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Abstract

The cerebellum is thought to implement internal models for sensory prediction, but details of the underlying circuitry are
currently obscure. We therefore investigated a specific example of internal-model based sensory prediction, namely
detection of whisker contacts during whisking. Inputs from the vibrissae in rats can be affected by signals generated by
whisker movement, a phenomenon also observable in whisking robots. Robot novelty-detection can be improved by
adaptive noise-cancellation, in which an adaptive filter learns a forward model of the whisker plant that allows the sensory
effects of whisking to be predicted and thus subtracted from the noisy sensory input. However, the forward model only
uses information from an efference copy of the whisking commands. Here we show that the addition of sensory information
from the whiskers allows the adaptive filter to learn a more complex internal model that performs more robustly than the
forward model, particularly when the whisking-induced interference has a periodic structure. We then propose a neural
equivalent of the circuitry required for adaptive novelty-detection in the robot, in which the role of the adaptive filter is
carried out by the cerebellum, with the comparison of its output (an estimate of the self-induced interference) and the
original vibrissal signal occurring in the superior colliculus, a structure noted for its central role in novelty detection. This
proposal makes a specific prediction concerning the whisker-related functions of a region in cerebellar cortical zone A2 that
in rats receives climbing fibre input from the superior colliculus (via the inferior olive). This region has not been observed in
non-whisking animals such as cats and primates, and its functional role in vibrissal processing has hitherto remained
mysterious. Further investigation of this system may throw light on how cerebellar-based internal models could be used in
broader sensory, motor and cognitive contexts.
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Introduction

The idea that internal models are used for sensorimotor

processing (e.g. [1]) is of great current interest, particularly in

the context of cerebellar function (e.g. [2,3,4]). A major theme is

the potential role of the cerebellum in predicting future sensory

signals, predictions that could be used in a wide variety of sensory,

motor and possibly cognitive contexts [2,5,6]. But at present there

is little detailed information about how workable algorithms could

be implemented by known anatomical circuitry to enable the

cerebellum to play such a role. To address this issue, we

investigated how an internal-model based algorithm could be

used to improve detection of novel sensory stimuli, and whether

the circuitry required to implement the algorithm has a plausible

anatomical counterpart.

Novelty detection is a relatively simple but important example

of a generic problem in active sensing. However, the task of

novelty detection is hindered when the animal’s own movements

generate signals in the sensor independently of any changes in the

external world. In these circumstances sensory input becomes a

mixture of self-produced (‘reafferent’) and externally produced

(‘exafferent’) signals (for recent review see [7]). Separating these

signals is important for many different purposes (e.g. [8]. For

example, when active sensing is used to characterise features of the

environment such as surface texture, then characteristics of sensor

movement such as its speed must be related to features of the input

signal. In other circumstances however reafferent signals can be

regarded simply as noise or interference that needs to be removed

in order to reveal external events. This is particularly true for what

we term here ‘novelty detection’. Unexpected sensory input is of

great biological significance, inasmuch as it may be signalling

either immediate danger or the presence of prey. It is therefore

very important for detection of these signals not to be impaired by

interference from the animal’s own movements.

The specific example chosen for investigation was the detection

of novel whisker contacts during exploratory whisker movements

(whisking). Although it is well-known that active whisking has

computational advantages for vibrissal processing, it also has a

potential disadvantage in producing reafferent whisker signals that

could interfere with novelty-detection [9,10,11]. Reafferent signals

in the vibrissal system have been observed since some of the

earliest investigations into active whisking [12] and continue to

generate interest [13,14,15]. The presence of these reafferent
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signals immediately raises the notion that an internal model/

cerebellar-based novelty detection scheme might be of benefit to

vibrissal processing. Imaging and clinical studies indicate that the

cerebellum is involved in active tactile sensing [16,17,18,19,20],

and the anatomical circuitry underlying the processing of whisker

input in rats includes many cerebellar connections [21,22]. To

date, however, there has been limited progress in understanding

these vibrissal sensory-motor loops through the cerebellum, to the

extent that even hypotheses of these loop functions are virtually

non-existent [22,23,24]. In addition, whisking robots have been

constructed [9,10,25], that enable potential detection-algorithms

to be evaluated for practicality, so allowing only workable

examples as candidates for subsequent neural investigation. These

robots offer an alternative to current models of the vibrissal system,

which because of difficulties in mathematically describing the

effects of whisker contacts, are not yet suitable for studying the

problem investigated here [26,27].

The model architecture for improving novelty detection in

whisking robots is shown in Fig 1. The cerebellar-based part of the

model is the adaptive filter [28], which combines a broad

structural resemblance to the cerebellar microcircuit (Fig 1A, B)

with proven computational power in signal-processing applications

[29]. The adaptive filter is a general-purpose learning device, that

can in principle form the adaptive element in the forward, inverse

and internal models that have been suggested in the literature (e.g.

[30]). Initial application of the adaptive filter to robot whisking

[31] used the overall framework of adaptive noise cancellation (e.g.

[32,33]), which deals with the generic problem of removing noise

from a signal where some information regarding the noise is

available to the system (Fig 1C). In that investigation into robot

whisking, it was found that movement of a robot’s whiskers

generated reafferent signals due to the whisker mechanically

affecting the sensors at the base of its own shaft – analogous in

principle to reafferent signals observed in rat whisking. The use of

the adaptive filter allowed the robot to build an internal model of

this process, and so the robot was able to learn to predict the

sensory consequences of its own movements and thereby enhance

the detection of whisker-object contacts.

In our initial investigation of robot whisking we only used

motor-efference copy as input to the adaptive filter for enhancing

contact detection. However, the organisation of the rat vibrissal

system indicates that the loops through the cerebellum also include

whisker sensory signals [22,23,24], so these also can be used as

inputs to the adaptive filter model. A possible function for these

sensory inputs in biological novelty detection is suggested by

signal-processing analyses of noise cancellation. A signal correlated

with itself over time can be used to predict its own behaviour. This

prediction is particularly effective for periodic signals, and can be

exploited in the special case of noise cancellation [32]. Since the

reafferent signals provided by whisking are likely to contain

periodic components (see below) we therefore augmented the

adaptive filter with sensory whisking inputs to investigate whether,

in principle, such sensory inputs would be of use in an equivalent

neural scheme. This would provide a specific computational basis

for improving the prediction performance of forward models by

the addition of sensory information, a key component for

developing a hypothesis of the function of vibrissal sensory-motor

loops through the cerebellum.

To complete the investigation we attempted to identify possible

neural equivalents to the architecture of Fig 1C, so generating

hypotheses for subsequent experimental testing. As noted above,

the problem of whisking-induced interference is present in rats:

reafferent signals from whisking analogous to those seen in the

robot have been observed in the rat trigeminal ganglion [12,15].

However, how this interference is overcome for the purposes of

novelty detection is not well understood. Here we propose that the

role of the comparator in the internal-model architecture is carried

out by the superior colliculus. This suggestion in turn implies a role

for a hitherto functionally mysterious region of the cerebellar

cortex, connected to the superior colliculus via the inferior olive.

The specification of a particular circuit leads to a number of

experimental predictions, and provides a detailed basis for further

investigation of how the cerebellum is involved in learning internal

models.

