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The insular cortex controls food preferences independently
of taste receptor signaling
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The insular cortex (IC) contains the primary sensory cortex for oral chemosensation includ-
ing gustation, and its integrity is required for appropriate control of feeding behavior.
However, it remains unknown whether the role of this brain area in food selection relies on
the presence of peripheral taste input. Using multielectrode recordings, we found that the
responses of populations of neurons in the IC of freely licking, sweet-blind Trpm5−/− mice
are modulated by the rewarding postingestive effects of sucrose. FOS immunoreactivity
analyses revealed that these responses are restricted to the dorsal insula. Furthermore,
bilateral lesions in this area abolished taste-independent preferences for sucrose that can
be conditioned in these Trpm5−/− animals while preserving their ability to detect sucrose.
Overall, these findings demonstrate that, even in the absence of peripheral taste input, IC
regulates food choices based on postingestive signals.

Keywords: insular cortex, gustatory cortex,Trpm5, taste, food preference, postingestive reward

INTRODUCTION
The insula contains the primary gustatory cortex (GC), which
encodes the oral chemosensory properties of food (Yamamoto
et al., 1980; Cechetto and Saper, 1987; Ogawa et al., 1992;
Hanamori et al., 1998b; Scott and Plata-Salaman, 1999; Katz et al.,
2002; Rolls, 2006; Stapleton et al., 2006; Accolla et al., 2007). Fur-
thermore, the insular cortex (IC),and particularly the GC,has been
shown to participate in the regulation of feeding (Balleine and
Dickinson, 2000; Cubero and Puerto, 2000; Stoeckel et al., 2008;
Wagner et al., 2008). In rats, bilateral lesions of the GC reduce their
ability to adequately modulate the incentive value of food out-
comes, an effect that has been attributed to deficits in taste memory
(Balleine and Dickinson, 2000). On the other hand, electrical stim-
ulation of the IC induces robust flavor preferences, possibly due to
modulation of the orosensory insular representation of that flavor
(Cubero and Puerto, 2000). Thus, the involvement of the insula in

the regulation of feeding has primarily been attributed to its role
in processing oral chemosensory information.

However, a more integrative role for the insula in feeding is sug-
gested by the fact that, in humans (Small et al., 2001), as well as in
rats (de Araujo et al., 2006), insular neuronal responses to food are
inhibited by postingestive satiation. In addition, the effects of elec-
trical stimulation of the insula in eliciting flavor preferences has
also been attributed to the “imitation” of neural patterns evoked
by reinforcing visceral information (Cubero and Puerto, 2000).

The transient receptor potential M5 (TRPM5) channel (Perez
et al., 2002) is required for peripheral transduction of sweet, bitter,
and umami tastants (Zhang et al., 2003). Mice lacking functional
TRPM5 channels (Trpm5−/−) have absent (Zhang et al., 2003) or
vastly diminished (Damak et al., 2006) peripheral neural responses
to sweet tastants and, in contrast to wild-type mice, do not show
a preference for sweet tasting solutions in behavioral paradigms
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that are dependent on orosensory responses (Zhang et al., 2003; de
Araujo et al., 2008). We and others have shown that, in Trpm5−/−
animals, sucrose or glucose can be used to condition the devel-
opment of spout preferences that are independent of orosensory
input (de Araujo et al., 2008; Ren et al., 2010). Furthermore, in
unconditioned Trpm5−/− mice, sucrose evoked dopamine release
in the ventral striatum (de Araujo et al., 2008). These behavioral
and neurochemical responses, considered as a measure of food
reward, were shown to depend on processes driven by caloric
postingestive feedback, since they were absent when sucralose, a
non-caloric sweetener, was used in place of sucrose (de Araujo
et al., 2008). For these reasons, Trpm5−/− mice are an ideal prepa-
ration to investigate a taste-independent role of the insula in the
regulation of appetitive feeding. Here, we investigated the neural
representation of the postingestive effects of sucrose in the dor-
sal IC of Trpm5−/− sweet-blind mice, and determined whether
integrity of the dorsal IC is necessary for expression of appropriate
food selection behaviors when no taste input is present.

MATERIALS AND METHODS
ANIMALS
A total of 33 male mice were used. At the time of the experi-
ments, animals were 3–6 months old. They were all homozygous
for a partial deletion of the Trpm5 gene (Trpm5−/−; Zhang et al.,
2003) on a C57BL/6 background, and were bred from mice gen-
erously donated by C. S. Zuker (UCSD, San Diego, CA, USA).
Genotype was confirmed by PCR amplification of the Trpm5 gene.
Ten Trpm5−/− mice were implanted with microelectrode arrays for
neural recordings. Eight others were used for FOS immunoreac-
tivity. Fifteen animals were used in lesion experiments of the IC
(eight with IC lesions and seven with sham operations). All proce-
dures were approved by the Duke University Institutional Animal
Care and Use Committee.

STIMULI
Sucrose solutions (0.8M; Sigma-Aldrich,USA) were prepared daily
at room temperature in deionized water. Deionized water was
also used as a baseline stimulus. Whenever the terms “sucrose”
or “water” are used, we imply 0.8 M sucrose solutions or deionized
water, respectively.

BEHAVIORAL EXPERIMENTS
The behavioral component of all experiments involving licking
was conducted in mouse-behavior chambers enclosed in a ven-
tilated and sound attenuating cubicle (Med Associates Inc., St.
Albans, VT, USA), as described previously (de Araujo et al., 2008).
All experiments were conducted with naïve animals under a 20- to
22-h-long food and water deprivation schedule.

Conditioning to postingestive effects
A conditioning protocol that allows Trpm5−/− mice to manifest
tastant-independent preferences for sucrose was adapted from pre-
vious experiments (de Araujo et al., 2008). This protocol assesses
the ability of sweet-blind animals to develop a preference for drink-
ing from a sipper that is located in a position of the behavioral cage
associated with the availability of 0.8 M sucrose. Briefly (also see
Table 1), after side-preference was determined for each animal in

preliminary two-bottle tests where both sippers contained water, a
pre-conditioning two-bottle sucrose vs. water preference test was
conducted for 10 min. Thereafter, animals were exposed to a con-
ditioning protocol, where 30 min ad libitum access to either water
or sucrose was alternated for six consecutive days and, finally, to a
post-conditioning two-bottle sucrose vs. water preference test con-
ducted analogously to the pre-conditioning test. In all sessions,
water sippers were located on the original bias side and sucrose
sippers on the opposite side.

