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Abstract

Bacteria cells are protected from osmotic and environmental stresses by an exoskeleton-

like polymeric structure called peptidoglycan (PG) or murein sacculus. This structure is fun-

damental for bacteria’s viability and thus, the mechanisms underlying cell wall assembly

and how it is modulated serve as targets for many of our most successful antibiotics. There-

fore, it is now more important than ever to understand the genetics and structural chemistry

of the bacterial cell walls in order to find new and effective methods of blocking it for the

treatment of disease. In the last decades, liquid chromatography and mass spectrometry

have been demonstrated to provide the required resolution and sensitivity to characterize

the fine chemical structure of PG. However, the large volume of data sets that can be pro-

duced by these instruments today are difficult to handle without a proper data analysis work-

flow. Here, we present PG-metrics, a chemometric based pipeline that allows fast and easy

classification of bacteria according to their muropeptide chromatographic profiles and identi-

fication of the subjacent PG chemical variability between e.g. bacterial species, growth con-

ditions and, mutant libraries. The pipeline is successfully validated here using PG samples

from different bacterial species and mutants in cell wall proteins. The obtained results clearly

demonstrated that PG-metrics pipeline is a valuable bioanalytical tool that can lead us to cell

wall classification and biomarker discovery.

Introduction

Bacterial cytoplasmic membrane is surrounded by a net-like polymeric structure named the

peptidoglycan (PG) cell wall, which provides protection against environmental stresses,

osmotic pressure and, defines bacterial shape. Peptidoglycan is a fundamental structure for the

survival of most bacteria and thus, it is a major target of the β-lactams antibiotics. Peptidogly-

can canonical composition is based on glycan strands of variable length composed of N-acetyl-

glucosamine-β(1!4)-N-acetyl-muramic acid disaccharide repeats crosslinked by means of

short peptide stems [1]. This composition, although highly conserved, is not unique and thus,
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certain bacterial species might exhibit distinct PG chemical structures which can even vary in

response to environmental cues [2]. Far from being merely decorative, PG chemical variability

is instrumental for bacteria to cope with a number of threats such as immune responses, pred-

atory hydrolytic enzymes and antibiotics [3–5]. Moreover, specific PG structures are associ-

ated with the transition to diverse developmental stages, growth phases and cellular

morphologies [6–8]. Therefore, a comprehensive analysis of the PG chemical structure in a

large number of species and experimental conditions is fundamental for a better understand-

ing of cell wall biology, in particular its role in signalling and environmental adaptation.

The most informative way of analysing bacteria’s PG fine chemical structure is by means of

liquid chromatography combined with mass spectrometry (MS). The introduction of high-

performance liquid chromatography (HPLC), and more recently its improved version the

ultra-performance liquid chromatography (UPLC)-coupled to either UV-visible or MS detec-

tor, has provided accurate and quantitative information of the PG architecture. UPLC systems’

superior sensitivity provides better quality of chromatograms using less sample and to perform

much shorter runs with comparable resolution. These technological advances have opened the

door for high throughput PG analytical screenings, something completely unconceivable a few

years ago [5, 9].

Similarly to any omic, one of the issues encountered when dealing with large data sets is the

difficulties to make sense of this information. Peptidoglycan profiles are rather complex spec-

tra composed of several tens of components (i.e. muropeptides), sometimes partially co-elut-

ing and with high internal variability in number, type and relative abundance between species

[2]. In addition to this biological variability, comparison of chromatograms acquired over a

period of time suffers from technical issues. Often, two chromatograms obtained for the same

sample on two different instruments show drifts in retention times, i.e. same information is

stored at different time points for different spectra. These drifts are practically inevitable and

technically introduced by (i) temperature fluctuations in the column, (ii) suboptimal mobile

phase mixing, (iii) deterioration of the stationary phase or, (iv) the interaction between ana-

lytes [10, 11]. Moreover, the retention time drifts across the sample sets are irregular, meaning

that chromatograms of different samples can have expansions and compressions of different

segments. In conclusion, manual analysis of large PG data sets is laborious, time consuming

and it has higher risks to generate misleading results as a consequence of imperfect alignments

between samples. Therefore, an approach where the system is analysed using the integral

response of the constituents is far more practical and feasible than manual expert analysis.

Chemometrics is a chemical discipline that uses advanced statistical methods for the effi-

cient and fast analysis of large data sets generated by analytical instruments such as UPLC,

nuclear magnetic resonance (NMR), infrared, UV-visible, fluorescence or Raman spectros-

copy [12, 13]. Chemometrics techniques are generally used for sample classification and outlier

identification. The classification approach can further be categorised as (i) un-supervised and

(ii) supervised pattern recognition techniques [13]. The application of unsupervised pattern

recognition techniques does not require a priori information about the group to which a sam-

ple belongs and the samples with similar characteristics cluster naturally. On the other hand,

application of supervised pattern recognition technique requires a priori knowledge about the

group to which a particular sample belongs. Often, such a priori information is not available

and thus, it limits the application of supervised pattern recognition techniques. The most com-

monly used unsupervised pattern recognition technique is the principal component analysis

(PCA) [12–15]. In essence, PCA simplifies and reduces the dimension of the data set by find-

ing and projecting the original data set in a space spanned by fewer number of axes that are

orthogonal to each other. With a few factors, PCA captures all the important information in

the data sets. Theoretical aspects of PCA are well described and can be found elsewhere [12–
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15]. Importantly, PCA has been successfully used for the analysis of data sets obtained from

different fields [16–23]. If PCA results are carefully analysed with appropriate mathematics

and statistical parameters, it will allow to find: (i) natural clustering of the samples, (ii) the rela-

tion between the different groups in the study and, (iii) outlier samples [24].

