pg for individual i. If

a model M includes the SNPs j1, . . . , jk then the corresponding

logistic regression model can be written as

Analyzing GWAS with an FDR Controlling Criterion
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pi : ~P(Yi~1DM,h)~

exp (b0z
Pk

r~1

brxijr )

1z exp (b0z
Pk

r~1

brxijr )

, ð2Þ

with the parameter vector h~(b0, . . . ,bk)T . These kz1 param-

eters can be routinely estimated by maximizing the corresponding

likelihood LM (h), although occasionally the well known problem

of separation may occur, where some parameter estimates tend

towards infinity [2]. In classical statistical applications, where

p%n, separation typically arises only in case of small sample sizes.

For GWAS the sample size is usually very large, but the number of

potential regressors is even several orders larger, which results in

many combinations of SNPs for which separation occurs. Heinze

and Schemper [27] suggested to overcome the problem of

separation using a bias corrected version of logistic regression

which was originally proposed by Firth [18]. The likelihood of the

logistic regression model is multiplied with the corresponding

Jeffreys prior, which is just the square root of the determinant of

the Fisher information matrix I(h). Thus the Firth corrected

maximum likelihood from equation (1) is given by

L�M~ max
h

LM (h)
ffiffiffiffiffiffiffiffiffiffi
DI(h)D

p
, ð3Þ

and explicit formulas are given for example by Heinze and

Schemper [27]. The Firth-corrected log-likelihood log L�M in-

cludes the penalty term log
ffiffiffiffiffiffiffiffiffiffi
DI(h)D

p
, which guarantees that

parameter estimates cannot get excessively large. Note that

LASSO based procedures like GWASelect do not run into

difficulties with separation because the L1-penalty yields automat-

ically a shrinkage of parameters.

Search strategy
Having defined the model selection criterion (1) the main task is

to find the model which minimizes mBIC2. The resulting problem

is an extremely challenging mixed integer program, for which one

can only attempt to develop heuristic methods which yield an

approximate solution. The search algorithm of the software

package MOSGWA repeatedly makes use of a strategy called fast

stepwise search (FSS).

The aim of FSS is, starting from some initial model, to perform

a search heuristic which finds a model with a smaller value of a

given selection criterion. The final call of FSS is performed with

the target criterion mBIC2, but within the search it is valuable to

work with less stringent criteria to avoid getting stuck in local

minima corresponding to models which are missing some of the

causal SNPs. Specifically we consider the milder criterion

mBIC60 : ~{2 log L�MzkM log (np2=60) :

FSS depends on a pre-specified order of all markers not

included in the initial model. This order is either based on some

marginal test statistics, or on some conditional score tests as

described below. We will thus formally write the fast stepwise

search as a function

M~FSS(Minit, test, criterion) ,

to emphasize that it depends on the initial model, on the specific

order of markers according to test, and on the respective criterion.

Depending on the order of markers two groups are considered:

Group G1 consists of the best m1 SNPs, and group G2 of the best

m2 SNPs. Thus G15G2, where G1 is the set of SNPs along which

directed forward steps are performed (see below), whereas SNPs

within G2 might enter the model via so called exchange steps (see

below). The exact choice of the parameters m1 and m2 turns out to

be not too important. The default values of MOSGWA which are

also used for simulations are m1~350 and m2~5000 (as long as

p§5000).

FSS is based on three algorithmic steps which we call directed

forward, exchange, and backward step. FSS starts by considering

the initial model Minit as the current model. The directed forward

step repeatedly tests if enhancing the current model with a SNP

decreases the criterion, where SNPs within G1 are considered in

the order obtained from the test (therefore directed forward

search). The first SNP which improves the current model is added,

and an exchange step follows.

In the exchange step all SNPs in the current model are tested

whether exchanging them with suitable other SNPs decreases the

criterion. Suitable candidates for exchanging SNP Si are all other

SNPs within G2 whose physical distance to Si on the chromosome

is less than d. The default cutoff value of MOSGWA is d~50, that

is we only consider the 49 closest neighboring SNPs in both

directions. The algorithm starts with the first SNP of the current

model, and tries to exchange it with all suitable candidate SNPs. In

case of improvement the first SNP is substituted with the best

possible alternative. Then exchanges of the second SNP with all

corresponding candidates are performed, and so on till each SNP

of the model has been considered once. The idea behind this

strategy is that in the directed search step it might happen that not

the optimal SNP was chosen, but a correlated SNP might further

improve the model. Also after several SNPs have been added to

the model it can happen that exchanging a particular SNP of the

model is beneficial. Limiting the exchange to SNPs close to Si

which themselves have reasonably large test statistic makes this

strategy computationally feasible.

The third step of FSS is an extended backward elimination step.

First a standard greedy elimination step is performed, which

means that all models are considered where one SNP is removed

from the current model. If this does not improve the model, greedy

elimination is repeated up to three times to look for better models.