Two-bottle preference tests
In IC-lesioned and sham-operated animals, conditioned as
described above, further sucrose vs. water two-bottle choice tests
(10 min long) were conducted to verify taste-dependent prefer-
ences. To account for the effect of side-biases, mice were tested in
each condition for four consecutive days with daily inversion of
sucrose and water bottle positions (de Araujo et al., 2008), such
that any consistent preference would depend on sensory factors,
rather than a side-bias (de Araujo et al., 2008).

Preference measures
Two-bottle preference tests were analyzed by calculating the
preference ratios (P) as P(Sipper 1) = n(Sipper 1)/[n(Sipper
1) + n(Sipper 2)] where n(.) denotes the total number of licks
for a given stimulus during a session. Significance tests were based
on one sample t -tests against 0.5, which is the reference value
meaning indifference with respect to either sipper.

Water maze behavioral testing
In IC-lesioned and sham-operated animals, behavioral testing of
spatial orientation was conducted in a Morris water maze (MWM)
task, as described previously (Kee et al., 2007). Briefly, on each of
six consecutive training days, mice received eight training trials
divided in two blocks of four. At each trial they were placed in the
water facing the wall in one of four possible different start loca-
tions (randomly chosen without substitution) and left to swim
freely until they found the platform or 60 s had passed. Time to
reach the platform was recorded in each trial and averaged across
all trials for each animal in each day. One day after completion of
training (day 7), spatial memory was tested in a probe trial where
the platform was removed from the pool. The time spent searching
in the correct quadrant of the maze (where the platform had been
during training) was averaged across all animals and was compared
to 15 s (one sample t -test), the time animals would be expected to
swim in that quadrant if they were searching randomly.

FOS PROTEIN IMMUNOHISTOCHEMISTRY
Eight Trpm5−/− mice were habituated to drink water from a sin-
gle sipper in daily 30 min sessions. Once stable licking rates were
obtained, animals were exposed to either water (four animals)
or 0.8 M sucrose (four animals) in a single 30 min long session.
To avoid unspecific effects associated with licking and/or differ-
ent volumes ingested, consumption of sucrose was yoked to that
of water. Two hours after the start of behavioral sessions, ani-
mals were deeply anesthetized with 100 mg/kg pentobarbital and
perfused through the left ventricle with a saline flush (100 mL)
followed by 4% paraformaldehyde in phosphate buffered saline
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Table 1 | Protocol for postingestive conditioning.

Left side Right side

Pre-test Determination of side-bias Two-bottle Water Water

Bias side Other side

Day 1 Pre-conditioning test Two-bottle Water Sucrose

Day 2 Conditioning day 1 One-bottle – Sucrose

Day 3 Conditioning day 2 One-bottle Water –

Day 4 Conditioning day 3 One-bottle – Sucrose

Day 5 Conditioning day 4 One-bottle Water –

Day 6 Conditioning day 5 One-bottle – Sucrose

Day 7 Conditioning day 6 One-bottle Water –

Day 8 Post-conditioning test Two-bottle Water Sucrose

(PBS; pH, 7.4; 500 mL). Brains were post-fixed in the same fixative
for 2 h, and then transferred to 30% sucrose with 0.02% sodium
azide in PBS.

The fixed brains were then analyzed by a different experi-
menter that was blind to the treatment conditions. Free-floating
serial 40 μm thick coronal sections of these brains were cut
with a freezing-microtome and alternate sections were used for
either FOS immunohistochemistry (Contreras et al., 2007; Kee
et al., 2007) or thionin staining. Sections for immunohistochem-
istry were incubated in PBS with 1% H2O2 for 20 min, rinsed
in PBS with 0.3% Triton-X100 (PBS–T), and then transferred
to 10% normal swine serum (NSS) in PBS–T blocking solu-
tion for 2 h. Sections were then incubated in the primary anti-
body solution: rabbit anti FOS polyclonal antibody (Calbiochem,
CA, USA) 1:10000 in PBS–T with 2% NSS. After 3 days at 4˚C,
sections were rinsed with PBS–T, incubated in 1:200 biotiny-
lated swine anti-rabbit antibody for 1 h, rinsed with PBS–T,
incubated for 1 h in 1:200 Vectastain ABC Elite kit (Vector Lab-
oratories, CA, USA), rinsed with Tris buffer, and reacted for
3 min with a diaminobenzidine hydrochloride (DAB) solution
containing 0.005% H2O2 in Tris buffer. After DAB staining, the
sections were rinsed in PBS and serially mounted for counting of
FOS-immunoreactive nuclei. IC boundaries were traced over the
thionin-stained sections using the Paxinos and Franklin (2001)
drawings as guidelines for regional boundaries, prior to counting
of FOS-immunoreactive nuclei. Counting was performed man-
ually using a microscope camera lucida and cells were counted
bilaterally in each section.

STEREOTAXIC SURGERY FOR IC LESION, SHAM OPERATIONS, AND
IMPLANTATION OF MULTIELECTRODE MICROARRAYS
Twenty-five Trpm5−/− mice were anesthetized using 5% halothane
followed by intramuscular injection of xylazine (5 mg/kg) and ket-
amine (75 mg/kg). Supplemental doses were administered when-
ever necessary. Craniotomies measuring ∼1 mm2 were drilled at
(AP = 0.9 mm, ML = ±3.1 mm) relative to bregma. In eight ani-
mals a cannula was slowly lowered to ∼2 mm below the brain
surface to target the IC (Paxinos and Franklin, 2001) and 0.1 μL of
a 20-mg/mL NMDA (N -methyl-d-aspartic acid; Sigma-Aldrich,
USA) solution was manually injected into the IC (Corbit et al.,
2002). After the injected solution had dispersed for 2 min, the

needle was removed and the contralateral side of the brain was
subjected to the same procedure. In seven animals, the same sur-
gical methodologies were repeated but NMDA was not injected
(sham operation). In 10 other animals, a multielectrode microar-
ray (16 channels) was implanted into the same area (see Figure 5).
The side of implantation was balanced between left and right
hemispheres. After surgery, animals were given ∼1 week to recover
before experimental testing was initiated.