The objective of the present work is to provide a pipeline along with suitable MATLAB

codes for both classifying the bacterial PG profiles and identifying the subjacent structural bio-

markers of the variability. Final characterization of these conserved and distinctive PG traits

requires additional analytical methodologies such as MS and/or NMR. This bioinformatic

pipeline is baptised as PG-metrics and will further be helpful towards a better understanding

of the diversity and functionality of bacteria’s cell wall chemical biology. To illustrate and opti-

mize the methodologies, we have used both computationally simulated and real life data. The

proposed pipeline has been summarized in Fig 1.

Materials and methods

As discussed above, the data analysis work flow is bottlenecked by the issue of the miss-align-

ment of the chromatographic data sets. In literature, a few alignment approaches are reported,

e.g. correlation optimised warping (COW) [25–27], interval correlation shifting (icoshift) [28–

30], msalign a MATLAB-bioinformatics tool [31], dynamic time warping (DTW) [26, 32–34]

and parametric time warping (PTW) [35–37]. Each one of these methods have different (i)

algorithms to operate on, (ii) computational complexities to deal with, (iii) approaches to select

the reference peaks, (iv) alignment parameters to optimize and (v) criteria to evaluate the qual-

ity of alignments. Thus, the selection of the alignment approach can have a significant impact

on the entire in silico analysis. In principle, the selected algorithm must ensure the correction

of retention time drifts that leads to the synchronisation of the chemical information, should

not introduce artefacts in the shape of the chromatographic profiles and preferably, should be

computationally economical. The present work studies the various aspects that need to be

carefully handled while carrying out the different alignment procedures.

Three of the most commonly used methods that are quite diverse in their alignment

approaches are: (i) COW, (ii) icoshift and, (iii) msalign. These methods are first compared on

simulated chromatographic profiles displaying complex drifts in peak retention times and the

optimal methods is further used for the alignment of the chromatographic profiles acquired

for bacterial cell walls.

Correlation optimised warping (COW) algorithm

Correlation optimised warping (COW) has been the most favourite chromatographic peak

alignment approach in recent years [25–27]. Based on the expansion and compression model,

application of COW ensures peak alignment without introducing any artefacts in the chro-

matographic profile and thus, has been considered one of the most used trustable alignment

techniques. In principle, COW involves two steps: (i) selection of a reference chromatogram

and, (ii) segmentation of unaligned chromatograms followed by expansion and compression

of each segments to achieve the best alignment. To understand this, Fig 2 shows two simulated

chromatographic signals f(x) and f(y) collected over the same retention time period (equal

length L). One of these two signals, e.g. f(y), is taken as the reference signal and hence, f(x) is

required to be aligned to it. Both signals are divided into N segments of length m (= L/N).

Each of the N segments of f(x) can be warped to smaller or longer length with a linear interpo-

lation approach. The amount of warping is controlled by a parameter called slack, denoted as

t. In order to make sure that initial and final time points of the chromatograms retain their

position, the first segment can only be warped to the right side and similarly, the last segment
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can only be warped to the left side. All the remaining N-2 segments can be warped in both the

directions in the range [-t, +t]. In essence, the alignment of two chromatograms f(y) and f(x)

boils down to finding the optimum warping parameters for each of the N segments. Having

achieved these parameters for warping f(x), the warped signal f(x´) can be safely approximated

to the reference f(y) chromatogram (Fig 2). The quality of the alignment is evaluated by

Fig 1. PG-matrix pipeline for the analysis of the PG chromatographic data set. Typically one has to follow the path ‘a’. One can also take path ‘b’ if

base line correction is not required. Path ‘c’ should be followed if baseline as well as alignment steps are not required. Path ‘d’ should be followed if pre-

processing steps are not required and one has to perform chemometric analysis directly on the raw data set.

https://doi.org/10.1371/journal.pone.0186197.g001
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calculating the correlation coefficients (ρ) between the target and warped signal. The scheme

of COW is summarised in Fig 3.

Interval correlation shifting (icoshift) algorithm

The alignment of two chromatograms with icoshift algorithm [28–30] involves two steps: (i)

selection of a reference chromatogram and, (ii) insertion and deletion of certain segments to

achieve the best possible alignment with the reference chromatogram. A clear difference

between COW and icoshift lies in the second step, the former works with compression and

expansion approach whereas latter works on insertion and deletion approach. To understand

Fig 2. Explaining alignment approach. The unaligned chromatogram f(x), target chromatogram f(y) and aligned chromatogram f(x’).

https://doi.org/10.1371/journal.pone.0186197.g002
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Fig 3. Schematic of COW algorithm. The algorithm requires a reference chromatogram, slack and segment length to carry out the alignment.

The quality of alignment is evaluated using correlation between the target and the sample chromatogram.

https://doi.org/10.1371/journal.pone.0186197.g003
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the working mechanism of the icoshift algorithm, we again consider the pair of unaligned

chromatograms f(x) and f(y), shown in Fig 2. In order to align f(x) to the reference chromato-

gram f(y) a warping parameter μ in the time-shift interval [-t, t] is selected and used to generate

a warped function f(x´) = f(x+ μ). A cross correlation term C(μ) is evaluated that measures the

extent of integral overlap between f(x´) and f(y) for a selected value of μ. The warping parame-

ter is considered as the optimal if it maximises C(μ). The cross correlation term is evaluated

using the fast Fourier transform (FFT) engine. The scheme of icoshift is summarised in Fig 4.

Msalign: A MATLAB-bioinformatics tool for aligning the chromatograms

A chromatographic peak can be approximated using a Gaussian function of appropriate

width. Msalign approach takes the advantage of this fact and involves the synthesis a set of ref-

erence peaks using Gaussian pulses of suitable widths at desired time points [31]. The time

domain of the unaligned chromatogram is shifted to ensure the maximum cross correlation

between the chromatographic and the reference peaks. The aligned chromatogram is obtained

by performing piecewise cubic interpolation of the shifted chromatogram to the original time

points. The cross correlation term is calculated by multiplying the target and the shifted chro-

matograms over a specified range. The scheme of msalign approach is shown in Fig 5. Com-

pared to COW and icoshift, this approach intrinsically has an advantage that it does not

require a reference chromatogram from the sample set.