Methods

Internal models for self-generated noise cancellation and
novelty detection

Forward model for self-generated noise

cancellation. The whisker signals observed by the robot sensors

have two components (Fig 1C), those generated by the system’s

own behaviour (often termed reafferent signals) and those

generated by the external world (exafferent signals). In the

whisking robot the reafferent signals that are generated by active

whisking interfere with the detection of novel events that are

transmitted by exafferent signals (contacts). Novelty detection can

be improved by the use of a noise cancellation algorithm (see

figure 1C), where (i) a filter driven by a copy of motor commands

predicts the reafferent component of a sensory signal, and (ii) the

prediction is subtracted from the observed sensory signal to

highlight novel events (we label a filter driven by copy of motor

commands as a forward model).

Formally, assume that a sensory signal x(t), generated by a

sensory system, is composed of two additive signals, exafferent s(t)
and reafferent v(t),

x(t)~s(t)zv(t) ð1Þ

It is important to note that only the sensory signal x(t) is observed,

which is a combination of s(t) and v(t). A filter driven by a copy of

motor commands can be used to predict the reafferent compo-

nent. Subtracting the prediction of v(t)from the observed signal

recovers an estimate of the exafferent signal s(t), that is,

ŝs(t)~x(t){v̂v(t)

~s(t)z v(t){v̂v(t)ð Þ
ð2Þ

where v̂v(t) is the filter prediction of the reafferent signal and ŝs(t)is
the output of the novelty detection scheme. Note that when the

filter accurately predicts the reafferent signal (i.e., v̂v(t)~v(t)) the

exafferent signal of interest is completely recovered, ŝs(t)~s(t).

The key part of the novelty detection scheme is the filter

prediction of the reafferent signal. We describe the filter as

v̂v(t)~w1(t)p1(t)z . . . zwn(t)pn(t) ð3Þ

where pj(t) is some transformation of the filter input signal (for

instance a delay caused by a linear filter), and wj(t)is a filter weight

that varies over time. If we assume that the cerebellum implements

a computational analogue of this filter (see Introduction), then

pj(t)represents parallel fibre signals and wj(t)represents parallel

fibre-Purkinje cell synaptic weights (see figures 1A and 1B).

The basic requirement of the adaptive filter is that the basis of

filters used is able to represent the forward model to sufficient

Internal Models for Novelty Detection
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accuracy. In signal-processing a bank of tap-delay line filters is

often used to provide the required time-resolution and delay. This

representation is not biologically plausible, but computationally

equivalent and more biologically plausible linear filters have been

proposed [29]. How this re-coding is computed from mossy fibre

inputs in the granule cell layer is matter for current debate, but the

large scale model of Medina et al. [34] shows that this is possible in

principle, and a more recent detailed model of Honda et al. [35]

has discussed relevant cellular mechanisms.

Adaptation of filter weights is required in order to learn the

dynamic processes that generate the reafferent signals. For the case

where filter input is a copy of motor command our previous work

has shown that a correlational learning rule can be used to drive

adaptation of the filter weights, where the weight update rule is

Dwj(t)~{mpj(t)e(t) ð4Þ

Here weight update is driven by the correlation between the

transformed filter input pj(t) and the error signal e(t)~{ŝs(t)
which, in the cerebellar context, correspond to parallel fibre and

climbing fibre signals respectively; m is a scaling parameter that

effects the rate of learning. The weight update rule is equivalent to

the least-mean-squares (LMS) rule for which convergence

properties are well-known [33]. The negative sign in (4) has been

chosen to agree with the biological learning rule in which positive

correlation between these two signals at the synapses between

parallel fibres and Purkinje cells produces depression of the

synaptic weight. Hence this scheme predicts that in biological

systems the climbing fibres have to transmit a copy of the negative

novelty detection scheme output. The mean firing rate of the

climbing fibre is typically around 1 Hz. In the adaptive filter

model we do not constrain the firing of the climbing fibre to this

rate because computationally this would only cause a reduction in

learning rate and would not affect eventual convergence in the

long-term (cf. [36]).

Figure 1. Adaptive-Filter Model of Cerebellar Cortex and Novelty-Detection Architecture. A: The adaptive filter. The input m(t) to the
analysis-synthesis adaptive filter is passed through a bank of fixed filters (implemented by e.g. tapped delay lines as shown in the diagram) to
produce a set of ‘analysed’ signal components p

1
(t) . . . p

n
(t) These components are weighted and summed (‘synthesised’) to produce the filter output

v̂v(t). Adaptation of weight wi is driven by the correlation between the corresponding component signal pi(t) and teaching or error signal e(t).
Adapted from Fig 1A of Porrill et al [130]. B: The cerebellar microcircuit. Mossy fibre input m(t)is distributed over many granule cells, whose axons
form parallel fibres which synapse on Purkinje cells conveying a set of signals p

1
(t) . . . p

n
(t). In models of Marr-Albus type the correlated firing of a

parallel fibre pi(t) and the single climbing fibre e(t) which winds round the Purkinje cell dendritic tree, alters the efficiencies wi of synapses between
parallel fibres and Purkinje cells. Purkinje cell firing v̂v(t) constitutes the output of the microcircuit, and consists primarily of simple spikes assumed to
represent the sum of the weighted parallel fibre inputs. Complex-spike firing represents the climbing-fibre input. Adapted from Fig 1A of Porrill et al
[130]. C: The novelty detection scheme. The motor command m(t) drives whisker movements, and generates a reafferent signal v(t) as a
consequence. Exafferent signals s(t) are generated by contact of the whisker with objects. In additive combination, the reafferent and exafferent
signals comprise the observed sensory signal x(t). The adaptive filter, which predicts the reafferent signal, is driven by copy of motor commands, the
sensory signal, or both. The output of the scheme, the novelty signal v̂v(t), is subtracted from the observed whisker to detect novel events ŝs(t) and the
negative of this signal drives adaptation of the filter weights via the climbing fibre input as indicated by the box containing the subtraction sign.
doi:10.1371/journal.pone.0044560.g001
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Direct use of sensory signals in novelty detection. The

forward model novelty detection scheme discussed above predicts

the reafferent signal using a copy of motor command as input.

From the noise cancellation literature we know that alternative

filter inputs can be used in certain scenarios: for instance in the

case of periodic reafferent signals we can drive the filter with a

copy of the observed sensory signal x(t) [32]. (A noise cancellation

scheme driven by a sensory signal with a periodic reafferent

component also requires a delay in the filter that is sufficient to

remove predictable components of the exafferent signal in order to

obtain unbiased filter weight estimates). The filter then learns to

represent the characteristics of the reafferent signal itself, rather

than the dynamic process that generates reafference (as in the case

of the forward model). Hence we label the novelty detection

scheme driven by observed sensory signals as a ‘signal’ model.

For non-periodic reafferent signals this approach would not lead

to an optimal solution. However, if we assume that external events

are infrequent relative to movements that cause reafferent signals

and are also different in terms of signal statistics, then it is likely

that use of the sensory signal as input to the filter would improve

novelty detection.

Sensorimotor integration for enhanced novelty

detection. We will show that the predictions of either the

forward model or the signal model lead to more effective novelty

detection depending on the circumstance: for instance, if the

sensory signals are stochastic we would expect to see the forward

model outperform the signal model because use of the motor

signals facilitate accurate prediction of the whisker motion

regardless of the nature of that motion (stochastic or predictable),

whereas the signal model relies on the predictable nature of the

signal. In an alternative case, if the process generating the sensory

signal is of a nonlinear nature, then the (linear) signal model should

outperform the (linear) forward model because the signal model is

not required to describe the dynamics of the generating process

but rather just the structure in the reafferent component of the

sensory signal itself (which could be as simple as a sine wave even if

the dynamical process generating the signal is highly complicated

and nonlinear).