NEURONAL RECORDINGS
Recordings of neural activity and timestamps of licking responses
were performed simultaneously according to the procedure pre-
viously described (de Araujo et al., 2008). In two implanted
animals, single-neuron activity could not be recorded. In the
remaining eight mice, recordings were performed in each ani-
mal during a series of two or one-bottle tests, conducted in eight
consecutive days (see Table 1). No assumption was made on the
identity/stability of units recorded during different sessions.

HISTOLOGICAL CONFIRMATION OF IC LESION AND ELECTRODE TIPS
PLACEMENT
In all animals, we followed a previously described histological
method to identify the location of lesions or microwire implan-
tation (de Araujo et al., 2008). Brain slices from lesioned and
sham-operated animals were examined with a light microscope,
and compared. Placement and extent of lesion was assessed by
location of cannula tract and areas of gliosis (Corbit et al., 2002).
In two mice, the insula lesion was only correctly placed on one side,
while in one implanted animal the microwires were implanted out-
side of the insula, in the striatum. Data from these animals were
excluded from the analyses.

ELECTROPHYSIOLOGY DATA ANALYSIS
All neuronal data analyses were performed with custom soft-
ware written in Matlab (R14, MathWorks, Inc.) or using the Nex
software (Nex Technologies, TX, USA).

Peri-event histograms
Peri-event histograms (PEHs) were constructed for each unit-
stimulus pair using the PEH function of the Nex software (Nex
Technologies, TX, USA). PEHs show the conditional probability
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of observing a spike in a spike train at time t, on the condition that
there is a reference event at time zero. The time axis was divided
into bins and bin counts were normalized by the number of refer-
ence events. Analyses of responses in single cells were performed
by constructing 1 s (±500 ms) “PEHs” with 5 ms bins, using licks
to sucrose or water as defining events. Bin values were expressed
as impulses per second (i.e., normalized bin counts × bin size in
seconds), and a Gaussian filter (width = 3 bins) was applied to the
resulting PEH. PEHs were constructed such that they would cor-
respond to time intervals that occurred within licking clusters (see
below).

Stimulus-specific single-neuron responses
Confidence limits for expected bin count in each PEH were calcu-
lated in the Nex software, using the assumption that the expected
bin count has a Poisson distribution (Abeles, 1982). The count
for each bin in a PEH was then compared to the respective confi-
dence limits. A given unit was considered responsive to a stimulus
when the values of at least three consecutive bins were outside the
95% confidence interval. Units that responded to only one of the
two stimuli (water or sucrose) were considered to be “stimulus-
specific,” while units that responded to neither or both stimuli
were not considered “stimulus-specific.”

Mean population responses
For each neuron isolated during a given recording session, and for
each licking cluster (see below) to sucrose, we first calculated the
total number of spikes within this cluster normalized to cluster
duration. These quantities were then averaged for each neuron
across all clusters. Results were averaged across neurons, so that
the resulting quantity was defined as the mean population firing
rate response to sucrose, denoted FRSUC. For water, the quantity
FRH2O was analogously defined. Next, we defined the quanti-
ties (FRSUC − FRH2O)PRE and (FRSUC − FRH2O)POST , taken as
a measure of the differential mean population response to water
and sucrose for each pre- and post-conditioning session respec-
tively. Finally, for each recorded animal, we defined the quantity
ΔFR = |(FRSUC − FRH2O)POST − (FRSUC − FRH2O)PRE | that
represents the absolute value of the changes in the differential
population responses to water and sucrose as a function of condi-
tioning. These values were then correlated with a learning index
(LI; see below for definition).

Learning index
The efficacy of the conditioning protocol was measured in each
recorded animal by a quantity we denoted as the “LI.” This index
provides a measure of the extent to which, after conditioning,
Trpm5−/− animals increased their preference (P) for the sipper
associated with sucrose. For each animal, LI was thus defined as
LI = (PSucrose)POST − (PSucrose)PRE, where POST and PRE refer to
post- and pre-conditioning test sessions respectively.

Determination of licking clusters
The analysis of licking patterns was performed as described previ-
ously (Davis and Smith, 1992; Gutierrez et al., 2006), i.e., pauses in
licking longer than 0.5 s defined the end of a cluster. Cluster dura-
tion and average lick rates within clusters were used as controls for
oromotor influences on neural activity.

STATISTICAL ANALYSES
Unless otherwise stated, results from data analyses were expressed
as mean ± SE of the mean. Analyses were performed with cus-
tom software written in Matlab (R14, MathWorks, Inc.) or with
Prism (GraphPad, San Diego). Analyses were two-way or one-
way ANOVAs (with Bonferroni Post hoc tests), paired or unpaired
two-sample t -tests, or one sample t -tests. Bonferroni–Holm’s
corrections for multiple comparisons (Holm, 1979) were per-
formed when several independent tests were used for the same
dataset. Correlation analyses were performed using Pearson’s
product moment correlation and proportions were compared
using Fisher’s exact tests. The Kolmogorov–Smirnov test was used
to check the goodness of fit with the normal distribution for each
measure of behavior or neuronal activity.

RESULTS
IN THE ABSENCE OF PERIPHERAL TASTE INPUT, NEURONAL
POPULATIONS IN IC ENCODE THE REINFORCING VALUE OF SUCROSE
SOLUTIONS
In 7 Trpm5−/− mice, a multielectrode microarray comprising 16
electrodes was implanted unilaterally into the dorsal IC, where
the GC is found (Cechetto and Saper, 1987; Ogawa et al., 1990;
Stapleton et al., 2006; Accolla et al., 2007). Electrophysiological
recordings of IC neuronal ensembles (average 6.8 neurons per
ensemble) were conducted in eight recording sessions per animal.
These recordings were performed while the animals were exposed
to a conditioning protocol where the expression of preferences for
sucrose depends solely on taste-independent, postingestive effects
(de Araujo et al., 2008; see Materials and Methods and Table 1 for
protocol).