Principal component analysis (PCA)

PCA [12–15] decomposes a data matrix X as a product of two matrices, T and P, of smaller

sizes. Mathematically, it can be represented with Eq 1

X ¼ TPT þ E ð1Þ

The dimensions of matrices X, T, P and E are I×J, I×F, J×F and I×J, respectively. Where, I,

J, E and F are the number of samples, variables, residual matrix and the number of factors,

respectively. The matrices T and P contain the score and loading information. The matrix T

explains how the samples are related with each other while matrix P explains how the variables

are related with each other. E contains the information that remained unexplained by the PCA

model. The superscript T indicates the transpose of the matrix. The matrix factorization of X is

carried with certain constrains, for example, the obtained T and P matrices must be orthogonal

and orthonormal matrices, respectively. Mathematically, these constrains are represented with

given below equations

TTT ¼ D ð2Þ

PPT ¼ IJ ð3Þ

D is the diagonal matrix of dimension I×I with non-zero values along the diagonal and

zeros at off diagonal positions. II is a unitary matrix of dimension J×J that contains value of

one at along the diagonal and zero at off-diagonal positions.

The factorization of the matrix X with above explained constrains could be achieved with

different approaches. For example (i) NIPALS (nonlinear iterative partial least square) algo-

rithm [14], (ii) singular value decomposition (SVD) [14] approach or, (iii) Eigenvalue-Eigen

vector decomposition [14]. Among these, SVD is the most commonly used approach to fit a

PCA model. The SVD analysis of X essentially generates a diagonal matrix S that contains pos-

itive diagonal elements in the decreasing order and the two unitary matrices of U and V. The
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Fig 4. Schematic of icoshift algorithm. The algorithm requires a reference chromatogram, and the range over which the alignment is to be carried

out. The quality of alignment is evaluated using cross correlation between the target and the sample chromatogram.

https://doi.org/10.1371/journal.pone.0186197.g004
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Fig 5. Schematic of msalign algorithm. The algorithm requires a synthetic reference chromatogram, range

of shift. The quality of alignment is evaluated using cross correlation between the target and the sample

chromatogram.

https://doi.org/10.1371/journal.pone.0186197.g005
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Eqs 4–6 represents summarises it.

X ¼ USVT ð4Þ

UUT ¼ IJ ð5Þ

VTV ¼ IJ ð6Þ

The desired T matrix can be obtained by multiplying U by S. The matrix V can be equated to P.

T ¼ US and P ¼ V ð7Þ

In the context of peptidoglycan analysis, PCA will essentially decompose the matrix X (I×J,

where I is the number of samples and J is the number of chromatographic retention time points

over which the data are collected) that contains the chromatographic data sets for a set of PG

samples belonging to different bacteria. This decomposition of PG data set X with PCA will also

generate the two matrices T (score matrix) and P (loading matrix). The matrix T will contain

information about the PG samples. For example, Two PG samples can be considered as similar

if they have similar score values in T matrix. A difference in score values for any given set of PG

samples will indicate the difference in the PG composition in the bacterial cell wall. The analysis

of loading matrix T that represents the chromatograms can be helpful in finding the set muro-

peptides features that can be used to characterize the PG composition of the bacterial cell wall.

Simulation of the data sets for comparing the alignment approaches

The chromatographic profiles were simulated using the given below Gaussian function

f xð Þ ¼
Pn

i¼1
ai expð�

ðx � piÞ
wi

� �2

Þ ð8Þ

where ai, pi, wi and n defines the amplitude, peak position, width and number of the simulated

peaks. In total, 21 chromatographic profiles are simulated with different parameters that are

summarised in S1 Table. The simulated profiles differ in three aspects: (i) the peak position,

(ii) number of peaks and, (iii) amplitude of the peaks. In order to make the simulated data set

more realistic, a baseline offset to the profiles is also added. These intrinsically complex profiles

are simulated with an objective to test the alignment efficiencies of the selected methods.

Acquisition of bacterial peptidoglycan chromatographic data sets

The real life PG chromatographic data sets were collected using ultra-performance liquid chro-

matography coupled with UV-detector. Eight bacterial PG samples belonging to the class of

Alphaproteobacteria were analysed: Asticcacaulis biprosthecum (A. bip), Acetobacter aceti (A.

ace), Angulomicrobium tetraedale (A. tet), Caulobacter crescentus (C. cre), Gluconobacter fra-
teurii (G. fra), Gluconobacter oxydans (G. oxy), Hirschia baltica (H. bal) and Thalassospira
lucentensis (T. luc). The protocol used for the PG isolation and chromatographic data collec-

tion can be seen in the literature [5].