Our hypothesis is that use of both copy of motor commands and

sensory signals as input to the predictive filter would improve

novelty detection across a variety of movement scenarios and

hence ensure robustness. Therefore, in this investigation we use

both motor commands and sensory signals as input to the filter in

order to form a combined sensorimotor prediction of the

reafferent signal (see figure 1C).

SCRATCHbot – a physical model of the rat. Experimental

whisking data was generated using a biomimetic whiskered robot,

which functioned as a physical model of the rat whisker system.

The whisking robot, called Spatial Cognition and Representation

Through Active TouCH robot or SCRATCHbot for short (Fig 2),

represents the second generation of a series of whisking robots

developed by the Bristol Robotics and Sheffield Biotact Labora-

tories [11,27]. SCRATCHbot has 18 whiskers (made from plastic),

arranged on each side of the head in 3 by 3 arrays (9 on each side).

Similarly to the rat, whisker thicknesses and lengths vary across the

vibrissal array, with smaller, thinner whiskers located rostrally and

longer, thicker whiskers located caudally (further details in [31]). A

magnet is bonded to the base of each whisker, in a biomimetic

follicle. A Hall effect sensor is used to measure the movements of

the magnet in 2-dimensions, from which whisker angle is obtained

that was used as sensory input to the adaptive filter. Whiskers in a

column are mounted into the same carrier,each of which is

independently actuated around the vertical axis of the column by a

DC motor. Therefore, all whiskers in a column are actively

Figure 2. The whisking robot SCRATCHbot. A. Photographs of the mobile whiskered robot SCRATCHbot exploring the environment using its
bilateral array of active artificial whiskers. It has been used to test hypothetical models of whisker array based object detection (in this case a sphere)
and action selection mechanisms. B. SCRATCHbot in a ‘head-fixed’ preparation on a workbench. Band-pass filtered white noise and periodic whisking
patterns were used to drive one of the whisker column actuators that generated the whisker response data sets described here. Upper panel from Fig
3 of ref [31]. C. Top: Front view of robot head, showing two columns of whiskers. There are three rows of whiskers on each side of the head, separated
in the frontal plane by 30 deg. Deflections of the whisker shafts caused by reafferent (self-motion) and exafferent (contact) stimuli are measured at
the base using IC tri-axis Hall effect sensors. Bottom: Top-down view of robot head. Six columns of whiskers are actuated independently by DC
motors under Proportional, Integral, Derivative (PID) control through a maximum 120 deg. of rotation. The lengths of the whiskers decrease from
front to back of the head (100–200 mm). From Fig 4 of ref [31].
doi:10.1371/journal.pone.0044560.g002
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whisked back and forth in synchrony with each column

afforded120 degrees of rotation controlled by a proportional,

integral and derivative (PID) controller. Each columnar PID

controller tracks a desired reference trajectory (angular position of

the whisker carrier) specified by the operator.

Experimental data generation. Sensory signals were re-

corded from the whisking robot for offline analysis. One whisker

on the robot was actively moved under head fixed conditions for

100 s, with contacts randomly delivered to the whisker by

manually tapping it with a plastic rod. Whisker movement was

driven by a periodic wave: a square wave of frequency 3 Hz with a

duty cycle of 40%, low-passed filtered with a first order filter (time

constant of 60 ms), to produce a sawtooth pattern similar to fast/

slow phases of protraction/retraction in rat-whisking. Whisker

sensory signals were recorded at a sample rate of 2 kHz and were

down-sampled for the offline analysis to 200 Hz (and low-passed

filtered at 10 Hz). In addition to contact data, free-whisking (i.e.

contact-free) signals were recorded to facilitate the identification of

a robot whisking model (discussed below); in this case, whisking

input was a ‘rat-like’ signal – a looped version of observed rat-

whisking recorded by Towal and Hartman [37] and used in our

previous study [31].

Synthetic Data Model
Robot whisking model. In order to study the effects of

different whisking types (stochastic and periodic) and process

nonlinearities in a more repeatable and controlled way than was

possible on the robot platform, we developed a dynamic model of

robot whisking: a reafferent model Mrdriven by motor commands

and an exafferent model Me driven by simulated contacts. The

reafferent model was obtained using standard system identification

techniques (minimisation of model prediction error using least-

squares) applied to the free-whisking signals recorded from the

robot (low-pass filtered at 5 Hz in order to focus on the low

frequency linear input-output dynamics of whisking) in response to

motor commands derived from whisking patterns observed in the

rat [38]A second order discrete-time linear transfer function was

used to model the input-output dynamics of robot whisking (motor

commands as input, reafferent sensory signals as output),

v(t)~a1v(t{1)za2v(t{2)zb1m(t{1)zb2m(t{2) ð5Þ

where m(t) was the motor command input.

An impulse response filter was used to represent the robot

contacts (a model of exafferent responses) where the contact input

was defined as an impulse 1=dt, where dt was the sample time, and

the filter output was the exafferent signal s(t). A pair of typical

whisking contacts was selected from recorded signals and the

contact responses, which were not directly measured, were defined

as the difference between the prediction of the reafferent model

defined in eqn (5) and the observed sensory signal. The impulse

response model was fitted to these inferred contact signals.

The two robot model components were used to generate

simulations of reafferent and exafferent signals, which were

combined additively as described in eqn (1) to produce the

combined sensory signal. The robot whisking model was used to

generate simulated experimental data consisting of multiple trials

of long time duration, with precise and repeatable control of

whisker contacts – a feature not readily possible to achieve in the

laboratory on the actual robot.

The robot whisking model was used to study two features: (i)

whisking modes (stochastic versus periodic) and (ii) system

nonlinearities. The stochastic whisking input was defined as

band-pass filtered Gaussian distributed white noise (with pass-

band between 2 and 4 Hz) and the periodic signal was defined as a

sine wave of frequency 3 Hz. The process nonlinearity was

introduced to the input-output model in eqn (5) as an additive

bilinear cross-product term between motor input and reafferent

Figure 3. Robot contact detection. Novelty detection algorithms applied to periodic signals recorded from the whisking robot for a 100 s data
record (left) and an illustrative section zoomed on the time axis (right). For an effective visual comparison the novelty signals are normalised by the
peak value in the final 10 s, and the absolute value is displayed (in black) so that contacts (in red) are clearly marked. A: Raw sensory signal. B: Sensory
input only. The initial period of ,20 s during which the model is learned can be seen clearly as a decrease in background noise. C: Motor input only.
D: Sensorimotor input.
doi:10.1371/journal.pone.0044560.g003

Internal Models for Novelty Detection

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e44560



signal output km(t{1)v(t{1). The coefficient k was varied to

produce weak-to-strong nonlinear effects. This is a generic non-

linearity representing a form of state-dependent input gain (e.g.

[39,40]). Its simplicity makes it a good candidate for testing the

hypothesis that novelty detection can be improved by using a

signal model when nonlinearities are present. The nonlinearity

also produces harmonics in the output which would be typical of a

vibrating structure such as a cantilever beam driven by a forcing

input, analogous in certain respects to a whisker [41].

Each simulated experiment was run for a duration of 103

seconds. Contacts were stochastically generated in that time

window by drawing a sample from a uniform random distribution

(between zero and one) at each sample time and specifying

occurrence of a contact if the sample value exceeded a threshold

(set to 0.999 so that contacts were relatively infrequent). Each

simulation was repeated 20 times, in order to demonstrate the

consistency of novelty detection results.