During conditioning sessions, Trpm5−/− mice consumed sig-
nificantly more sucrose than water (Figure 1A), indicating that
these animals were sensitive to the postingestive effects of sucrose.
Sipper-preference patterns observed during the post-conditioning
sucrose vs. water tests were also indicative that the sweet-blind
mice were sensitive to the postingestive effects of sucrose. Indeed,
the consumption of water was unchanged while sucrose consump-
tion significantly increased in the post-conditioning relative to
the pre-conditioning testing sessions (Figure 1B). Accordingly,
sucrose preference was significantly higher in post-conditioning
than in pre-conditioning testing sessions (Figure 1C).

To assess the involvement of single IC neurons in the devel-
opment of preferences for sucrose, we calculated in pre- and
post-conditioning sessions the proportion of stimulus-specific
neurons, i.e., neurons that responded selectively when the animal
was licking for sucrose or for water (see Figure 2A and Materials
and Methods). While the proportion of such neurons increased in
the post-conditioning (23 out of 59 neurons, ∼39%) relative to
the pre-conditioning sessions (14 out of 61 neurons, ∼23%), this
difference was only borderline significant (p > 0.07; Fisher’s exact
test). Nevertheless, we hypothesized that the variable individual
propensities to sense the postingestive effects of sucrose were mir-
rored by the corresponding IC neural activity levels. Consequently,
animals were divided according to their post-conditioning prefer-
ence ratio for sucrose. Five mice displayed a preference ratio higher
than 0.5 and were defined as “Learners,” while the remaining mice
were classified as “Non-Learners” (Figure 1D). The proportions
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FIGURE 1 | Behavioral responses to sucrose and water inTrpm5−/−

mice before and after conditioning. In all figures, error bars indicate
mean ± SEM. (A) In the Trpm5−/− animals where IC activity was recorded,
average acceptance of sucrose during conditioning sessions (seeTable 1)
was higher than that of water (803 ± 152 and 308 ± 79 licks respectively;
t 6 = 5.1, **p < 0.003, paired two-sample t -test). (B) In the same animals,
when acceptance of sucrose and water was compared in pre-conditioning
and post-conditioning preference tests, a significant effect was found for
session (pre- vs. post-conditioning, F 1,12 = 4.9 p < 0.05) but not for tastant
(water vs. sucrose, F 1,12 = 0.5, p > 0.5). However, the two factors also
interacted significantly (F 1,12 = 10.7, p < 0.007; two-way repeated
measures ANOVA) and, while the consumption of sucrose increased from
the pre-conditioning to the post-conditioning preference tests (159 ± 115
and 529 ± 194 licks, respectively; t = 3.9, **p < 0.01) the consumption of
water was unchanged (276 ± 67 and 204 ± 32 licks, respectively; t = 0.8,
p > 0.05, Post hoc Bonferroni). (C) In accordance with the acceptance

data, sucrose preference increased after conditioning (0.25 ± 0.06 to
0.62 ± 0.09; t 6 = 5.3 **p < 0.002, paired two-sample t -test). Red dashed
line corresponds to 0.5 indifference level. While sucrose preference was
significantly lower from the indifference ratio of 0.5 in the pre-conditioning
test (t 6 = 3.9, p < 0.02), it was not in the post-conditioning test (t 6 = 1.3,
p > 0.2; one sample t -tests vs. 0.5 with Bonferroni–Holm’s correction for
multiple comparisons). (D) In Learners (see text) preference for the
sucrose sipper was not significantly different from 0.5 in the
pre-conditioning session (preference ratio = 0.29 ± 0.08; t 4 = 2.6,
p > 0.05), but was significantly higher than 0.5 in the post-conditioning test
session (0.76 ± 0.03; t 4 = 5.3, *p < 0.05). In Non-Learners, preference in
both pre and post-conditioning was low (0.14 ± 0.09 and 0.28 ± 0.05) and
not significantly different from 0.5 (t 1 = 4.1, p > 0.1 and t 1 = 3.6, p > 0.1,
respectively; one sample t -tests vs. 0.5 with Bonferroni–Holm’s correction
for multiple comparisons – note that only two animals were Non-Learners
which hinders statistical significance).

of stimulus-specific neurons in pre- and post-conditioning ses-
sions were then compared separately for each of the two groups.
In Learners, the stimulus-specific neurons occurred with greater
frequency in post- relative to pre-conditioning sessions; an effect
that was not observed in Non-Learners (Figure 2B).

Furthermore, for each animal, variation in the proportion of
stimulus-specific neurons occurring in post-conditioning sessions
(27, 33, 36, 36, 44, 50, and 75%) relative to pre-conditioning ses-
sions (31, 9, 13, 44, 18, 17, and 33%) was calculated, showing
that this difference (post-conditioning – pre-conditioning) was
significantly different between Learners (29.9 ± 3.4%) and Non-
Learners (−6.1 ± 2.6%; t 5 = 6.1, p < 0.002, unpaired two-sample
t -test).

To further analyze changes in IC responses from pre- to
post-conditioning, for each of the preference-testing sessions we
calculated the mean population firing rate while animals licked
for either stimulus and subtracted the within-session neuronal

population responses to water from those to sucrose. The absolute
difference between the values thus obtained in pre- and post-
conditioning sessions for each animal, denoted as “Δ Firing
Rate” [ΔFR = |(FRSUC − FRH2O)POST − (FRSUC − FRH2O)PRE |,
see Materials and Methods], represents the extent to which the
relationship between sucrose and water population responses
changed after conditioning. Each animal was also assigned a “LI,”
[LI = (PSucrose)POST − (PSucrose)PRE, see Materials and Methods]
that is a measure of the increase in sucrose preference during
the post-conditioning relative to the pre-conditioning preference
tests (see Figure 1C). As seen in Figure 3A, a significant posi-
tive correlation was found between ΔFR and the LI. Additionally,
we verified that ΔFR differs significantly between Learners and
Non-Learners (1.4 ± 0.2 and 0.09 ± 0.08 respectively; t 5 = 3.7,
p < 0.03, unpaired two-sample t -test).