Software used

All the analyses are carried out using PG-matrix. The necessary codes for PG-matrix are writ-

ten in the.m file format of MATLAB platform. The manual is given as DOCX file in the S1

Material. The zip folder contains the MATLAB codes in.m file format that can be seen in sup-

porting information (S2 Material)
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Results and discussion

Optimization of the data pre-processing to eliminate the artefacts caused

by the instrumental fluctuation

As shown in Fig 1, the first step in the data pre-processing pipeline is the correction of baseline

offsets that arises due to the fluctuation of instrumental parameters. An offset from the baseline

induces an error to the chromatography intensity values leading to inaccurate quantitative and

qualitative analysis of the sample set. There are quite a few methods that can be used to correct

the baseline offsets, for example (i) subtraction of a blank chromatogram, (ii) subtraction of a

constant value and (iii) subtracting the synthetically created baseline. Over the years, the best

method to achieve this has been the subtraction of the synthetically created baseline [38]. It is

mainly because the first two methods have limited applicability due to the irregular nature of

the baseline offsets from one sample to another. The baseline estimation essentially involves (i)

finding the baseline points with an appropriate threshold and (ii) regressing the varying baseline

to the estimated baseline points of the chromatogram with a spline approximation over multiple

shifted windows of a fixed width. The approach requires optimization of the three parameters:

(i) window size, (ii) step size and, (iii) quantile value for estimating the baseline points. The opti-

mization of the parameters is aimed towards achieving the best approximation to ensure offset

is taken care without sniping the intensity values. As shown in Fig 6, the simulated profiles are

baseline corrected using a window size of 24 and a step size of 10.

After performing the baseline correction, the data needs to be aligned to be comparable on

the time axis. As discussed earlier, there are quite a few alignment methods available. In order

Fig 6. Baseline correction. (A) Simulated profile. (B) Offset profile. (C) Simulated data with baseline offset.

https://doi.org/10.1371/journal.pone.0186197.g006
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to optimize the alignment part of the data processing pipeline, first a comparison is carried out

among the three selected alignment methods on the simulated data sets. The best method will

be further used for the alignment of the real life data set.

Comparing different alignment approaches with synthetic data

Application of the COW algorithm. The baseline corrected data sets are now subjected

to the COW alignment algorithm. One of the crucial steps when applying COW is the selection

of the reference chromatogram. However, the fact that there is no a priori information avail-

able makes it difficult to choose an appropriate reference chromatogram. Indeed, application

of COW using an inappropriate reference sample can introduce certain artefacts (e.g. peak

broadening or peak shrinking) that can bias the data analysis outcome. Therefore, it is impor-

tant that a proper analysis is carried out before selecting a reference sample. Some of the crite-

ria that can be useful for making the choice are listed below:

1. A chromatogram can be selected as the reference if it is collected under stable instrumental

conditions, i.e. the preceding and next chromatograms do not have appreciable drifts in

their peak positions.

2. A chromatogram which is drifted appreciably compared to other samples on either side of

time axis should not be considered as reference sample

3. A chromatogram selected as the reference must have maximum number of common peaks.

In other words, it should be able to explain the actual chemical phenomena taking place.

The selection of a reference known PG sample, or standard, can be a good choice when all

the other samples are closely related to it. Often, such information is not available and peak by

peak characterization will be required to establish the relationship. The present work address

this issue by suggesting the use of a chromatogram having a maximum number of common

peaks as the reference sample. Mathematically, it can be evaluated using Eq 9 that involves the

evaluation of the correlation coefficient values between the reference and other samples.

r ¼
1

n
ð
PI

i¼1

ðX � meanðXÞÞT ðYi � meanðYiÞÞ

stdðXÞstdðYÞ
Þ ð9Þ

where x is the reference sample, Yi is the ith chromatogram, mean (X) and mean (Y), std (X)

and std(Yi) are their corresponding means and standard deviations. Finally, n is the number of

samples that need to be aligned.

In the present case of aligning the simulated chromatograms (shown in Fig 6(C)) using

COW algorithm, one in principle can select any of the chromatograms from 2–12 and 17–21

as they contain maximum number of peaks. A choice can be easily made based on the cumula-

tive correlation coefficient values between the selected reference chromatogram and other

samples. The sample that provides maximum correlation can be selected as the reference chro-

matogram. The correlation coefficient for different possible reference chromatograms are cal-

culated using the Eq 9 and reported in Table 1. Based on this, the second chromatogram is

selected as the reference sample.

To begin with, the sixteenth sample is aligned using different combination of segment

lengths and slack parameters. The overlay plot between the sample and the target is shown in

Fig 7(A). It can be seen that selected chromatograms have different number of peaks with

irregular drifts in their positions. In order to study the effect of segment length variations, the

slack parameter is kept constant and the alignment is carried out with different segment

lengths. For example, in order to align the 16th chromatogram to the 2nd chromatogram, the
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slack is fixed at 20 and segment lengths varied from 100 to 30. The quality of the alignments

are compared visually as well as using the correlation coefficient between the reference and the

aligned chromatograms. The correlation coefficients for different segment lengths are summa-

rised in S2 Table. It can be seen that a good alignment is difficult to achieve using longer seg-

ments. As one reduces the segment length it leads to an improvement in the alignment and

thus, all the segment lengths in the range 30–40 appeared to work well in aligning the selected

chromatogram. Though, the best alignment with maximum correlation is achieved with the

segment length of 35. To understand the effect of different slack parameters, the segment

length is kept constant and slack parameters are varied. For example, for the optimised seg-

ment length of 30, the slack parameters are varied in the range of 1–25. It is found that the

quality of the alignment improves with the flexibility provided by the slack parameter. The cor-

relation coefficient for the different slack parameters are summarised in the S3 Table. From

these results one can conclude that the maximum cumulative correlation product is achieved

with the segment length of 35 and slack of 25. With these optimised parameters, the remaining

samples also showed a perfect alignment (Fig 7(B)).

Application of the icoshift algorithm. The baseline corrected data sets are subjected to

the icoshift algorithm by selecting the second simulated chromatogram as the reference. The ico-

shift analysis is performed on the entire range of the simulated chromatograms. The obtained

results are shown as the heat-map, in Fig 8(A). Before proceeding further, it is important to men-

tion that representation of data using heatmap tool allows simultaneous visualisation of all the

peaks of a given sample set in a single plot where the increase in intensity can be observed as the

colour in the map changes from blue to yellow. The spectrogram indices in the heatmap indicate

the samples. For example, there are 21 simulated chromatograms therefore the index varies

from 1 to 21 in the corresponding heatmap, shown in Fig 7B or Fig 8A. The heatmap also allows

the visualization of the chromatographic peak alignment in a single plot. If all the chromato-

grams are aligned (as shown in Fig 7B), the heatmap will essentially consist of vertical lines. If

there is misalignment, the heatmap will consist of disjointed lines as shown in Fig 8A.