In other words like in a classical stepwise elimination procedure we

first remove the SNP which explains the least, if this does not

improve the selection criterion we additionally remove the next

SNP which explains the least, and if the resulting model again has

larger selection criterion than the original model we try one more

time to remove the least explanatory SNP. The resulting best

model is then the starting point for another directed forward step.

Directed forward, exchange, and backward steps are then

performed repeatedly till no further improvement of the criterion
is achieved.

Starting with the null model M0 the complete search strategy of

MOSGWA can be specified as follows:

1. M = FSS(M0, Cochran Armitage, mBIC_60)

2. M = FSS(M , Score Test, mBIC_60)

3. M final = FSS(M , Score Test, mBIC2)

The general strategy of this algorithm can be motivated as

follows. In the first round markers are preselected based on their

marginal (Cochran Armitage) test statistic. In the second round

score tests conditional on the model M of the first round are

performed over all remaining SNPs (see [26]). Score tests have the
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benefit of being computationally much less expensive than

likelihood ratio tests, and therefore provide a fast way to preselect

markers which might be of importance additional to markers

within M .

The first two rounds are performed with the milder criterion

mBIC_60, which is expected to yield models which are too large.

In fact when models are getting too large then the value of d from

the exchange step is reduced to guarantee reasonable runtime. As

mentioned previously the benefit of first working with mBIC_60 is

that one reduces the chances of missing out on important SNPs

due to local minima. Only in the final round FSS is performed

with the target criterion mBIC2, and will then yield a model for

which the type I error rate is controlled in terms of FDR.

The software package MOSGWA is available at http://

mosgwa.sourceforge.net/. An application note describing the

software in more detail is in preparation.

Simulation Studies

Global null hypothesis
Our first set of simulations is concerned with controlling the

type I error under the global null hypothesis. Simulations are

based on real SNP data from n~4077 individuals from the

POPRES sample [34], which are included in the POPRES_Gen-

otypes_QC2 dataset. Individuals are randomly allocated as cases

and as controls with equal probability; then MOSGWA, HLASSO

and GWASelect are applied to evaluate their ability to control the

type I error rate. The random allocation was repeated 200 times,

and Table 1 presents the average number of observed false

positives to estimate the per-family error rate. A graphical

illustration is provided in Figure 1.

To study the influence of the number of SNPs we performed

four different simulations using SNPs only from chromosome 1,

from the first two, the first four and the first six chromosomes,

respectively. The resulting number of SNPs, p, for these four

scenarios is given in the first column of Table 1. GWASelect and

single marker tests tend to report a large number of correlated

SNPs, and thus for these two procedures the number of false

positives was obtained by counting clusters of neighboring SNPs

[26], where clustering was performed with the algorithm of

Frommlet [20]. For HLASSO and MOSGWA no such clustering

is necessary, because these algorithms tend to select only one

representative for a genomic region anyway.

Table 1 illustrates that MOSGWA controls the type I error

under the total null hypothesis irrespective of the number of SNPs.

For MOSGWA no parameter needs to be tuned, whereas the

latest version of HLASSO allows to choose a parameter a which

corresponds to an uncorrected nominal significance level. We

consider three Bonferroni-like choices of the form

a[f0:3=p, 0:2=p, 0:1=pg. The results from Table 1 indicate that

the type I error tends to remain below the nominal level, which is

not too surprising given the positive correlations between

neighboring SNPs due to linkage disequilibrium. Type I error

rates for a~0:3=p are closest to those from MOSGWA, and

therefore from now on HLASSO will be used with this parameter

setting.

The size of the model selected by GWASelect depends on the

stable-selection-threshold j, which is defined in the following way;

GWASelect reports a SNP as detected when the proportion of

random subsamples in which the SNP was selected is larger than

j. He and Lin [26] recommend a choice between 0.1 and 0.2.

However, the results from Table 1 show that for these parameter

settings GWASelect completely fails to control the type I error rate

under the global null. We therefore considered additionally

j~0:3, for which the per-family error rate is controlled at least

to some extent. Interestingly the type I error from GWASelect

decreases when the number of SNPs increases.

The last column of Table 1 provides the results of single marker

tests performed with PLINK [36]. We considered logistic

regression models for each marker including the first four principle

components of all SNP genotypes as covariates to account for

population structure. This kind of adjustment is in principle not

necessary when simulating under the total null hypothesis, but it

becomes important for the simulation of complex traits below. We

applied the Benjamini Hochberg procedure to account for

multiple testing, and we can see that under the total null

hypothesis the single marker tests control the type I error rate

pretty much at the nominal level a~0:05.