Concerning the relationship between ΔFR and LI, we were con-
cerned that the variation in ΔFR could reflect learning-induced

Frontiers in Systems Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 5 | 5

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Oliveira-Maia et al. Taste-independent control of food preferences by the insula

FIGURE 2 | Stimulus selective IC responses to sucrose and water in

Trpm5−/− mice before and after conditioning. (A) Each panel corresponds to
a peri-event histogram centered on licks (blue line) for water (left panels) and
sucrose (right panels). The green lines indicate baseline level of activity, and
red lines define the 95% confidence interval, as defined in Section “Materials
and Methods.” Neurons “A” and “B” are examples of stimulus-specific
neurons, i.e., those neurons that responded only to water (neuron “A”) or to

sucrose (neuron “B”). (B) The proportion of stimulus-specific neurons
increased when post-conditioning sessions were compared to
pre-conditioning sessions in Learners (15/34 vs. 6/39 neurons in post- vs.
pre-conditioning respectively; **p < 0.01), but not in Non-Learners (8/25 vs.
8/22 in post- vs. pre-conditioning respectively; p > 0.7). This proportion did not
differ significantly between the two groups during pre-conditioning sessions
(p > 0.1; Fisher’s exact test).

FIGURE 3 | Population responses of IC neural ensembles before and

after postingestive learning. (A) “Δ Firing Rate” or “Δ FR,” where
ΔFR = |(FRSUC − FRH2O

)POST − (FRSUC − FRH2O
)PRE |, represents the changes

in the differential neural population responses to water and sucrose as a
function of conditioning (POST and PRE refer to post- and pre-conditioning
test sessions respectively). “learning index” (LI) was defined as
LI = (P Sucrose)POST − (P Sucrose)PRE, and is a measure of the extent to which
Trpm5−/− animals increased their preference (P ) for the sipper associated
with sucrose during conditioning (see Materials and Methods for further
details). These values were calculated for each animal (each circle

represents data from one animal) and a significant positive correlation
(r = 0.86, *p < 0.02) was found between Δ FR and LI. (B) To show that the
correlation between ΔFR and LI seen in (A) does not arise from
learning-induced licking-related, oromotor behaviors, we tested if ΔFR
would also correlate with changes in measures of oromotor activity before
and after conditioning. To that point, after conditioning, neither Δ of lick
rate (left panel) nor Δ of cluster duration (right panel) were correlated with
ΔFR (r = 0.29 and r = −0.44 respectively; p > 0.3 for both), showing that
they were not responsible for the learning-related changes in IC neural
population responses seen in (A).

modifications in licking-related oromotor behaviors. To investi-
gate this possibility, we tested if ΔFR would also correlate with
changes in measures of oromotor activity, calculated analogously
to the LI. Changes in lick frequency and licking cluster duration did
not correlate with ΔFR (Figure 3B), thereby showing that these
parameters cannot account for the relationship between ΔFR and
the LI. In summary, these electrophysiological data showed that,
in the absence of peripheral taste transduction events for sucrose,

IC neuronal populations reflect the postingestive reinforcing value
of sucrose solutions.

POSTINGESTIVE RESPONSES TO SUCROSE ARE FOUND SPECIFICALLY
IN THE DORSAL IC
The above electrophysiological results show postingestive-driven
responses to sucrose in the dorsal insula, but do not provide
information as to other IC locations where such responses could
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FIGURE 4 | Consumption of sucrose-induced FOS protein expression in

the dorsal insula ofTrpm5−/−mice. (A) Coronal sections of the IC showing
FOS expression. The number of FOS-positive nuclei, averaged across brain
sections in each animal, was compared between animals following
consumption of water or sucrose (examples in left and right panels
respectively), in the dorsal and ventral insula and the claustrum (Cl), divided as
shown. (B) The number of FOS-positive nuclei was not significantly different
between the three brain areas (F 2,9 = 2.3, p > 0.15), but was impacted by the

consumption of sucrose (F 1,9 = 5.9, p < 0.005) and the two factors interacted
significantly (F 2,9 = 5.9, p < 0.03, two-way repeated measures ANOVA). The
effect of sucrose ingestion was significant in the dorsal insula
(water – 497 ± 188, sucrose – 787 ± 276; t = 5, **p < 0.01) but not the ventral
insula (water – 413 ± 93, sucrose – 447 ± 110; t = 0.6, p > 0.05) or the
claustrum (water – 162 ± 35, sucrose – 221 ± 38; t = 1, p > 0.05; Post hoc
Bonferroni). (C) Consumption of the two tastants was yoked (water: 295 ± 69
licks, sucrose: 331 ± 64; t 6 = 0.4, p > 0.7, unpaired two-sample t -test).

be found. To further investigate insular sites where postinges-
tive reward may be represented, we measured patterns of FOS
immunoreactivity in the IC of Trpm5−/− mice (Figure 4A) follow-
ing the ingestion of water or 0.8 M sucrose solutions (n = 4 mice
for each tastant). In these KO mice, the ingestion of the sucrose
solution induced a significantly greater amount of FOS protein
synthesis in IC neurons than did the ingestion of the same volume
of water (Figure 4B). Importantly, this effect was restricted to the
dorsal zones of the IC. No significant differences were found in
either the ventral insula or the claustrum (Figure 4B). Because
the consumption of sucrose was experimentally yoked to that
of water (Figure 4C), these effects were not accounted for by
unspecific visceral stimulation associated with differential volumes
of ingestion (e.g., gastric distention, Cechetto and Saper, 1987)
or oromotor-related factors (e.g., licking-dependent somatosen-
sory stimulation, Stapleton et al., 2006). Thus, as ascertained by
FOS measurements, the sensitivity of the IC to postingestive fac-
tors in Trpm5−/− mice is anatomically restricted to the dorsal
zones.