Table 1. Selecting the reference chromatogram. The average correlation coefficient between the selected

reference chromatogram and rest of the samples.

Selected reference chromatogram Average correlation coefficient (ρ)

S1 0.87

S2 0.97

S3 0.94

S4 0.91

S5 0.92

S6 0.88

S7 0.87

S8 0.92

S9 0.92

S10 0.95

S11 0.89

S12 0.87

S17 0.86

S18 0.91

S19 0.92

S20 0.93

S21 0.91

https://doi.org/10.1371/journal.pone.0186197.t001
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Thus, it can be seen from Fig 8A that unlike COW (shown in Fig 7B), it is difficult to

achieve the alignment of the simulated chromatograms by applying the icoshift algorithm on

the entire chromatographic range. In order to overcome this problem, icoshift is applied piece-

wise on the different segments of the chromatograms. The entire chromatographic range is

split into eleven segments [1–80, 81–141, 142–201, 202–280, 281–380, 381–480, 481–560,561–

610, 611–710, 711–810, 811–1000], and each of them are separately aligned. The aligned pieces

are joined together, and shown in Fig 8(B). The results appeared to improve significantly as

one goes from the complete to piecewise icoshift analysis. All the segments except for the 6th

segment (381–480) are found to be aligned to the reference sample. Based on our results, even

though icoshift is computationally economical, COW seems to work much better.

Application of the msalign algorithm. The msalign algorithm was initially introduced

for aligning mass spectra. However, by optimising the warping parameters it is possible to

align the chromatographic peaks. msalign essentially involves synthesis of reference sample by

simulating the Gaussian peaks at the desired positions. In the present work, the Gaussian

peaks are simulated at the median peak position across the sample set to optimise the align-

ment efficiency of the msalign algorithm. However, not to bias the analysis, one has to use

expert knowledge in PG chromatography to synthesise the reference chromatograms. It is

important to mention that similar to icoshift, this approach is also computationally economi-

cal. It is due to the fact that msalign also uses cross-correlation approach for performing the

calculation that makes it computationally economical [28–31].

Fig 7. COW alignment. (A)The reference (sample 2) and the unaligned sample (sample 16) indicating the complexity of the miss-alignment. (B) The

COW aligned heatmap of the simulated data sets. The results clearly indicate that COW provides an optimum alignment.

https://doi.org/10.1371/journal.pone.0186197.g007

Fig 8. Icoshift alignment. (A) Heatmap obtained from the icoshift analysis on the complete range of simulated data sets and the obtained results are

clearly unsatisfactory. (B) The alignment results obtained from the icoshift analysis on segments. The obtained results improve but contain artefacts

such as horizontal segments in the middle of the segments and it is difficult to remove because of the complexity in the drifts.

https://doi.org/10.1371/journal.pone.0186197.g008
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The msalign tool requires the user to mainly specify: (i) peak position for the reference

peaks and (ii) range of shift. A synthetic target containing the reference peaks at the following

position 50, 112, 167, 240, 359, 410, 480, 535, 590, 670, 798 and 912, is generated and shown in

Fig 9(A). The msalign algorithm is executed with a range of shift [–50, 50]. The obtained

results shown in Fig 9(B) indicate that as for icoshift, a piecewise alignment would be a better

strategy to align the signals. The chromatograms are divided in twelve segments [1–80, 81–

141, 142–201, 202–280, 281–380, 381–440, 441–520, 521–560, 561–640, 641–710, 711–810 and

811–000]. The obtained results are shown in Fig 9(C). It can be seen that for a number of

peaks, a reasonably good alignment is achieved but for instance, in the range of 550–650 the

obtained results are far from the optimum. Moreover, there is another problem of missing

Fig 9. Msalign alignment. (A) The synthetic target with pulses centred at desired locations, the synthetic target is generated using the Gaussian

function. (B) Heatmap of the simulated data sets using the msalign algorithm, as with the previous case the obtained results are clearly

unsatisfactory. (C) Heatmap of the data sets obtained from msalign analysis on different segments. (D), (E) and (F) clearly show that msalign

generates artefacts i.e. number of segments even in the middle of chromatogram with no data (i.e. missing values).

https://doi.org/10.1371/journal.pone.0186197.g009
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values that appear right in the middle of the peak. In order to show it clearly, problematic seg-

ments are zoomed and shown in Fig 9D–9F. The problem of achieving an accurate alignment

and the generation of missing values limits the applicability of msalign approach.

Before proceeding further it is important to mention that application of icoshift and msa-

lign algorithms on the entire chromatogram failed to provide the desired alignment. It is

mainly due to the complexity of the drifts in the peak positions. Both algorithms, instead of

providing peak by peak alignment, look for overall alignment (i.e. works towards achieving the

global solution). Therefore, an approach that involves alignment of the individual peaks can

optimise the efficiency of these two algorithms. To achieve this, chromatograms were divided

into several segments of unequal length and these algorithms were applied on each segment

separately. Finally, each of the aligned segments were joined together to create the entire

aligned chromatogram. For icoshift the optimum alignment was achieved by dividing the

entire chromatograms into 11 segments and for msalign the optimum alignment was achieved

by dividing the entire chromatograms into 12 segments. The optimum number of segments

were achieved by performing the analyses on different number of segments and evaluating the

quality by calculating the cross-correlation coefficient.