Novelty detection. We implemented the novelty detection

schemes in Matlab. Filter predictions of the sensory consequences

of movement were obtained by implementing eqn (3), with weight

adaptation at each sample time obtained by eqn (4), and the filter

was driven with three separate input types: (i) copy of motor

commands, (ii) observed sensory signal and (iii) both copy of motor

commands and observed sensory signals. The output of the

novelty detection scheme was obtained using eqn (2). Adaptive

filter weights were initialised to zero. Filter input signals were

transformed by a tap-delay line, adjusted to a length of 100 taps

for motor-only and sensory-only inputs, and 200 taps for

sensorimotor inputs (100 taps for each input type: 5 ms between

taps). The learning rate parameter m was set to 0.01 (i.e. relatively

fast adaptation) when processing the short time duration physical

experimental data and 561024 (relatively slow adaptation) when

processing the much longer duration simulated experiments. In

order to more closely mimic the biological limitations n of the

novelty detection schemes, we introduced a small delay into the

filter processing of 10 ms.

We use a basic novelty detection scheme in which a contact is

signalled when the relevant signal crosses some detection

threshold. The metric used for analysing performance of the

novelty detection schemes was improvement in signal-to-noise

ratio (SNR) over the baseline raw signal, where SNR in decibels is

SNR~10log10

var(S)

var(N)
ð6Þ

This quantity is directly related to the ease with which a

threshold can be set to reliably distinguish true contacts from

threshold crossings due to self-motion. We defined the ‘signal’ in

the SNR quantity as the variance of the novelty detection scheme

output ŝs(t)for a 200 ms window post-contact (because it is this

exafferent ‘contact’ signal we were seeking to enhance). The ‘noise’

in the SNR quantity was defined from the variance of the

remaining portion of the novelty detection scheme output (the

reafferent signal). The SNR was only obtained from the final 200 s

of the simulation, so that the results were not distorted by the

significant weight adaptation taking place in the initial phase of the

experimental trial.

Results

Overview
In previous work we have investigated how far cancellation of

reafferent whisker signals can be achieved by driving the adaptive

filter model of cerebellum with copies of motor commands. Here

we extend that investigation by making use of the fact that vibrissal

loops through the cerebellum also include whisker sensory signals

themselves, so providing a second type of input to the adaptive

filter model. Therefore, in order to provide computational

evidence for why such sensory inputs would be of use in novelty

detection, we focused on comparing the performance of novelty

detection schemes with sensory, motor and sensorimotor inputs to

the adaptive filter. In order to explore and compare the

effectiveness of different novelty detection schemes we used

experimental data from a robot rat and also a simulation model

based on the robot. The advantage of this combined approach was

that we were able to demonstrate the principle of novelty detection

on actual robot data as a physical model of the vibrissal system,

and then provide a deeper exploration of different whisking

scenarios in a more controlled in silico environment.

Novelty Detection in Robot Rat
Experimental Data. During normal operation of the whisk-

ing robot, we observed reafferent components in the whisker

sensory signal. This reafferent signal interfered with the detection

of contacts, impairing the operation of the robot: contacts were

either missed if the contact detection threshold was raised too high,

or false contacts were generated if the threshold was set too low.

Therefore, in order to demonstrate the benefits of the three

novelty detection algorithms investigated here (using sensory-only,

motor-only or sensorimotor input to the adaptive filter) we first

present a comparison of the algorithms applied to the periodic

robotic whisking signal, where it is strikingly apparent from visual

inspection that the output from any of the novelty-detection

algorithms is much more useful than the raw sensory signal for the

purpose of contact detection (see figure 3).

Simulated Data. In order to investigate the novelty detection

schemes in a systematic way not possible in the laboratory we

developed a model of robot whisking. The robot whisker dynamics

were modelled using system identification methods (described in

METHODS). We first verified that the identified model accurately

represented the dynamic behaviour of the robot (comparison of

model predictions to robot data are given in figure 4) in response

to motor commands based on data from rat whisking [31,38]. The

model was then used to generate multiple trials of robot whisking,

for both stochastic and periodic whisker movements, and also

simulations with additional nonlinear dynamics.

We have demonstrated previously the effectiveness of using a

forward model (i.e. motor-only input) for novelty detection in a

linear dynamical context, with non-periodic whisking [31]. Here

we show the degradation in performance of the forward model

novelty detector as the dynamics of the reafferent generating

process are made increasingly nonlinear (linear and nonlinear

signals are contrasted in figures 5A and 5B). The poor

performance of the forward model scheme contrasts to the novelty

detector driven by sensory input for the case of periodic signals,

where the use of the sensory signal is particularly effective even in

the case of nonlinear dynamics (see figure 5C). The improvement

in signal-to-noise ratio (DSNR: see Methods) resulting from the

use of the novelty detection algorithms is apparent for all methods

and a high level of improvement is maintained for varying

strengths of nonlinearity in both the sensory-only and sensorimo-

tor cases (see figure 5C). However, the novelty detector that uses

motor-input only (i.e. the forward model) falls off in performance

as the strength of nonlinearity is increased, towards a level that is

only just above the raw signal itself (see figure 5C).

An example of one experimental trial corresponding to the

results in figure 5C is shown in figure 6, for the case where the

Internal Models for Novelty Detection
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nonlinearity is strongest (the nonlinear term coefficient k~0:05).

Inspection of figure 6 demonstrates the clear improvement in the

ability to distinguish novel events from the novelty detection

scheme outputs compared to the raw signal, especially in the

schemes that use the sensory signal in the filter input.

The results from simulation studies of novelty detection for

nonlinear, periodic whisking described above have revealed a

context in which the forward model is less effective than predictive

filters driven with sensory signals. In order to more fully assess

performance in various conditions we ran simulations where (i) the

whisking was either stochastic or periodic, and (ii) the whisking

dynamics were either linear or nonlinear. For these four scenarios

we found the following (see figure 7):

1. Stochastic whisking and linear dynamics: The sensory-only

novelty detection scheme improved SNR over the raw signal.

Figure 4. Robot simulation. Description of the robot model used in simulation studies and results of modelling. A: Model description: the
simulated sensory signal x(t) is obtained from the sum of two models, a reafferent model Mr , driven by motor commands and an exafferent model
Me , driven by contacts. The dynamics models Mr and Me were identified as linear systems from the pre-processed experimental robot data. In order
to investigate additional dynamic nonlinearities in the motor-reafferent pathway, the model Mr was modified to include a bilinear term, which gave
rise to harmonics in the reafferent signal. B: Reafferent model input signal (motor command), based on data from rat whisking [38] Analysis of this
signal indicates it to be approximately periodic with a narrow-band Fourier spectrum. [31] C: Comparison of the robot free-whisking signal with the
reafferent model prediction shows excellent agreement. D: Exafferent model input signal (impulses). E: Comparison of the robot contact signal with
the exafferent model prediction shows excellent agreement.
doi:10.1371/journal.pone.0044560.g004

Figure 5. Plant nonlinearity. Effects of plant nonlinearity on novelty detection for periodic whisking (3 Hz), using a model of the robot plant. A:
Power spectrum of the sensory signal for the linear case, where the bilinear term coefficient k (a measure of plant nonlinearity described in Methods),
was set to 0. The model was excited with an input sine wave of frequency 3 Hz, which produced the clear peak at 3 Hz in the power spectrum of the
reafferent output signal. Due to the linear dynamics, the system only responded at this frequency. B: Power spectrum of the sensory signal for the
strongest nonlinear case tested here, where the bilinear term coefficient k was set to 0.05. Note the appearance of harmonics (at 6, 9, 12, 15 Hz) that
are absent from the linear simulation signal shown in A, which is an effect of including the nonlinear dynamics. C: Performance of each novelty
detection scheme in terms of improvement in signal-to-noise ratio (SNR) over the baseline raw signal, when varying the nonlinear coefficient k of the
bilinear term from 0 to 0.05. Mean performance of 20 trials is shown as the solid line and standard deviation is shown by the shaded region.
doi:10.1371/journal.pone.0044560.g005
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Motor-only and sensorimotor performed significantly better

than sensory-only and similarly to each other.