THE IC IS NECESSARY FOR TRPM5−/− MICE TO EXPRESS SIDE
PREFERENCES CONDITIONED BY SUCROSE
We next inquired whether, in the absence of peripheral taste sig-
naling, the IC is required for the development of preferences
for sucrose. Following either bilateral lesions targeting the dorsal
IC, induced with 2 μg of N -methyl-d-aspartic acid, a glutamate
receptor agonist (n = 6), or sham surgery (n = 7; Figure 5 and
Materials and Methods), we analyzed the behavioral performance
of Trpm5−/− mice in the conditioning protocol (Table 1). We
found that bilateral lesions to IC produced no behavioral effects
on either pre-conditioning preference tests (Figure 6A) or condi-
tioning sessions (Figure 6B). However, during post-conditioning
preference tests, sham-operated animals not only consumed sig-
nificantly more sucrose than water (Figure 6C) but also devel-
oped a significant preference for sucrose (0.76 ± 0.07; t 6 = 4,
p < 0.02), whereas no such effects were observed in IC-lesioned
animals (0.42 ± 0.1; t 5 = 0.8, p > 0.4; one sample t -tests vs. 0.5

with Bonferroni–Holm’s correction for multiple comparisons;
Figure 6D).

These findings suggested a highly specific role for the dorsal IC
in the development of taste-independent side preferences condi-
tioned by sucrose. In fact, during conditioning, both sham-treated
and lesioned animals exhibited more licking during sucrose than
water sessions. It is important to note that, in these conditioning
sessions, mice had access to a single bottle, delivering either water
or sucrose in alternate days. Thus, they only needed to detect
sucrose in order to consume it differentially relative to water.
We therefore concluded that the dorsal IC is not necessary for
detection of the postingestive value of sucrose. However, during
the post-conditioning preference-testing session, both water and
sucrose were present, and the animals had to choose between the
two tastants. Since Trpm5−/− mice are taste-blind, in this last ses-
sion sucrose and water were presented in the same positions as
during the conditioning sessions (sucrose on the left and water
on the right side or vice-versa), and animals had to use previ-
ously learned side cues to be able to demonstrate a preference
for sucrose (de Araujo et al., 2008). During post-conditioning
tests sham-treated mice, but not lesioned animals, displayed the
expected higher preference for sucrose, suggesting that the dorsal
IC was necessary for the association between sipper positions and
the postingestive effects associated with the availability of sucrose.
The importance of side cues for sham-treated animals to demon-
strate a preference for sucrose was further confirmed in additional
two-bottle sucrose vs. water preference tests, conducted across sev-
eral days with alternation of bottle positions to eliminate side-bias.
Under these conditions, preference for sucrose was not significant
in either group (lesion: 0.57 ± 0.05, sham: 0.58 ± 0.06; respectively
t 5 = 1.3, and t 6 = 1.2, p > 0.2 for both, one sample t -tests vs. 0.5)
and did not differ between them (t 11 = 0.1, p > 0.9; unpaired two-
sample t -test). Thus, the preference for sucrose initially expressed
by sham-operated animals was disrupted, confirming that the
development of such preferences in Trpm5−/− mice is dependent
on side associations while being independent of any particular
orosensory cue (de Araujo et al., 2008).
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FIGURE 5 | Bilateral IC lesions. Sucrose-induced changes of FOS
expression were found in the same area of the insula (dorsal) from which
neural activity was recorded. A bilateral lesion study was performed to
target that same area. Schematic figures (modified from Paxinos and
Franklin, 2001) show composite lesion areas on the right side of image, as
assessed by microscopic examination for cannula tract and areas of gliosis.
Black areas are where all animals were lesioned bilaterally, light gray when
only one animal was lesioned unilaterally or bilaterally and dark gray for
intermediate situations. The center of recording sites in animals with
multielectrode arrays implanted is shown on the left side (green circles).
S1/S2, somatosensory cortices; GI, granular insula; DI, dysgranular insula;
AID/AIV/AIP, agranular insula; Cl, claustrum; Pir, piriform cortex; CPu,
caudate/putamen.

An alternate explanation for the above results relates to possible
differences in the duration of the experimental sessions. In fact,
conditioning sessions were conducted for 30 min while preference
sessions lasted only 10 min, raising the possibility that the differ-
ences in conditioning vs. preference sessions may result simply
from differences in their duration. To test for this possibility, data
for consumption during conditioning sessions was reanalyzed,

considering only the first 10 min for each session. No significant
differences were found between sham and IC-lesioned animals
(Figure 7A). Further comparisons were performed considering
each sucrose or water conditioning day separately (i.e., days 1, 3,
and 5 for sucrose and 2, 4, and 6 for water), to verify if there were
different trends in consumption across conditioning. Again, no
significant differences were found between sham and IC-lesioned
animals (Figures 7B,C), a finding that further supports a more
fundamental effect of dorsal IC lesions during preference tests, as
argued above.

From the above experiments it follows that IC lesions disrupt
the development of side preferences conditioned by sucrose. To
eliminate the possibility that this disruption was due to impair-
ments in spatial cognition (Bermudez-Rattoni et al., 1991), we
tested the same animals in a MWM protocol (Kee et al., 2007).
Animals were trained in the MWM for 6 days, a period with com-
parable duration to that of the postingestive conditioning. On the
sixth day, no differences were found between the two groups in
time to reach a hidden platform (Figure 8A). Furthermore, on
a probe test conducted on the seventh day, both groups retained
information on the spatial location of the submerged platform
(Figure 8B). Thus, we conclude that animals with IC lesion had
conserved spatial orientation in the MWM, and that IC integrity,
while not necessary for the detection of the postingestive prop-
erties of sucrose, is required for such factors to condition side
preferences in a two-bottle test.

DISCUSSION
In this study we have shown that the activity of neurons located
in dorsal regions of the IC of sweet-blind Trpm5−/− mice display
a heightened sensitivity to taste-independent postingestive effects
produced by caloric sucrose solutions. In addition, we found that
changes in IC neuronal activity elicited by these taste-independent
postingestive effects were mostly restricted to more dorsal regions
of the IC, where the gustatory aspect of the insula is located.
Finally, we have shown that focal lesions to dorsal insular areas, that
were ineffective in disrupting the sensitivity to taste-independent
postingestive effects of sucrose, do disrupt the ability of mice to
associate a particular sipper position with the postingestive effects
produced by the sucrose solutions. Overall, our data supports the
concept that even in the absence of taste transduction, dorsal parts
of the IC are critical for the formation of associations between
environmental cues and postingestive effects.