Complex trait
The second set of simulations is concerned with the power to

detect causal SNPs. To this end we consider again the 149478

Figure 1. Illustration of the simulation results under the total null hypothesis. The average number of false positives for MOSGWA is
compared with HLASSO (Fig 1a) and with GWASelect (Fig 1b), for which false positives were clustered. Simulations were performed for four different
numbers of chromosomes, resulting in different numbers of SNPs plotted on the x-axis.
doi:10.1371/journal.pone.0103322.g001
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SNPs from the first six chromosomes for the 4077 individuals from

the POPRES sample. Simulations are performed for three

scenarios, which include 6, 12, and 24 causal SNPs, respectively.

All causal SNPs are common (MAF w0:05), equally distributed

over the six chromosomes, and with pairwise correlation rv0:1
for each pair. Disease risk was computed for each individual

according to equation (2), based on which for each scenario 200

case-control data sets were sampled. Effect sizes bj were ranging in

the interval ½0:2,0:28�, yielding causal SNPs with intermediate

power. The coefficient of the intercept b0 was chosen such that the

number of cases and controls in each simulation run was more or

less identical.

Before analyzing the data in each scenario half of the causal

SNPs were removed, mimicking the situation where SNPs

associated with a trait are not causal themselves, but only in

linkage disequilibrium with the cause. SNPs to be removed were

selected in such a way that there actually were SNPs in linkage

disequilibrium, to make it possible for these signals to be detected.

The simulated data were then analyzed with MOSGWA,

HLASSO (using parameter a~0:3=p), GWASelect using param-

eters j[f0:1,0:2,0:3g and with single marker tests (as previously

including the four leading principal components in logistic

regression models and applying Benjamini Hochberg procedure

at nominal level a~0:05).

Table 2 and Figures 2, 3 and 4 summarize the corresponding

results in terms of estimated power (which is just the average

number of correctly detected signals divided by the total number

of causal SNPs), the average number of false positives, the average

number of misclassifications (that is false positives plus missed

causal SNPs) and the estimated false discovery rate.

A crucial point in computing all these statistics is the definition

of true positives and false positives. Of course we know the SNPs

which we used to simulate the data, which we will call causal SNPs

or correct SNPs. Now there might be several SNPs in close linkage

disequilibrium with a causal SNP, and there is the question

whether we count a detected SNP which is strongly correlated with

the correct SNP as true positive or as false positive. Furthermore

half of the causal SNPs under which we simulated were removed

before analyzing the data. Therefore to get reasonable results we

actually have to count detections which are strongly correlated

with a causal SNP as true positives.

It is quite common in this context to use a threshold value C on

the correlation between causal SNPs and any detected SNP to

determine whether a detected SNP is a true positive [26,29]. If

several detected SNPs are closely correlated to one causal SNP we

count all of them as one true positive. Just like for the simulation

under the total null we have additionally clustered the false

positives of GWASelect and of the single marker analysis. This was

performed with the algorithm described in Frommlet [20] which

computes so called C-clusters, that is clusters of SNPs where it is

guaranteed that within each cluster all SNPs have pairwise

correlation larger than C. We used for clustering and for

determining true positives always the same constant C. Counting

the number of clusters rather than the total number of false

positives works in favor of the performance of GWASelect and

single marker tests. Both for MOSGWA and HLASSO such

clustering appears to be unnecessary, because for a genomic region

of closely related SNPs usually these procedures select only one

representative.

In Figures 2, 3 and 4 we illustrate the dependence of the

different statistics on the threshold values C for correlations which

specify true positives via DRD w C: Results were computed for

C[f0:2,0:3,0:4,0:55,0:7,0:9g. One can see that within the range

of 0:2ƒCƒ0:55 the dependence on the threshold is relatively
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minor for all methods. In general the choice of C has the biggest

impact on the results of single marker tests. For those the number

of false positives grows much faster than for the other methods,

because the number of false positive clusters increases with stricter

clustering threshold C. Table 2 specifically reports the results for a

threshold C~0:3.

For all three scenarios MOSGWA has the lowest number of

misclassifications, which is in accordance with theoretical results

[21]. Of particular interest is the comparison between MOSGWA

and HLASSO. For k~6 MOSGWA has slightly larger power and

lower Type I error. For k~12 and specifically for k~24
MOSGWA has much larger power than HLASSO, but also

larger Type I error. When the number of causal SNPs is increasing

then HLASSO is getting more conservative in comparison with

MOSGWA, which is in accordance with the way both algorithms

are designed. HLASSO tries to control the FWER at a certain

level, whereas MOSGWA tries to control the FDR. According to

asymptotic theory [7,24], when aiming at a minimal number of

misclassifications in a sparse setting it is preferable to control FDR

rather than FWER.

Concerning GWASelect just like under the total null hypothesis

the choice of j~0:1 gives way too large models. The choice of

j~0:2 works slightly better in terms of controlling the Type I

error, but is less powerful than MOSGWA and HLASSO. Given

the simulation results under the total null hypothesis one actually

should use the setting j~0:3, but then GWASelect is no longer

competitive at all in terms of power.