2. Predictable whisking and linear dynamics: There was an

overall improvement in SNR compared to stochastic whisking.

The novelty detection schemes gave more similar performance

with a marked relative improvement in the sensory-only

scheme.

3. Stochastic whisking and nonlinear dynamics: There was an

overall drop in performance compared to the equivalent linear

case. Sensory-only performance was worst of the three

schemes, and sensorimotor performed better than motor-only

by a small margin.

4. Predictable whisking and nonlinear dynamics: Unlike the

preceding cases, there was a large relative drop in performance

of the motor-only scheme. Sensory-only and sensorimotor

performed similarly to each other and much better than in the

stochastic/nonlinear case.

In summary, these results indicate that the sensorimotor novelty

detection scheme performed consistently well in all tested

scenarios, in contrast to the sensory- and motor-only schemes.

The reason for the improved performance when using sensory

inputs to the adaptive filter, in the case of periodic whisking, is that

the adaptive filter only has to learn the signal structure, not the

dynamics of the generating process (i.e. the whisker plant). This

results in particular improvements in SNR for sensory inputs, in

comparison to motor inputs, when the dynamics of the plant are

nonlinear because the linear filter cannot fully describe the

nonlinear motor-to-sensory transformations. It is plausible that the

cerebellum may be able to learn such nonlinear dynamic models,

which would improve the performance when using motor inputs,

although such an expansion of the model is beyond the scope of

this investigation.

Biological Circuitry
The effectiveness of the signal-processing architecture shown in

Fig 1C for improving novelty detection in a whisking robot raises

the question of whether it is implemented neurally (Fig 8). If so, an

extensive literature (references in [29]) suggests that the cerebellum

would be a natural candidate for the adaptive filter (references in

Introduction). The implication of Fig 8 is that there should be an

area of the cerebellum with the following connections. (i) Two

types of mossy fibre input, one carrying sensory information from

the whiskers, and the other efference-copy information from

whisking commands. Both types of information are needed,

because the combination of the two leads to more robust

improvements in novelty detection over a range of conditions

than either input alone. (ii) Purkinje cell outputs (via the deep

cerebellar nuclei) to the comparator. (iii) Whisker-related climbing

fibre input (via the inferior olive from the comparator. A central

issue then concerns the identity of the neural structure that

compares filter output and actual sensory input.

Recent single-unit and imaging data suggest that barrel cortex

has a weak response to whisker contact while whisking. Crochet

and Petersen [42] made whole-cell membrane potential recordings

from barrel cortex neurons in awake mice during whisker-related

behaviour. The large depolarizing sensory responses produced by

brief passive whisker stimuli were markedly reduced when the

animal was whisking. Similar results have been obtained with

voltage-sensitive dye imaging of barrel cortex [43], and it has been

suggested that the response to unanticipated passive stimuli during

whisking is weak because the stimuli "may be confused with self-

motion" ([44], p.526).

In contrast, another major recipient of vibrissal information in

rodents, the superior colliculus (e.g. [45,46]) appears to be directly

involved in detecting novel whisker contacts.

Initial work on the rodent superior colliculus (reviewed in

[47,48,49]) indicated that its removal produced a striking visual

neglect. This neglect was first interpreted in the context of ‘two

Figure 6. Periodic Signals. Novelty detection algorithms applied to periodic signals generated by simulation of the robot model, for a 1000 s data
record (left) and an illustrative section zoomed on the time axis (right). For an effective visual comparison the novelty signals are normalised by the
peak value in the final 200 s, and the absolute value is displayed (in black) so that contacts (in red) can be clearly marked below the output. A: Raw
signal. B: Sensory input only. C: Motor input only. D: Sensorimotor input.
doi:10.1371/journal.pone.0044560.g006
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visual systems’ [50], later refined [47,48,49] to argue that the

retinotectal projection in rodents emphasised information about

localised transient stimuli particularly in the periphery of the visual

field. If the superior colliculus were removed unexpected

peripheral stimuli were simply ignored, no matter how interesting,

edible or dangerous [51].

However, despite the focus of this work visual processing,

evidence was available to indicate that collicular removal

produced a vibrissal neglect. Orienting to experimenter-produced

vibrissal stimulation is severely impaired by collicular lesions

[52,53,54], as is orienting to novel environmental features

encountered by the vibrissa during free movement in an open

Figure 7. Summary of algorithm performance. Comparison of novelty detection schemes when (i) either whisking stochastically or periodically
and (ii) when the robot model of whisker movement is linear or nonlinear. A: Linear model of robot whisking. The bilinear term coefficient, k
(described in Methods) was set to 0. B: Nonlinear model of robot whisking. The bilinear term coefficient, k was set to 0.05. Mean level of
improvement in signal-to-noise ratio (SNR) over baseline raw signal is shown by the bar plot and standard deviation by the error bars (obtained from
20 trials in each case).
doi:10.1371/journal.pone.0044560.g007

Figure 8. Possible neural equivalent. Possible neural substrate for noise cancellation in the whisking animal. The cerebellum is assumed to
correspond to the adaptive filter, and it is proposed that the superior colliculus corresponds to the comparator. This proposal has functional
implications for the projections between cerebellum and superior colliculus, and for whisker-related inputs to both structures.
doi:10.1371/journal.pone.0044560.g008
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field [54,55]. In addition, direct or indirect activation of the

superior colliculus can result in enhanced orienting and biting to

vibrissal stimulation [56,57], and in what appears to be a type of

‘ghost’ orienting in the form of persistent circling and gnawing

[58]. This is consistent with more general evidence that the rodent

superior colliculus is specialised for mediating a wide variety of

responses to unexpected stimuli [51].

Taken together, these pieces of evidence point strongly to the

superior colliculus as the central structure for the detection of

novel stimuli during whisking. The critical question, therefore, is

the extent to which the circuitry of Fig 1C corresponds to specific

connections between superior colliculus and cerebellum in the rat.

A plausible correspondence in this regard would provide the

foundation for a novel hypothesis concerning collicular-cerebellar

interactions for detection of novel whisker contacts.

Superior Colliculus Projection to Cerebellar Cortex via

Inferior Olive. In the internal-model circuit (Fig 1C) the

comparator sends a teaching signal back to the adaptive filter. In

the adaptive-filter model of the cerebellum (Fig 1A, B), the

teaching signal is supplied by the climbing fibre input to Purkinje

cells in cerebellar cortex, which originates exclusively from the

inferior olive. In the neural equivalent of Fig 1C the rat superior

colliculus is therefore shown as projecting to the inferior olive.

Abundant anatomical and electrophysiological evidence indicates

not only that this projection exists [59,60,61,62,63], but that it is

more extensive than in cats and primates.