Chemosensory responses in gustatory insular neurons are
broadly tuned to multiple taste qualities, including sweet (Katz
et al., 2002; Stapleton et al., 2006, 2007). However, in the absence
of taste input, it remained unknown as to whether the reward-
ing postingestive properties of sucrose were represented in the
insula. Here we have described adaptations in IC responses as
sweet-blind Trpm5−/− animals developed a preference for sucrose.
This preference was established through a conditioning proto-
col that associates the contents of a particular sipper with its
positive postingestive effects (de Araujo et al., 2008; Ren et al.,
2010). In mice that developed a preference for sucrose, such neu-
ronal adaptations occurred both at the single-neuron level, where
they were expressed as an increased “discriminability” between
sucrose and water responses (Figure 2B), and at the neural
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FIGURE 6 |The IC is necessary for the expression of taste-independent

preferences conditioned by postingestive reward.(A) In pre-conditioning
sucrose vs. water two-bottle preference tests, since sucrose was presented
on the side opposite to bias, mice consumed more water (lesion: 368 ± 125
licks; sham: 466 ± 98) than sucrose (lesion: 156 ± 109; sham: 313 ± 93;
F 1,11 = 11.3, p < 0.007). However, lesion status had no effect (F 1,11 = 0.8,
p > 0.37) and the two factors did not interact (F 1,11 = 0.3, p > 0.59; two-way,
repeated measures ANOVA). (B) During the conditioning protocol, animals
consumed more sucrose (sham: 1096 ± 147; lesion: 952 ± 123) than water
(451 ± 93 and 393 ± 69 licks respectively; F 1,11 = 101.3, p < 0.0001) and no
lesion-dependent effects were found (F 1,11 = 0.4, p > 0.51 and F 1,11 = 0.5,
p > 0.48, respectively for lesion and interaction, two-way, repeated measures

ANOVA). Thus, the two groups were equally able to detect the reinforcing
postingestive effects of sucrose. (C) In post-conditioning tests, tastant had an
effect on consumption (F 1,11 = 6.6, p < 0.03) while lesion status did not
(F 1,11 = 0.5, p > 0.48). However, the two factors interacted significantly
(F 1,11 = 7.8, p < 0.02; two-way, repeated measures ANOVA). Data was then
analyzed separately for each group. Sham-operated animals consumed more
sucrose (526 ± 155 licks) than water (150 ± 61; t 6 = 3.2, *p < 0.02), while in
the lesion group consumption did not differ (233 ± 77 and 250 ± 99
respectively; t 5 = 0.2, p > 0.8; paired two-sample t -tests). (D) Average
preference for sucrose in the post-conditioning test differed significantly
between groups (t 11 = 3, *p < 0.02; unpaired two-sample t -test). Red dashed
line corresponds to 0.5 indifference level.

population level, where they were expressed as changes in the
difference between population responses to sucrose and water as
a function of the behavioral sensitivity (LI) to the conditioning
protocol (Figure 3A). Using an immunohistochemical approach,
we confirmed the occurrence of taste-independent IC responses
to sucrose and, furthermore, showed that these responses were
restricted to the dorsal subdivision of the insula (Figure 4).
Finally, using excitotoxic lesions (Figure 5) to explore the func-
tional relevance of IC responses to sucrose in the absence of
peripheral sweet taste transduction, we found that, after con-
ditioning, animals with bilateral IC lesions did not develop a
preference for sipper positions associated with sucrose availability
(Figures 6C,D). These results define a new dimension in the insu-
lar representation of sugars, ascribing new functions to the IC that
go beyond oral chemosensory representation. In particular, they

suggest a more fundamental role for the IC in food-reinforcement
mechanisms that cannot be explained as arising from orosensory
reward.

The Trpm5−/− mice used in this study have a well defined
deficit in the transduction of sweet, bitter, and umami tastants
(Zhang et al., 2003). Indeed, their peripheral neural and behavioral
responses to sweet tastants are essentially abolished (Zhang et al.,
2003; de Araujo et al., 2008; Oliveira-Maia et al., 2009; Ren et al.,
2010). Furthermore, we have shown that, even after being condi-
tioned to the postingestive effects of sucrose, these animals do not
express a preference for this tastant when they are tested in para-
digms that depend on the detection of orosensory cues (see text
and de Araujo et al., 2008). Thus, even if any such orosensory cues
exist (e.g., osmolarity, viscosity), in this experimental paradigm
these KO animals do not use them to guide their behavior.
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FIGURE 7 | Consumption patterns of sucrose and water during the

first 10 min of conditioning sessions in animals with bilateral IC or

sham lesions. (A) During the initial 10 min (10′) of conditioning sessions,
animals consumed more sucrose (sham: 706 ± 95; lesion: 644 ± 132) than
water (379 ± 79 and 306 ± 65 licks respectively; F 1,11 = 39.4, p < 0.0001)
and no lesion-dependent effects were found (F 1,11 = 0.3, p > 0.59 and
F 1,11 = 0.01, p > 0.91, respectively for lesion and interaction; two-way,
repeated measures ANOVA). (B) When the initial 10′ of sucrose
consumption was analyzed across sessions a significant effect was found
for the comparison of conditioning day 1 (sham: 963 ± 152; lesion:
796 ± 208), day 3 (sham: 488 ± 62; lesion: 457 ± 144) and day 5 (sham:

666 ± 102; lesion: 678 ± 169; F 2,11 = 7.2. p < 0.005) but no
lesion-dependent effects were found (F 1,11 = 0.2, p > 0.7 and F 2,11 = 0.4,
p > 0.68, respectively for lesion and interaction; two-way, repeated
measures ANOVA). Reduced sucrose consumption across days could be
potentially ascribed to learned satiety. (C) For water sessions a significant
effect was also found for the comparison of conditioning day 2 (sham:
320 ± 108; lesion: 234 ± 85), day 4 (sham: 405 ± 62; lesion: 355 ± 57) and
day 6 (sham: 414 ± 72; lesion: 330 ± 67; F 2,11 = 5.6, p < 0.02) but no
lesion-dependent effects were found (F 1,11 = 0.5, p > 0.49 and F 2,11 = 0.2,
p > 0.83, respectively for lesion and interaction; two-way, repeated
measures ANOVA).