The single marker tests are performing surprisingly well, and the

disadvantage compared to the model selection approaches is much

less than it was observed by Frommlet et al. [23] for quantitative

traits. However, we believe that this is mainly due to the fact that

we have added the first four principle components of SNP

genotypes. Although we did not specifically simulate scenarios

where population structure would play a major role in itself, when

testing a specific SNP the principle components in the model help

to adjust for the net effect of all the other causal SNPs. Without

adding principle components the performance of the single marker

tests was extremely poor. Also note that for MOSGWA we did not

specifically take any measures to take into account population

structure. Still it is much more powerful than single marker tests in

all three scenarios, while at the same time controlling FDR at a

comparable level.

Figure 2. Simulation results under an alternative with k~~6 causal SNPs. The four panels (Fig 2a, Fig 2b, Fig 2c, Fig 2d) show the average
power, number of false positives, misclassification rate and false discovery rate as a function of the threshold value C which determines if a detection
is a true or a false positive. The performance of MOSGWA is compared with single marker tests, HLASSO, and with GWASelect using three different
parameters for stability selection.
doi:10.1371/journal.pone.0103322.g002
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Real Data

The Wellcome Trust data for genome-wide association studies

on seven different diseases [41] have become benchmark data sets

for comparing different algorithms to analyze GWAS. For each

disease approximately 2000 cases were compared with a common

set of approximately 3000 controls. More than half a million SNPs

were genotyped with the Affymetrix GeneChip 500K, from which

less than 400,000 passed quality control. The original analysis

from WTCCC was mainly based on single marker tests and

identified 24 significant SNPs for the seven diseases.

The analysis of He and Lin [26] using GWASelect resulted in

60 distinct loci. Unfortunately we were not able to completely

reproduce their results, which has several reasons. First of all He

and Lin [26] did not fully document their preprocessing of data for

quality control, and model selection analysis of GWAS data is

extremely sensitive with respect to the set of SNPs being studied.

Furthermore they seem to have used not always the same

parameter j for d-GWASelect, but adapted this for different

diseases. We provide next a detailed description of the prepro-

cessing steps we performed, and how they differ from [26].

Data preprocessing of WTCCC data
We reanalyzed bipolar disorder (BD), coronary heart disease

(CAD), hypertension (HT), Crohn’s disease (IBD), rheumatoid

athritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D).

Like in the original article [41] all diseases are compared with the

same control group of 3000 individuals. In the following filenames

we will denote by vDISw any of the seven abbreviations for

diseases given above. Starting from the already imputed WTCCC

data sets we removed individuals for each disease and for the

control group according to the files exclusion-list-05-02-2007-

vDISw.txt and exclusion-list-snps-26_04_2007.txt.

After merging cases with controls we removed SNPs with a

minimal allelic frequency smaller than 0.01. Furthermore we

tested for Hardy Weinberg equilibrium and SNPs with p-values

smaller than 0.0001 were also removed. Finally we only

considered SNPs for which the genotype calling algorithm from

the WTCCC confirmed good clustering, where we took that

information from the files WTCCC_summary_data/7_Diseases/

vDISw/basic/snptest_vDISw_vCHRw.txt. Here vCHRw

is the chromosome number ranging from 1 to 22. According to

private correspondence with He and Lin they had used the file

wtccc_vDISw_basic_chr_vCHRw.xml for similar purposes.

That file must have differed from the file we have used, but is no

Figure 3. Simulation results under an alternative with k~12 causal SNPs. The four panels (Fig 3a, Fig 3b, Fig 3c, Fig 3d) show the average
power, number of false positives, misclassification rate and false discovery rate as a function of the threshold value C which determines if a detection
is a true or a false positive. The performance of MOSGWA is compared with single marker tests, HLASSO, and with GWASelect using three different
parameters for stability selection.
doi:10.1371/journal.pone.0103322.g003
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longer available from WTCCC. In summary, after preprocessing

we will have ended up with a different set of SNPs than used in

[26], and according to email correspondence with the authors it is

no longer possible to reconstruct which set of SNPs they had used

for their own analysis. Not starting from the same set of SNPs

explains why we were not able to completely reproduce the results

reported by He and Lin [26].

Summary of results
Like in the simulation study for complex traits HLASSO was

applied with parameter a~0:3. For GWASelect we present the

results again for j[f0:1,0:2,0:3g, in spite of the fact that we have

seen that only j~0:3 controls the type I error rate under the total

null hypothesis. Table 3 gives for each disease the number of

detected SNPs (and associated regions) obtained from the original

WTCCC analysis, MOSGWA, HLASSO, and GWASelect. A

more detailed discussion concerning the detected SNPs follows

below.