Thus, the tecto-recipient region of the inferior olive in rats has

been found to project to separate areas of cerebellar cortex (Fig

9A), which have been termed the medial and lateral tecto-olivo

recipient (TOR) areas by Voogd and Barmack [64]. Cerebellar

cortex is organised into parasagittal strips termed zones, each

receiving input from olivary cells with similar properties (for

references see [65]). The zones are labelled from A (most medial)

to D (most lateral) (Fig 9B), and it appears that the medial TOR

area is located in zone A1 (lobule VII and possibly part of lobule

VI) whereas the lateral TOR area is in zone A2

[66,67,68,69,70,71]. The medial TOR area appears similar in

location to the oculomotor vermis of cats and primates. In

contrast, the lateral TOR areas in zone A2 (the paravermal part of

lobules VI and VII) do not have an equivalent in cat or primate,

and the olivary cells that project to them are distinct from those

that project to the mTOR area [62,63,72,73]. The laterally

projecting olivary cells appear to convey vibrissal information,

relayed at least in part from the superior colliculus [74,75].The

precise nature of the information is unknown, but recordings from

neurons throughout the inferior olive in awake cats have suggested

that many "function as somatic event detectors responding

particularly reliably to unexpected stimuli" ([76], p.40). This

suggestion is consistent in general terms with the role in novelty

detection for the lateral tecto-olivo-cerebellar projection.

Hypothesis. The success of the signal-processing architecture

for model-based novelty-detection in robots suggest it may have a

neural counterpart. Given that the superior colliculus is a plausible

candidate for the comparator, the issue becomes how far collicular

connections with the cerebellum meet the architecture’s require-

ments. Although colliculo-cerebellar loops are known to be

important in general terms for vibrissal processing, their specific

functions are not known (e.g. [21,22]). Here we propose that (at

least part of) the tecto-recipient zone A2 in rodent cerebellar

cortex is involved in detecting novel whisker contacts during

whisking. Further details of how far this zone’s connections fit with

the novelty-detection circuitry are considered in the Discussion.

Dicussion

Novelty Detection in Robots
Whisking Robot. The computational analysis conducted

here has demonstrated that under certain circumstances the

additional use of sensory information can improve novelty

detection beyond using motor efference copy alone. The benefits

of using sensory information were particularly seen where the

movements were predictable and the reafferent noise generating

process was nonlinear. The use of sensory information was not so

beneficial when the whisking was stochastic, hence unpredictable,

and the whisking dynamics were linear, although it should be

noted that there was always an improvement in SNR over the raw

signal regardless of particular novelty scheme configuration

(sensory-only, motor-only or sensorimotor).

The sensorimotor novelty detection scheme performed consis-

tently well in all tested scenarios, in contrast to the sensory- and

motor-only schemes. The sensorimotor scheme was able to exploit

the input signals most useful for the context. For instance, in the

stochastic/linear case the sensorimotor scheme made use of the

motor information and in the predictable/nonlinear case it made

use of the sensory information.

The utilization of different input signals in the novelty detection

scheme was automatic, naturally driven by the correlations that

existed between filter inputs and error signal, so no prior

knowledge of the context was required. Hence, these results

suggest that the use of sensorimotor inputs leads to performance

that is both effective and robust to changing scenarios – a highly

desirable feature of both autonomous robots and biological

systems.

Comparison with Previous Work on Novelty Detection

and Robotics. Typical engineering approaches to novelty

detection include statistical methods where a model is constructed

from multiple examples of known data in the form of a density

function [77]. The model is then used by obtaining the probability

that test points originate from the density function, and applying a

threshold to determine if they are novel. In particular, techniques

from extreme value statistics have been applied to the task of

novelty detection, motivated by the observation that novel events

tend to occur in the tails of a probability distribution describing a

data class [78].

Alternative approaches to novelty detection include those based

on artificial neural networks (ANNs) [79]. ANNs are routinely

applied to solving classification problems and novelty detection is a

specialised type of classification problem where the purpose is not

to recognise the actual class, but simply recognise that the test

point originates from some new class. One type of ANN, the

novelty filter [80], has been developed for the case of suppressing

background noise [81], which is related to the work discussed here,

where the novelty filter scheme is similar to the use of sensory

signal (only) in our novelty detection scheme. This same novelty

detection scheme, that uses the sensory signal, was proposed for

the application of noise cancellation in the context of periodic

noise many years previously [32] - to our knowledge this link

between noise cancellation and novelty filtering/detection has not

yet been highlighted.

The statistical and ANN based methods for novelty detection

are generally based on offline training using batches of data before

implementation online [82]. An offline approach is not suitable for

application to autonomous robotics or realistic for biological

scenarios, where in both cases the ability to recognise novelty must

be constructed online. The inspiration for novelty detection from

noise cancellation theory however, provides a sound theoretical

framework on which to base online methods for novelty detection,
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guaranteeing convergence and stability under well-specified

conditions [32].

In the context of robotics, an online method for novelty

detection inspired by the biological phenomenon of habituation

has been developed by Marlsand et al. [83]. That scheme is

designed so that often seen stimuli are eventually ignored. The

approach contrasts to our scheme, which learns to ignore

predictable stimuli and stimuli correlated with motor commands,

so that, although contacts are often seen, they are not ignored

because they are not predictable. A further development in novelty

detection for robotics has been the application of Bayesian

decision making, where accumulated evidence leads to a statistical

hypothesis test [84]. Our approach is distinct from an evidence

accumulation method because it responds rapidly to a single

encounter with an object. Hence, our scheme is highly suited to

scenarios such as threat and prey detection, where response times

must be fast.

Detection of Novel Vibrissal Contacts in Rat
We have argued (Results) that in a neural counterpart to the

signal-processing architecture of Fig 1C the superior colliculus is

the most plausible candidate for the comparator (Fig 8). Moreover,

the superior colliculus provides climbing fibre input to the

cerebellar cortex (via the inferior olive), as required for model-

based novelty detection. Anatomical and electrophysiological

evidence shows that in rodents the superior colliculus projects

via the caudal medial accessory nucleus of the olive to two separate

cortical regions [64], the mTOR (medial tecto-olivary recipient)

area in vermal zone A1, and the lTOR (lateral tecto-olivo

recipient) area in paravermal zone A2 Fig 9).

The mTOR area appears to correspond to the oculomotor

vermis as described in cat and primate [64], a region concerned

with aspects of eye-movement control such as the calibration of

saccadic accuracy [85,86]. Eye movements are obtained from

stimulating this area in rabbits [87], and in rats orienting

movements of the head and body may also be involved [63].

Furthermore mossy-inputs connections of the medial TOR area in

rat suggest a role in eye- and probably head-movement control

(e.g. [64,88,89,90]). It has been argued that orienting in rats is

much more influenced by tactile than visual cues (e.g. [91]), and it

is of interest that in this context an inaccurate head movement

could give rise to an unexpected vibrissal contact. Such a stimulus

can in principle be used as an error signal for restoring movement

accuracy, as has been proposed for postsaccadic visual signals in

primate (e.g. [92,93]). Current evidence thus supports a role for

mTOR in movement control rather than as the location of the

hypothesised internal model required for novelty detection.

Much less is known about the lTOR area in zone A2 (e.g. [94]),

partly because it has not been described in cat or primate.