Comparison of these three most commonly used methods suggests that compared to COW,

icoshift and msalign are computationally more economical. Plus, msalign does not require any

reference chromatogram that provides a clear advantage over other two methods. Icoshift gen-

erates artefacts that may bias the outcome of the workflow. Msalign can generate missing val-

ues right in the middle of the peak thereby distorting the shape of the chromatographic

profiles. Taken together, one can infer that COW algorithm provides the more reliable method

to align the peaks. Thus, in the reported PG-metrics pipeline, we select COW algorithm for

real life samples.

PG-metrics work flow for the analysis of Alphaproteobacteria data set

The chromatograms of the Alphaproteobacteria samples are shown in the Fig 10(A). A detailed

description of the chemical composition of these PG samples has been recently reported [5].

Details on the sample and data acquisition (growth conditions, UPLC utilized, chro-

matographic conditions, etc.) could be seen in the work carried out by Espaillat et al. [5]. The

chromatograms, apart from having baseline offset and retention time drifts, also contain cer-

tain irrelevant segments that do not contain any bacterial cell wall related information. The

irrelevant segments are (i) solvent fronts appearing over the time range of 1–3 min and (ii) col-

umn wash appearing over the time range of 21–26 min. The irrelevant segments can be safely

trimmed out to prevent any undesirable effect on the subsequent chemometric data analysis

workflow. The trimmed data is subjected to baseline correction with quantile value of 0.1,

window size of 100 and step size of 100. The data is next subjected to COW analysis. The com-

plexity of the retention time drifts, as shown in Fig 10(B), makes it difficult to perform the

alignment on the entire chromatographic profiles. Therefore, the entire chromatogram is

divided into different segments [1–450, 451–800, 801–1082]. Each segment is then separately

aligned to the selected reference chromatogram with optimum segment length and slack

parameter. For example, sample 3 is chosen as the reference sample and sample 1 is aligned to

it with the following scheme: Alignment of first segment [1–450]: segment length = 45 and

slack = 20; Alignment of second segment [451–800]: segment length = 32 and slack = 12;

Alignment of third segment [801–1082]: segment length = 22 and slack = 7. Similarly, all the

chromatograms are aligned using proper combinations of the segment length and slack

parameter. The aligned chromatograms are shown in the Fig 10(C). Even though there are

algorithms to correct the retention time drifts of the chromatograms, it still needs the expertise
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and intuitiveness of the user. The baseline and drift-corrected data sets are further normalized

to unit area to ensure the technical variabilities are taken care.

Sample pre-processing (i.e. baseline correction and peak alignment) is not just important

for the subsequent chemometric analysis of the entire chromatogram but also ensures minimi-

zation of the errors associated to specific muropeptides (i.e. comparing the cross-linkages or

average glycan strand lengths in different bacteria). The proper pre-processing can automatize

the cell wall characterization.

Principal component analysis (PCA): Finding groups, biomarkers and

interesting candidates

The pre-processed data set is subjected to PCA for finding the natural grouping of the samples

and also interesting candidates in the sample set based on their atypical PG profiles. Before fit-

ting a PCA model, the first thing that has to be carried out is finding the optimum number of

principal components (PCs) not to over- or under- fit the data sets. The best way of finding the

rank is plotting the amount of variance captured by each principal component against the

principal component number. As it can be seen in Fig 11(A), one can conclude that a 4 PCs

model (90% variance) is optimum to capture all the important information buried in the data

set. A score plot that explains the variation of the score values along the different PCs are plot-

ted. For a 4 component PCA model there are six PCA score plots that can be created. For

example, PC1 versus PC2, PC1 versus PC3, PC1 versus PC4, PC2 versus PC3, PC2 versus PC4,

and PC3 versus PC4. In principle, each of them should be carefully studied for finding the rela-

tionship among the samples. Though, it is true that not all of them are equally important in

describing the chemical phenomena taking place in the samples. In the present case, among

these 6 combinations PC1 versus PC2 score plot, shown in Fig 11(B), provides the correct clas-

sification of the samples. From the score plot, it can be seen that (i) G. oxy and A. ace, (ii) T.

Fig 10. Pre-processing the raw data. (A) The raw chromatograms of PG samples belonging to the class of

Alphaproteobacteria, the chromatograms contain (i) the irrelevant segments in the beginning and towards end

of the gradient and (ii) the baseline offset. (B) The Heatmap of the PG samples after removing the irrelevant

segments in the region (<3 min. and >21 min.) and correcting the baseline offset, the arrow (!) indicate the

direction of shift required to achieve the alignment fitting to biological premises. (C) Heatmap of the COW

aligned chromatograms.

https://doi.org/10.1371/journal.pone.0186197.g010
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luc and H. bal and (iii) C. cre and A. bip form three separate groups in three different quad-

rants of the score plots whereas, A. tet and G. fra do not belong to any group.

The PCA also provides the loading vectors that explain how the variables are related with

each other. The study of loading vector plots can help in finding the set of the variables that

can explain why the samples belong to a particular group and what make them interesting

within a sample set. The loading vector plots corresponding to the PC1 and PC2 are shown in

Fig 11(C). The samples with higher PC1 and PC2 score values irrespective of sign (positive or

negative) weigh heavily to PC1 and PC2 loading vectors, respectively. The loading vector of

PC1 gives a clear idea about the negative correlation among certain features in the chro-

matographic profiles. All the features with negative loading values can mainly be seen in the

samples having the negative score values along the PC1 axis. The samples having positive PC1

score value either lack these features or contain them only in very small abundance. There are

certain features with positive loading values (in the range 600–900 corresponding to 13–20

min) in PC1 loading vectors can that only be seen in the samples having positive score values.