The first observation is that GWASelect with parameter j~0:1
is selecting in 6 out of 7 diseases a much larger number of SNPs

than the other methods. Given the results from simulations we are

forced to conclude that most of those SNPs might be false

positives, and we will not give the detailed results for GS 0.1 in the

next section except for rheumatoid arthritis, where interestingly

GS 0.1 gives quite similar results to MOSGWA and HLASSO (for

a detailed explanation see below). For Crohn’s disease and Type I

diabetes the results for j~0:2 are relatively close to MOSGWA

and HLASSO, whereas for all other diseases j~0:3 might be the

best choice for GWASelect. The general conclusion is that the

results of GWASelect heavily depend on the choice of j, and it is

not really possible to know in advance which choice gives reliable

results.

The comparison between MOSGWA and HLASSO is quite

interesting. For the four diseases for which only a small number of

SNPs was detected (BD, CAD, HT, T2D) MOSGWA finds

exactly the same regions as HLASSO, though in two cases one

SNP less. Similarly MOSGWA has a tendency to select less

representatives of a region than HLASSO for the remaining more

complex traits. This might have to do with the fact that the

coefficient estimates of MOSGWA suffer from even less shrinkage

than the estimates from HLASSO. Hoggart et al. [29] provide a

thorough discussion of the fact that in case of shrinkage the

regressors which enter a model explain less than they would

without shrinkage, which results in a higher chance of including

further correlated SNPs in the model. This is the main reason why

HLASSO works with the NEG prior, which results in less

Figure 4. Simulation results under an alternative with k~~24 causal SNPs. The four panels (Fig 4a, Fig 4b, Fig 4c, Fig 4d) show the average
power, number of false positives, misclassification rate and false discovery rate as a function of the threshold value C which determines if a detection
is a true or a false positive. The performance of MOSGWA is compared with single marker tests, HLASSO, and with GWASelect using three different
parameters for stability selection.
doi:10.1371/journal.pone.0103322.g004
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shrinkage than the double exponential prior corresponding to

LASSO.

A second observation is that especially for complex traits

MOSGWA tends to select more regions of association than

HLASSO. This goes along with the fact that HLASSO is designed

to control the FWER, whereas MOSGWA controls the FDR. In

case of complex traits MOSGWA is therefore bound to find more

SNPs than HLASSO, whereas if there are only few signals both

methods behave very similarly. Looking more closely into the

results for IBD, RA and T1D, we observe that MOSGWA detects

SNPs within all regions which were reported as significant

according to the original WTCCC analysis [41]. The same is

not true for HLASSO, which misses out one region on

chromosome 10 for RA, and another region on chromosome 16

for T1D. On the other hand MOSGWA finds exclusively 7 SNPs

for IBD, 4 SNPs for RA, and 6 SNPs for T1D, respectively. We

will next provide a thorough discussion on the potential relevance

of these SNPs which were exclusively found by MOSGWA.

WTCCC Results in detail
For each disease we provide tables as supporting information

which list all SNPs which were detected by different methods.

Specifically the first column of these tables gives the reference SNP

ID number from dbSNP, followed by the chromosome (Chr) and

the position (Pos). The column Gene contains information about

the closest lying gene according to the databases dbSNP and

ImmunoBase:

Table 2. Summary of simulation results for complex traits.

MOS HL GS 0.1 GS 0.2 GS 0.3 SM

Scenario 1: (k = 6)

Size 5.32 5.94 23.36 5.87 3.03 4.40

Power 0.69 0.67 0.74 0.57 0.41 0.59

FP 1.19 1.90 18.90 2.43 0.57 0.85

FDR 0.19 0.27 0.77 0.35 0.16 0.14

Mis 3.07 3.86 20.44 5.00 4.12 3.31

Scenario 2: (k = 12)

Size 9.80 8.19 23.35 7.31 3.77 9.17

Power 0.68 0.59 0.65 0.45 0.28 0.63

FP 1.65 1.16 15.49 1.88 0.37 1.65

FDR 0.15 0.17 0.63 0.23 0.08 0.16

Mis 5.49 6.13 19.63 8.46 8.97 6.13

Scenario 3: (k = 24)

Size 18.03 13.71 31.29 11.43 6.43 17.76

Power 0.65 0.52 0.57 0.37 0.24 0.62

FP 2.39 1.27 17.63 2.49 0.67 2.99

FDR 0.13 0.09 0.54 0.20 0.09 0.16

Mis 10.75 12.83 27.97 17.56 18.91 12.22

The average over 200 simulation runs is reported for the number of detected associations (Size), the estimated power, the number of false positive detections (FP), the
estimated false discovery rate (FDR) and the average number of misclassifications (Mis). GWASelect performed with parameters j[f0:1,0:2,0:3g is abbreviated as GS j,
MOSGWA as MOS, HLASSO as HL, and single marker tests as SM.
doi:10.1371/journal.pone.0103322.t002

Table 3. Summary of real data analysis.