However, given the suggestion that its climbing fibre input does

signal unexpected vibrissal contacts [74,75,76], it is a natural

Figure 9. Tecto-olivo-recipient (TOR) areas in rat. A Diagram adapted from Fig 2 of Akaike [100], showing a dorsal view of posterior cerebellum
in rat. The medial black area (labelled mTOR) in the vermis of lobule VII corresponds to (part of) the medial tecto-olivary recipient area [64]. The two
lateral red areas (labelled lTOR-1and lTOR-2) are both part of the lateral tecto-olivary recipient area, the former in lobulus simplex b (LS-b, part of
lobule VI), the latter in crus II (part lobule VII). A third lateral tectorecipient area in the paramedian lobule (also part of lobule VII, immediately caudal
to lTOR-2) is referred to but not described in detail by Akaike [63]. B Diagram adapted from Fig 1B of Voogd and Ruigrok [73], in turn adapted from
Fig 9 of Buisseret-Delmas and Angaut [67], showing a flattened representation of cerebellar cortex in the rat marked with the locations of parasagittal
zones A to D2. The lateral TOR areas shown in panel A lie in zone A2 [64], and the red patches indicate our estimate of their location. The third lateral
TOR area in the paramedian lobule referred to by Akaike would correspond to the caudalmost part of zone A2, adjacent to lTOR-2. Subsequent work
has shown that this part of A2 receives short-latency climbing-fibre and mossy-fibre input from the contralateral face, and that the climbing-fibre
input arises from a region of the caudal medial accessory olive [68] apparently similar to that described as receiving projections from the superior
colliculus [63].
doi:10.1371/journal.pone.0044560.g009
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candidate for the location of an internal model used for detecting

novel vibrissal stimuli. An important question therefore is how far

the output and mossy-fibre input connections of this area are

consistent with the circuitry required for model-based novelty

detection.

Connections of Lateral TOR Areas (Zone A2). Outputs. In

the robot, the comparator receives an estimate of the noise

produced by the robot’s own movement from the adaptive filter

(Fig 1C). In the neural equivalent of Fig 1C the rat superior

colliculus is therefore shown as receiving a projection from the

cerebellum (Fig 8). Since almost all the outputs of cerebellar cortex

are channelled through the deep cerebellar nuclei, this implies that

the superior colliculus should receive inputs from these nuclei. The

zonal organisation mentioned above extends to cerebellar output:

each cortical zone projects to its own region of the deep cerebellar

nuclei, which in turn have distinctive pattern of projections to the

rest of the brain. A number of studies have shown that the A2 zone

in rat projects to a region of the deep cerebellar nuclei known as

the dorsolateral protuberance, part of the fastigial (or medial)

nucleus not found in cats or primates [67,69,73,95]. The

dorsolateral protuberance sends a projection to the superior

colliculus [96–97] as required by the model.

Vibrissal Mossy-Fibre Inputs. In Fig 1C one of the main inputs to

the adaptive filter is a copy of the vibrissal input sent to the

comparator. In the adaptive-filter model of the cerebellum, the

main filter inputs correspond to mossy fibre signals (Fig 8). Does

zone A2 receive vibrissal mossy-fibre inputs? It forms the medial-

most part of the extensive tactile area in rat lobules VI and VII

first described by Shambes et al. [98,99], on the basis of mossy-

fibre inputs as revealed by granular layer recordings in response to

mechanical stimulation of different parts of the body (Fig 10A,B).

Difficulties in determining the precise tactile inputs to A2 arise

both from uncertainties about the location of its lateral border, and

from the way in which inputs from different regions of the body

occupy small, intermingled patches (‘fractured somatotopy’). Even

so, inspection of the maps obtained by Shambes et al. [98,99] has

suggested that parts of the lateral TOR area do indeed receive

vibrissal input [63,100]. Both response latency data and anatom-

ical findings indicate that some of this vibrissal input to A2 arrives

directly from the trigeminal nucleus [98][90,101,102,103], con-

sistent with the circuit of Fig 8.

Efference-Copy Mossy-Fibre Inputs. The second main filter input in

Fig 1C is an efference copy of the whisking commands. Whisking

in rats is controlled (via the facial nucleus) by a combination of

signals from motor cortex, superior colliculus, and sensory cortex

area S1 (e.g. [104,105,106]). It is known that the medial

paravermis of lobules VI and VII (i.e. zone A2) receives vibrissa

related mossy-fibre inputs from two of these structures, namely the

superior colliculus [88] and area S1 of somatosensory cortex

[103,107,108]. It may also receive input from vibrissal motor

cortex, which projects heavily to the pons [109], and thence

probably to lobules VI and VII [110]. However, whether this

projection specifically includes the tecto-recipient regions of A2

has yet to be established.

In summary, the connections of cerebellar zone A2 appear to be

broadly consistent with those needed for model-based novelty

detection of whisker inputs. This consistency provides a basis for

further experimental work on the details of the input-output

transformations carried out by the TOR areas in this zone.

Functions of Lateral TOR Areas. A natural step in

investigating these functions would be to record how Purkinje

cells in lateral TOR areas respond to vibrissal contact during

active whisking. In particular it would be of interest to see whether

the response is influenced by whisking and sensory regularity, as

predicted by the internal-model architecture as to whisking.

However, the question of exactly which cortical areas to record

from has yet to be resolved. As indicated in Fig 9, Akaike

[62,63,72,100] described two apparently separated TOR regions

arranged rostro-caudally in the paravermis from lobule VIa to

VII. Brief references are also made by Akaike [63] to a third

region in the paramedian lobule (Fig 9). These regions had

overlapping but not identical olivary inputs, suggesting functional

differences between them [63]. More recent anatomical studies

have indicated that the olivary projection to zone A2 has an

extremely complex organisation [68,73,111], with cortical areas

that receive collicular input via the olive intricately interleaved

with areas that do not [70].

Recordings from the dorsolateral protuberance (dlp) of the deep

cerebellar nuclei (previous section) might help resolve this

complexity. The signals sent by this structure to the superior

colliculus have not been identified. It has been shown that the

circling induced by infusing bicuculline unilaterally into the rat

superior colliculus, possibly related to ‘ghost orienting’ (see above),

is attenuated by injection of GABA into the deep cerebellar nuclei

[112] and that such injections also affect the responses of collicular

neurons to stimulation of the vibrissae [113]. However, the

cerebello-collicular projection arises from widespread regions of

the deep cerebellar nuclei (e.g. [97,114]), and any contribution of

the specific projection from the dlp to these effects has yet to be

identified. Moreover, given that this projection is almost certainly

excitatory, how it could be subtracted from trigeminal input needs

to be investigated. It also needs to be established how far the

projections to dlp from zone A2 [67,95][69,73] arise from tecto-

olivo-recipient areas in that zone [71,115].

Finally, the structural complexity of zone A2 might relate to the

functional complexity associated with the detection of novel

whisker contacts. The architecture of Fig 1C was designed to

address the problem of ‘ghost orienting’ in the robot rat. However,

improved detection of whisker contacts is also useful for other

purposes, such as defence or prey capture. It has been argued

previously that the superior colliculus implements a decision-tree

about transient stimuli, only the first step of which is whether a

stimulus is self-produced [49,51]. If a transient is judged not to be

self-produced, it is then fed into a second stage to determine

whether it requires immediate action such as escape or pursuit.

Only then does the decision to orient become relevant. Involve-

ment of zone A2 in these multiple stages might account for at least

part of its complicated connectivity.

Implications for Cerebellar Role in Active Sensing
Although there is good evidence that the cerebellum is involved

in active tactile sensing [16,17,18,19,20], the precise nature of its

role is not well understood. Detailed circuits indicating how a

cerebellar internal-model could be used for noise cancellation have

not to our knowledge been proposed In contrast, detailed

architectures for noise-cancellation have been described for

"cerebellar-like" structures, such as the electrosensory lateral line

lobe (ELL) of mormyrid electric fish. We therefore compare the

‘pre-cerebellar’ circuits with the one proposed here for the

cerebellum, to indicate the similarities but perhaps more

importantly the differences.