Thus, PC1 loading vector clearly explain the classification of the samples in two groups (i) A.

ace, G. oxy and G. fra and (ii) T. luc, H. bal, C. cre, A. bip and A. tet. The loading vector corre-

sponding to PC2 score mainly reflects the variations of the minor peaks, particularly in the var-

iable range of 600–900. The features corresponding to positive loading values in PC2 loading

profile can predominantly be seen in the chromatograms of the samples having positive PC2

score values. Similarly, peaks that correspond to the negative values of PC2 loading vector

can be found in the samples with negative PC2 scores values. The PC2 loading vector clearly

explain within group classification of the samples.

Fig 11. PCA on pre-processed data sets. (A) Amount of variance versus number of principal component plot indicating 4 as the optimum number of

factors for PCA. (B) PC1 and PC2 score plot classifying the samples. (C) PC1 and PC2 loading vector plot indicating the features in the chromatograms

responsible for the obtained classification. (D) Leverage versus residual plot for finding the outlier samples. The plot predicted G. fra, A. bip and C. cre

as the interesting candidates in the analysed bacterial sample set.

https://doi.org/10.1371/journal.pone.0186197.g011
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Finding outliers in the sample set is another task of chemometric based data analysis. An

outlier sample can be defined as the one that has obvious differences from others which, in the

case of PG samples, means either cell wall with distinctive muropeptides or with significant

variation in the relative abundance between common muropeptides. Such samples in PCA

model can be identified as the ones that are either not well described by the models or they

influence the model too much. Such samples can be found using two statistical parameters:

residual and leverage [13]. A sample that is not well described by the model will have unusually

high residual and the samples that have high influence on the model will have unusually high

leverage. The residual of the samples can be calculated using the given below equation.

Q ¼ EET ð10Þ

The diagonal elements of Q matrix contains the residual of the samples. For example, first

diagonal element explain the residual of the first sample and so on. The leverage can be calcu-

lated using the given below equation.

L ¼ TðTTTÞ� 1TT ð11Þ

The diagonal elements of the matrix L describe the leverage of the samples. The first diago-

nal element explain the residual of the first sample and so on. All the samples having either

leverage values or residual values or both greater than 0.75 quantile limit can be considered as

an outlier. The residual and leverage plot for the analysed Alphaproteobacteria samples are

shown in Fig 11(D). Among the selected samples, G. fra has a residual value greater than 0.75

quantile limit. A. bip and C. cre have leverage values greater than 0.75 quantile limit. These

three samples are classified as outliers.

The high residual value of G. fra unusually can be attributed to the presence of chro-

matographic signal appearing at time point of 8.5 minutes, shown in Fig 10(C), whereas the

high leverage values of A. bip and C. cre can be associated to the highly intense peaks in their

chromatograms shown in Fig 10(C). Collectively, the developed PCA model classify the bacte-

rial samples based on their relative similarities of the PG compositions. The model also allow

finding the group of muropeptides that are responsible for the obtained classification.

Agreement analysis

It is important to mention here that different chemometric methods have different algorithms,

different assumptions for the data sets and, different functions to optimize. To ensure the

obtained results are not biased by the choice of chemometric method used, it is convenient to

run an agreement analysis by performing a different type of chemometric analysis [39]. For

example, one can use (i) neural network analysis [13, 40], (ii) factor analysis [41] (iii) cluster

analysis [42] or (iv) probabilistic latent semantic analysis [43] etc. Among these methods, the

cluster analysis is the most commonly used approach for finding natural grouping of the sam-

ples. In the present work, data sets of Alphaproteobacteria samples are subjected to the Ward

clustering with Euclidean distance matric approach for finding the agreement with the results

obtained from PCA. The ward clustering results with the corresponding heatmap are shown in

Fig 12. The dendrogram mainly consist of three clusters: (i) C. cre and A. bip, (ii) T. luc, A. Tet

and H. bal, and (iii) G. oxy, A. ace and G. fra. The obtained dendrogram also indicates that G.

fra and H. bal have differences within their corresponding clusters. The obtained clustering

results are in true agreement with PCA results. It can clearly be seen and verified that obtained

PCA results are genuine and not a consequence of the algorithm used for analysing the data

sets.
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Application of PG-Metrics on the peptidoglycan data sets of bacterial

mutants

In order to further demonstrate the utility of the PG-Metrics, we applied this pipeline for clas-

sifying and identifying the subjacent structural variability in a PG chromatographic data sets

composed of 12 Vibrio cholerae mutants that have been previously characterized [44, 45]:

ΔamiB, ΔnlpD, ΔenvC, ΔenvCΔnlpD, wild-type (C6706), ΔdacA2, ΔdacA1, ΔdacB, ΔpbpG, Δda-
cA2ΔpbpG, ΔdacBΔpbpG, ΔdacA2 ΔdacBΔpbpG. The Details on the sample and data acquisi-

tion (growth conditions, UPLC utilized, chromatographic conditions, etc.) could be seen in

the work carried out by Möll A et al. [44, 45].The application of PG-metrics towards classifica-

tion of mutants with subtle PG variation would clearly test the potential of the proposed

approach. In other words, it will evaluate if PG-metrics can capture even minor variations to

subsequently classify the samples. The raw chromatograms of these samples are shown in Fig

13(A). As discussed earlier, removal of irrelevant segments and baseline correction are inevita-

ble steps and are carried out using the suitable codes available in the PG-metrics toolbox. The

alignment of baseline corrected chromatograms are carried out using the COW approach by

selecting ΔdacA2ΔpbpG as the reference chromatogram that has all the common peaks of the

analysed samples. It is to be noted that there are other samples that contains the several com-

mon peaks and in principle they could also be considered as the reference chromatogram. The

optimum segment length (‘m’) and slack (‘t’) parameters for achieving the alignment of rest of

the chromatograms with reference sample is found to be 50 and 10, respectively. The aligned

chromatograms are shown in Fig 13(B). The aligned chromatograms were further normalised

to unit area. As discussed earlier, these pre-processing steps ensures that errors introduced

during sample preparation and instrument fluctuation are taken care. The wild-type chro-

matographic data was subtracted from the data of all other mutants. This step will ensures an

unbiased comparison of the selected mutants from the wild-type. The wild-type subtracted

data set is further processed for chemometrics analysis. The optimum number of principal

components for PCA was found to be four, obtained by plotting the amount of variance

against the principal component number. The 4 components PCA model accounts for more

than 85% variance indicating all the important variation present in the data set has been

explained. The outlier diagnostic plot that describes the variation of residual and leverage val-

ues for each sample, shown in Fig 13(C), clearly indicate that four of the samples (ΔamiB,