Disease WTCCC MOS HL GS 0.3 GS 0.2 GS 0.1

BD (1) 1 (1) 1 (1) 1 (1) 9 (9) 43 (39)

CAD (1) 2 (2) 3 (2) 3 (2) 4 (2) 29 (21)

HT (0) 1 (1) 1 (1) 1 (1) 4 (4) 29 (26)

IBD (9) 17 (16) 12 (8) 12 (5) 15 (6) 32 (19)

RA (3) 11 (5) 12(2) 1(1) 1(1) 13 (2)

T1D (7) 25 (11) 22 (4) 12 (2) 20 (2) 33 (2)

T2D (3) 2 (2) 3 (2) 4 (2) 8 (4) 28 (19)

Number of detected SNPs which are associated to the following seven diseases from WTCCC: Bipolar disorder (BD), coronary artery disease (CAD), hypertension (HT),
Crohn’s disease (IBD), rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D). WTCCC refers to the regions reported by the original publication [41] in
their Table 3, abbreviations for the other algorithms are just like in Table 2. In brackets we give the number of DNA regions which are covered by the detected SNPs.
The whole HLA region on chromosome 6 is counted as only one region.
doi:10.1371/journal.pone.0103322.t003
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N dbSNP: http://www.ncbi.nlm.nih.gov/SNP/

N ImmunoBase: http://www.immunobase.org/

The next four columns have bullets whenever a SNP was

detected by MOSGWA (M), Hlasso (HL), GWASelect with

parameter j~0:3 (G3) or j~0:2 (G2). According to our

simulation results we believe that the large number of additional

SNPs detected by GWASelect with j~0:1 (G1) will include

mainly false positives. Therefore we do not present detailed results

for G1, with the exception of rheumatoid arthritis which has a

rather particular genetic constellation. If many neighboring SNPs

are reported by different methods we consider such groups of

SNPs as genetic regions, and we label such groups in the tables

using background colors. The crosses in the last column (W)

indicate regions which were reported originally in [41].

Bipolar disorder (BD). As illustrated in table S1 SNP

rs2837588, which is an intron of DSCAM, was found by all

methods, though it was not reported in [41]. On the other hand

the only SNP reported by WTCCC, rs4202459, was not detected

by any of the algorithms we analyzed here. This can be quite easily

explained because all algorithms we study here are based on

models incorporating linear trends, and the trend p-value of

rs4202459 is quite large (2.19 E-04 according to the WTCCC

manuscript). That rs2837588 was not reported by WTCCC might

have to do with the large number of missing values for this SNP.

Results reported in [41] are not based on imputed data, and

imputation changes the marginal p-value for this SNP consider-

ably. More recent research [3] indicates that there actually might

be a connection between bipolar disorder and DSCAM, although

in general according to a recent large GWAS [37] it appears to be

extremely difficult to identify robust and replicable genetic causes

for psychiatric disorders. Thus all the other SNPs reported by G2

have a good chance to be false positives.

Coronary artery disease (CAD). Here the original

WTCCC study reported only one region, whereas all methods

studied here detect two regions (see table S2). Note that

MOSGWA selects only one representative of the region reported

by WTCCC, whereas HLASSO reports two representatives. This

is a pattern we will see again several times, for example in type II

diabetes. A possible explanation why HLASSO prefers to choose

more representatives of a region than MOSGWA is that

MOSGWA is based on model selection criteria which impose

less shrinkage on the coefficients than HLASSO does. The effect of

shrinkage on the number of selected correlated SNPs is thoroughly

described by Hoggart et al. [29].

Hypertension (HT). The original WTCCC study did not

report any SNP associated with hypertension, whereas all methods

studied here report rs16945811 on chromosome 17 (table S3). The

reason for this is again that we work with imputed data, for which

the marginal p-value of this SNP is considerably smaller than for

the original unimputed data. The other SNPs reported by G2 are

again very likely to be false positives.

Crohn’s disease (IBD). This is the first disease for which

model selection approaches become really interesting, because the

trait appears to be a complex one. Note that HLASSO finds one

region less (on chromosome 3) than originally reported in [41],

whereas MOSGWA finds all regions reported by WTCCC plus

seven additional ones which are highlighted in yellow in the table

S4. At least five of those have been mentioned meanwhile in the

literature on Crohn’s disease, which means that based on the

WTCCC data MOSGWA would have detected a number of SNPs

associated with Crohn’s disease which were later confirmed by

independent studies.

Let’s look at those SNPs in detail. The first SNP rs12035082 is

close to rs12037606 which was actually reported in [41] among

the SNPs which showed moderate evidence of association, and was

later confirmed to be associated with CD [32]. Similarly

rs6908425 was reported as being moderately associated in [41],

and could later be confirmed in an independent study [4].

rs4263839 was not reported by WTCCC, but it was among the list

of confirmed SNPs given in [4]. Furthermore it has later been

shown to be associated with irritable bowel syndrome [44].

rs2836753 is in close linkage disequilibrium with rs2836754, which

was related to Crohn’s disease in [35].

rs6908425 is an intron from the CDKALI gene on chromosome

6 and has been confirmed to be associated to Crohn’s disease (see

for example snpedia at http://snpedia.com/index.php/Rs6908425).

rs9405639 on chromosome 9 lies within the intron of SLC22A23

gene, which is also well known to be related to Crohn’s disease (http://

www.immunobase.org/page/Overview/display/gene_id/63027).