Noise Cancellation by Cerebellar-Like Structures. These

cerebellar-like structures adaptively remove self-generated inter-

ference from the electroreceptor signal [116,117,118]. Principal

cells (in the output layer receive (i) corollary-discharge and

proprioceptive information from neurons in the granular layer

that form synapses with its apical dendrites (Fig 11A), and (ii) direct

sensory information from its basal dendrites. The synapses on the
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apical dendrites are plastic, and their weights are adjusted

according to the correlation between the firing of their parent

parallel fibre and the firing of the principal cell. The Anti-Hebbian

rule for adjusting the weights is similar in form to that used here

[119], with the result that the sum of the weighted granule layer

inputs comes to form a negative image of the self-generated

interference. This is combined with the actual sensory input

arriving at the basal dendrites, so that the output of the principal

cell forms an estimate of the uncontaminated sensory signal

[120,121]. Overall the operations of cerebellar-like structures bear

a striking resemblance to those of adaptive noise-cancelling

architectures [122,123].

However, there is a key difference between the cerebellar (Fig

11C) and cerebellar-like architectures (Fig 11B) in that the output

layer cells in cerebellar-like structures embody both the adaptive

filter and the comparator of predicted and observed sensory signal.

This arrangement has the advantage that the firing rates of these

cells can be used directly as a teaching signal, whereas the more

complex arrangement of Fig 8 requires an indirect teaching signal

to be conveyed to the cerebellar Purkinje cell by the climbing

fibres arising from cells in the inferior olive. "The presence of a

climbing fiber is perhaps the critical difference between the

cerebellum and cerebellum-like structures" ([117], p.10). But the

more complex arrangement has its own advantages. One is that an

explicit estimate of sensory interference is available for distribution

to appropriate targets in the rest of the brain. A second is that

cerebellar output is no longer constrained to act as a teaching

signal, so is freed for other purposes such as cancelling interference

by moving the sensor in question, as in the vestibulo-ocular reflex

[123,124]. The evolution of new olivary circuitry (Fig 11C) to the

basic architecture seen in cerebellar-like structures (Fig 11B) thus

enables a great increase in computational flexibility and power.

Noise Cancellation by Cerebellum. Previous proposals

concerning a possible sensory role for the cerebellum (e.g.

[16,125,126]) have been made at a more general level than the

specific suggestion about model-based novelty detection put

forward here. Indeed novelty detection is only one of a number

of the sensorimotor competencies required for active sensing (e.g.

[8]), and perhaps one of the simpler ones at that. However, such

simplicity may prove to be an advantage at this early stage of

relating signal-processing theory to the details of cerebellar

anatomy and electrophysiology. A plausible assumption is that

different sensorimotor competencies are associated with different

cerebellar zones, but if so the details of the arrangement are

currently very unclear. The specific hypothesis put forward here

concerning a role for zone A2 in vibrissal novelty detection is a

step towards clarification.

One specific anatomical feature that may be illuminated by the

hypothesis concerns overlap between climbing-fibre and granule-

cell inputs. As noted earlier, granule-cell input to both paravermis

and hemispheres of lobules VI and VII is organised in a distinctive

pattern, termed ‘fractured somatotopy’ (Fig 10B). Furthermore, it

appears that in some instances individual patches of cerebellar

cortex receive climbing-fibre inputs from the same region of the

body as their granule-cell fibre inputs [108,127,128]. If the

internal-model architecture is correct, this would correspond to

mossy fibre inputs that convey sensory signals from the whiskers

synapsing on granule cells lying within the area of cerebellum that

is learning the model. This information would then be conveyed to

Purkinje cells and molecular-layer interneurons by the ascending

axons of the granule cells. In contrast, by implication, mossy fibres

Figure 10. Vibrissal mossy-fibre inputs to lateral TOR areas. A Diagram adapted from Fig 2H of Shambes et al. [99], showing a dorsolateral
view of the left posterior cerebellum in rat. The dotted area shows the regions of cerebellar cortex where short latency responses to tactile
stimulation can be recorded from the granular layer. Our estimate of the location of lateral TORs 1 and 2 is marked in red. LS lobulus simplex; IA, IB,
IIA, IIB crural subdivisions; PML paramedian lobule. B Diagram adapted from Fig 1D of Kassel [88], showing the organisation of the tactile areas
illustrated in panel A. Patches of cortex responding to e.g. stimulation of the vibrissae (marked ‘v’, as indicated by the insert titled KEY) are
interspersed with patches responding to other regions. This distinctive arrangement is known as ’fractured somatotopy’’, and appears to reflect
patterns of mossy-fibre collateralisation [108,131]. The lateral tecto-recipient regions are thought to contain patches responding to vibrissal
stimulation, as well as patches responding to stimulation of lips, teeth and perioral regions of skin [63,100].
doi:10.1371/journal.pone.0044560.g010
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that carry efference-copy signals would synapse with granule cells

lying outside this area, and their information would reach the area

via parallel fibres. In this arrangement therefore the two mossy-

fibre inputs to the cerebellum shown in Fig 8 would use different

routes to affect Purkinje cell firing. Whether this corresponds to a

special functional significance for past sensory signals in novelty-

detection would remain to be investigated.

Internal Models and the Cerebellum. It is frequently

argued that internal models play a central role in sensory

prediction, and that the cerebellum is important for learning such

models [2,5,6]. However, the detailed mapping of the internal-

model architecture onto known biological control circuitry has

proved a challenging problem (e.g. [129]). A major stumbling

block is that the neural circuitry underpinning many motor-

control tasks is extremely complex, especially in the case of limb

control where the spinal cord is involved. The detection of novel

vibrissal contacts as a preparation for investigating the possible

role of the cerebellum in learning internal models has the

advantage of not directly involving the spinal cord, being based

instead on brainstem and cortical connections about which a great

deal is known (e.g. [22]. In addition the novelty detection task is

relatively simple, especially when compared with possibilities such

as the use of multiple internal models for representing the

properties of different tools [6]. Thus, the attempt to understand

the detection of novel vibrissal contacts at both computational and

implementational levels may significantly illuminate the functions

of the cerebellum in forming and accessing internal models.

Figure 11. Comparison of cerebellum and cerebellar-like structures. A: Schematic diagram of the cerebellar-like structures in electric fish
Fig 2 of [132]. Apical dendrites of principal cells in the output layer receive input from parallel fibres carrying signals such as corollary discharge of the
electric organ and proprioceptive signals reporting body movement. Basilar dendrites receive input from the periphery - sensory afferents that carry
e.g. electroreceptive information contaminated by reafferent signals. B: Simplified version of panel A to illustrate role of cerebellar-like structures in
noise-cancellation. The input pathway via the parallel fibres/apical dendrites is thought to perform the function of a forward model. The forward
model prediction is subtracted from the contaminated sensory signals that arrive via the basilar dendrites. The output of the structure is the
prediction of the exafferent signal. The principal cell (Pri) thus embodies the complete noise cancellation scheme. Associative learning is driven by
correlation between the principal-cell [51] output and the parallel fibre inputs. C: Simplified diagram of the mammalian cerebellum in a hypothesised
noise cancellation scheme, drawn to emphasise its relationship with panel B. In contrast to the cerebellar-like structure, the cerebellar output from
Purkinje cells (Pur: deep cerebellar nuclei not shown) is the forward model prediction of the reafferent signal. An additional structure is therefore
required to act as comparator to predict the exafferent signal, and an additional pathway is required to feed the error signal back to the Purkinje cell
to drive associative learning – the climbing fibre.
doi:10.1371/journal.pone.0044560.g011
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