ΔnlpD, ΔenvCΔnlpD, and ΔdacA1) were interesting candidates. The two samples ΔamiB and

Fig 12. Agreement analysis. Dendrogram obtained from the hierarchical cluster analysis using the Ward linkage criteria and Euclidean distance

metric approach. Heatmap of the samples, arranged according to the nodes of the cluster. The obtained results are in agreement with those

obtained from PCA model.

https://doi.org/10.1371/journal.pone.0186197.g012

A chemometric-based approach for classifying bacterial peptidoglycan data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0186197 October 17, 2017 20 / 25

https://doi.org/10.1371/journal.pone.0186197.g012
https://doi.org/10.1371/journal.pone.0186197


ΔnlpD presented residual values greater than 0.75 quantile limit whereas ΔenvCΔnlpD, and

ΔdacA1 have leverage values greater than 0.75 quantile limit. The obtained results were in

agreement with the literature describing that these mutants have distinctive PG composition

compared to wild-type [44, 45]. The pre-processed data sets are further subjected to agglomer-

ative cluster analysis with Ward linkage and Euclidean distance matric approach for partition-

ing the analysed samples based on their relative dissimilarity. The obtained dendrogram along with

heatmap is shown in Fig 13(D) and it can be seen that obtained clustering correlates well with results

obtained from PCA results and those reported in literature. The individual chromatograms and

their comparison with wild-type is shown in Fig 14. It can be seen that ΔdacA1mutant has unusual

PG composition with relatively high abundance of M5 (monomer pentapeptide) and D45 (dimer

tetrapeptide-pentapeptide) that makes it as one of the prime outlier in leverage versus residual plot.

Fig 13. Application of PG-metrics on Vibrio cholerae mutants. [A] The raw chromatograms of the Vibrio

cholerae mutants, [B] pre-processed chromatograms (i.e. removal of irrelevant segments, baseline corrected,

COW aligned and normalised), [C] Leverage versus residual diagnostic plot for finding the interesting

candidates. [D] Dendrogram obtained from the hierarchical cluster analysis using the Ward linkage criteria

and Euclidean distance metric approach. Heatmap of the samples, arranged according to the nodes of the

cluster.

https://doi.org/10.1371/journal.pone.0186197.g013

A chemometric-based approach for classifying bacterial peptidoglycan data sets

PLOS ONE | https://doi.org/10.1371/journal.pone.0186197 October 17, 2017 21 / 25

https://doi.org/10.1371/journal.pone.0186197.g013
https://doi.org/10.1371/journal.pone.0186197


ΔamiB, ΔenvCΔnlpDwere known to have similar muropeptide composition but contained M2, M3

and M5 monomers in distinct proportions which made them different from the wild type. The

mutant ΔnlpD had significantly high amount of overall PG content compared to wild type. The

obtained results clearly show that PG-metrics can capture even subtle variations present in the cer-

tain cell wall associated bacterial mutants.

Conclusions

Here, we report PG-metrics, a novel pipeline for performing chemometric analyses of chro-

matographic PG data sets. Comparison among the three intrinsically different alignment

approaches pinpointed COW as the most appropriate method to align chromatograms that

have complex drifts in the peak position. The pipeline is successfully validated by analysing the

PG of diverse bacteria species belonging to the class Alphaproteobacteria and also of different

V. cholerae cell wall related mutants. The analysis clearly provides all the required information

for finding the relationship between the cell walls of the analysed samples.

Even though UPLC provides an outstanding resolution to separate PG subunits, certain

muropeptides might still co-elute. Therefore, although PG-metrics represents a simple method

for classifying PG data sets, pinpointing potential conserved and distinctive muropeptides

amongst samples, MS is still required to prove their chemical structure.

Altogether, chemometrics-based methods are appropriated tools to classify PG from differ-

ent bacteria based on their potential chemical similarities and differences. This type of classifi-

cation could be contrasted with the existing bacterial phylogenetic organization to investigate

the evolutionary emergence and prevalence of certain PG modifications. Comparative analysis

of taxonomic and PG markers can provide insights about the conserved PG determinants

along certain bacterial phylogeny branches and those which, by contrast, have been externally

imprinted by specific environmental pressures within a particular group. In this regard, PG

quantitative studies of bacteria cultivated under a diverse conditions can also provide valuable

information about the PG chemical and structural plastic response to changing environments.

Finally, the analysis of the PG of mutants in cell wall-associated activities can be instrumen-

tal to find the functionality of these activities in PG biosynthesis and remodelling and would

be particularly useful for the analysis of mutant libraries. Peptidoglycan analyses of such

mutant collections can reveal the genetic determinants and regulatory pathways of PG homeo-

stasis for a particular model organism. To conclude, the reported PG-metrics can really be a

strength in high throughput analysis of bacterial cell wall collections.

Fig 14. Comparison of the wild-type and PG-metrics predicted outliers. The plot clearly shows the

features (indicated with!) in the PG composition of ΔamiB,ΔnlpD,ΔenvCΔnlpD, and ΔdacA1 that makes

them different from wild-type.

https://doi.org/10.1371/journal.pone.0186197.g014
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