The only two SNPs detected by MOSGWA based on the

WTCCC data which have not been confirmed in the literature are

rs11627513 and rs41526044. rs11627513 is relatively close to the

IL23R gene which is known to be associated with Crohn’s disease

(see http://www.immunobase.org/page/Overview/display/gene_

id/149233) and it was mentioned in [28] as a potentially associated

gene. Up to our knowledge only for rs11627513 nothing is known,

and this might well be a false positive. Remember that MOSGWA is

designed to control the FDR approximately at a level of 10%, and

thus one would actually expect 2 false positive SNPs within this

model.

Rheumatoid arthritis (RA). All SNPs detected on chromo-

some 6 belong to the so called HLA region which has been well

known for a long time to be associated with rheumatoid arthritis

(see for example [15]). However, HLA genes explain only

approximately one-third of the genetic liability of the disease

[13], and a great amount of research has been performed to

understand genetic causes beyond HLA. For the rheumatoid

arthritis data GWASelect performs very poor, for parameters

j~0:3 and j~0:2 only one SNP in the HLA region is reported.

This is quite easy to understand given the way GWASelect works.

In the HLA region there are many highly correlated SNPs, and

during the stability selection procedure it is very likely that for

different samples different representatives of a cluster of SNPs are

chosen. Therefore only for the lowest threshold j~0:1 GWASe-

lect gives results which are more in line with the other methods.

This is the reason why He and Lin [26] clustered the HLA region

before analyzing that data set, but that appears to be quite an extra

effort for the user when applying GWASelect. Neither MOSGWA

nor HLASSO did have particular problems with including the

HLA region in the analysis, and both find apart from SNPs in the

HLA region also rs6679677 on chromosome 1. This SNP was

already reported by the WTCCC [41], but according to a recent

meta-analysis [13] this region actually could not be confirmed to

be associated with rheumatoid arthritis.

Four SNPs were then only detected by MOSGWA which are

highlighted in the table S5 in yellow. These detections appear to

be rather interesting. rs2104286 lies in the intron of the IL-2RA

gene, and according to a recent study [13] this SNP is definitely

associated with rheumatoid arthritis. It was reported by WTCCC

[41] after pooling data from RA and T1D, but it was not detected

when using the standard analysis for data only from the RA

population. rs1946518 from chromosome 11 is not mentioned in

the meta-analysis, but the GUCY1A2 gene is down regulated in

case of rheumatoid arthritis [16]. This indicates that there might

be a functional connection between this region and RA.

Analyzing GWAS with an FDR Controlling Criterion

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e103322

http://www.ncbi.nlm.nih.gov/SNP/
http://www.immunobase.org/
http://snpedia.com/index.php/Rs6908425
http://www.immunobase.org/page/Overview/display/gene_id/63027
http://www.immunobase.org/page/Overview/display/gene_id/63027
http://www.immunobase.org/page/Overview/display/gene_id/149233
http://www.immunobase.org/page/Overview/display/gene_id/149233


Finally there remain two SNPs from the GLI3 gene on

chromosome 7. Again nothing is said about those in the meta-

analysis [13]. However, the GLI3 gene is known to be a member

of the Hedgehog signaling pathway which is important for the

proper development of embryos, and is also known to play an

important role in adults [40]. rs12536071 has a relatively small

marginal p-value (5.2E-06), whereas the neighboring SNP

rs12531052 has a rather large marginal p-values (0.167944). It is

pretty unusual for MOSGWA to select two SNPs which are

located so close to each other, which might indicate that actually

some epistatic effect could be involved here.

Type I diabetes (T1D). Similarly to rheumatoid arthritis also

for type I diabetes the HLA region plays an important role, where

approximately half of the genetic risk for T1D is found in the HLA

region [10]. GWASelect is handling the situation here slightly

better than in case of RA, but still it detects apart from HLA SNPs

only rs6679677 on chromosome 1, which is also reported by all

other methods. In the original WTCCC publication [41] three

more SNPs are found to have strong association with T1D. All of

those were found by MOSGWA, whereas HLASSO missed

rs12924729 on chromosome 16. MOSGWA reported 6 additional

SNPs which are again highlighted in yellow in the table S6.

rs41384747 on chromosome 18 is close to rs2542151 which was

already listed among SNPs with moderate association by WTCCC

[41]. The region was later confirmed in replication studies (see

[5]), and also includes SNP rs478582 listed in the meta-analysis

[10]. Similarly the region on chromosome 5 in which rs1025039

lies has been known as a susceptibility locus for T1D. In the same

region lies rs6897932 which is associated with T1D [5]. Perhaps

the most comprehensive source today for human Type 1 Diabetes

loci is the database http://t1dbase.org. There one can find that

the region on chromosome 18 is listed as being associated with

T1D, but not the region on chromosome 5.

The closest region to rs6928921 on chromosome 6 which is

documented in t1dbase is 6q15 with the BACH2 gene, which is 5

MB upstream. Nothing is known about any influence of

KIAA1009 on T1D. There is more indication that rs2666236

on chromosome 10 might be associated with T1D, as it is known

that the corresponding gene NRP1 is associated with T1D [25].

However, again the region of rs2666236 is not listed in t1dbase.

Nothing is known about the other SNPs rs7157296 on chromo-

some 14 and rs41384747 on chromosome 18, and they might thus

be false positives. Remember that MOSGWA is tuned to have an

FDR of approximately 10%, and thus 2 or 3 false positive SNPs

are to be expected in this model.

Type II diabetes (T2D). With type 2 diabetes a smaller

number of genetic regions seems to be associated than with the

previous three diseases (table S7). Thus the model selection

approach appears to have less benefits compared with the

standard analysis. MOSGWA does not report rs9465871 on

chromosome 6, but looking at the original WTCCC analysis [41]

this SNP has a trend p-value of 1.02 E-6, which is not significant

after any standard correction for multiple testing. Apart from that

all algorithms report SNPs within the two main regions on

chromosome 10 and 16, where MOSGWA chooses again only one

representative for gene TCF7L2 on chromosome 10.

Discussion

We have introduced MOSGWA, a new algorithm for GWAS

analysis using the FDR controlling model selection criterion

mBIC2. We compared its performance with two existing variable

selection methods, GWASelect and HLASSO. The first observa-

tion was that both MOSGWA and HLASSO are controlling the

Type I error rate under the global null hypothesis, whereas

GWASelect does not manage to do that when using the

recommended parameter setting j[½0:1,0:2�. He and Lin [26]

only presented simulation results for scenarios including 10 causal

SNPs, for which GWASelect had relatively low FDR. In

accordance we observed that GWASelect tends to have lower

type I error rate when the true model underlying simulations

includes more causal SNPs. However, a method which selects very

large models even when we know that there is no genetic cause for

the disease status appears to be rather problematic. When

increasing the selection threshold to j~0:3 then GWASelect

more or less controls the type I error under the global null, but

then it is no longer competitive in terms of power to detect causal

SNPs. One advantage of MOSGWA is that there is actually no

parameter tuning necessary at all, because the selection criterion is

fixed.

Apart from GWASelect and HLASSO we have also compared

the performance of the original LASSO as implemented in glmnet

[19], although we decided not to present the corresponding results

in this manuscript. LASSO previously has been shown to perform

well in GWAS in terms of prediction [30], but here we are only

interested in selecting the correct SNPs. For this purpose one has

the problem to decide upon the best tuning parameter l of

LASSO. It is well known that cross validation yields too large

models, which we also observed in our simulations. As an

alternative we tried to search along the LASSO regularization

path and find the model which minimizes mBIC2, but that gave

too small models. We finally considered a strategy where we

searched along the regularization path for that model which

minimizes the misclassification rate. This is obviously not feasible

in practice when the truth is unknown, but this strategy shows the

best possible performance of LASSO that one could achieve at

least theoretically. It still turned out that in our simulations even

the best possible model along the regularization path could not

compete with the models obtained with MOSGWA or HLASSO.

We observed that LASSO tends to select too many correlated

SNPs with larger effect sizes, and then has difficulties to include

causal SNPs with smaller effect size, but rather includes a number

of false positives. An explanation of this behavior was given

already by Hoggart et al. [29] when motivating the NEG prior.

Our simulation study on complex traits showed that at least for

our three scenarios MOSGWA is slightly more powerful than

HLASSO, when the parameter a of HLASSO is chosen such that

both procedures have similar type 1 error rate. This reflects the

theoretical optimality property of mBIC2 to minimize asymptot-

ically the misclassification error under a wide range of sparsity

levels [21]. However, this theoretical property holds for the model

which actually minimizes the criterion mBIC2. Our heuristic

search strategy is attempting to get close to the global minimum,

but we know that in most cases it will fail to find the best solution.

More involved search strategies will further improve our method,

and we are currently exploring the use of memetic algorithms,

which have been successfully applied already in the context of

QTL mapping [22].

The software architecture of MOSGWA is designed in such a

way that it can be quite easily extended in the future to

incorporate more advanced features. For example it might be

interesting to have a model selection procedure which accounts for

population structure. Currently this can be done by adding

principle components as covariates to the regression models, but

an even better solution would be to add random effects to model

population structure. For that reason we are currently working on

extending MOSGWA towards mixed models.
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