Insular cortex recordings performed in Trpm5−/− mice before
(pre) and after (post) conditioning demonstrated that, between
these two periods, adaptations occurred in the neural responses to
sucrose and water (Figures 2B and 3A). We interpreted these adap-
tations in the IC as reflecting postingestive-dependent learning.
Two main factors support this interpretation: first IC responses to
the two tastants were significantly changed after conditioning, and
second that these adaptations co-varied with behavioral indices of
the degree to which each animal developed a preference for sucrose
(Figures 2B and 3A). The possibility that, in Trpm5−/− mice,
these IC responses could reflect orosensory factors is unlikely, not
only because these animals do not exhibit behavioral and periph-
eral neural responses to sucrose (Zhang et al., 2003; de Araujo
et al., 2008; Oliveira-Maia et al., 2009; Ren et al., 2010), but also
because, as discussed above, both here and in a prior study (de
Araujo et al., 2008), we have shown that, in Trpm5−/− mice, the
expression of conditioned preferences for sucrose is independent
of orosensory factors. Finally, interpretations purely based on oro-
motor factors such as lick rate and licking cluster duration were
eliminated (Figure 3B).

Additional experiments were performed to confirm the rele-
vance of IC responses for taste-independent postingestive learn-
ing. FOS immunostaining was used as an index of neuronal
activation and confirmed the presence of IC neural responses
to sucrose in Trpm5−/− mice (Figure 4). These responses were
obtained in animals where consumption of sucrose was yoked
to that of water (Figure 4C), eliminating the possibility that
they result from increased volume consumption, with unspecific
effects resulting, for example, from stomach distention (Cechetto
and Saper, 1987). Critical confirmation that IC responses were
related to postingestive learning came from IC lesion experiments

demonstrating that the IC is necessary for Trpm5−/− mice to show
a post-conditioning preference for sucrose (Figures 6C,D).

In contrast to these results, a prior study with rats failed
to demonstrate behavioral effects of bilateral insular lesions
in a flavor-nutrient conditioning task (Touzani and Sclafani,
2007). We note that, because we were testing taste-independent
responses, these experiments were conducted only in Trpm5−/−
mice. Thus, these results do not necessarily generalize to rats or
possibly even to wild-type mice, even though the very localized
expression pattern of Trpm5 mRNA (Perez et al., 2002) ren-
ders the latter possibility less likely. Several other factors may
have contributed to the difference between the Touzani and
Sclafani (2007) study and our results. In this regard, similar
discrepancies have been described relative to the effects of IC
lesions on flavor and taste aversion learning, and several rea-
sons have been used to rationalize these inconsistent results.
These include the nature of stimuli (taste vs. olfactory) and loca-
tion of lesion (Kiefer et al., 1982; Mackey et al., 1986; Kiefer
and Morrow, 1991; Yamamoto et al., 1995; Cubero et al., 1999;
Fresquet et al., 2004; Inui et al., 2006; Roman et al., 2006).
Relative to the effects of IC lesions on appetitive conditioning,
Touzani and Sclafani (2007) performed experiments involving
conditioning to a distinctive flavor, and the possibility remains
that the presence of olfactory and/or taste cues may have influ-
enced the ability of lesioned animals to form associations between
the solutions and their nutritive value. Furthermore, their IC
lesions were centered in the agranular, more ventral division
of the rat insula (Touzani and Sclafani, 2007) which, according
to our FOS expression analyses in mice, was not recruited by
the postingestive–related effects produced by sucrose intake (see
Figure 4).
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FIGURE 8 | Effects of bilateral IC lesion on spatial orientation learning.

(A) Sham-operated and IC-lesioned animals were trained, for 6 days, to find
a hidden and submerged platform in a Morris water maze (MWM). During
training, there was an overall main effect for lesioning (lesioned vs. control
subjects, F 1,55 = 5.2, p < 0.045), but both groups improved their
performance across the six training days (F 5,55 = 29.4, p < 0.0001) in a
similar fashion (interaction – F 5,55 = 0.3, p > 0.91; two-way repeated
measures ANOVA) and reached equal levels of performance in the last day
(lesion: 7.9 ± 1.4 s to reach platform; sham: 7.9 ± 2; t = 0.02, p > 0.05;
Bonferroni Post hoc test). Thus, during training there were only small
differences between sham and real lesioned animals. (B) On the seventh
day, animals were tested for 60 s in a probe trial where the platform was
removed from the maze. Here, both groups spent similar times searching
for the platform in the correct quadrant of the maze (30.6 ± 5.1 and
33.6 ± 3.2 s respectively; t 11 = 0.5, p > 0.6; unpaired two-sample t -test)
and, in both cases, this search period was significantly higher than what
would be expected if they were moving randomly (lesion – t 5 = 3.1,
p < 0.03; sham – t 6 = 5.8, p < 0.003; one sample t -tests vs. 15 s with
Bonferroni–Holm’s correction for multiple comparisons). Thus, the minor
differences found in MWM during training do not seem to explain the
deficits found in two-bottle tests (see Figures 6C,D) since both groups
learned the spatial location of the submerged platform and IC-lesioned
animals have seemingly normal spatial orientation memory in the MWM.

In fact, the post-sucrose consumption increase in IC FOS
immunostaining in Trpm5−/− mice was restricted to the dorsal sub-
division of the insula, an area where electrophysiological measure-
ments were also performed, and that was targeted in the IC lesion
experiment (Figure 5). This area includes a more dorsal gran-
ular area, were visceral responses have been identified (Cechetto
and Saper, 1987; Barnabi and Cechetto, 2001), and an immediately
ventral dysgranular area, where taste responses have been reported
in rats (Yamamoto et al., 1988; Lundy and Norgren, 2004). That
said, the definition of such distinct functional subdivisions of
the insula has been debated since single-neurons throughout
the insula can respond to multiple sensory modalities, namely
taste, visceral, and nociceptive stimuli (Cechetto and Saper, 1987;
Hanamori et al., 1997, 1998a,b) and taste responsive neurons
have also been described in the granular cortex (Ogawa et al.,
1992; Accolla et al., 2007). Thus, the exact identities of the
neural networks involved in the taste-independent postingestive
responses in the dorsal IC that are described here remain to be
elucidated.

As mentioned, the primary GC is located in the IC (Cechetto
and Saper, 1987; Accolla et al., 2007) and, besides its role in encod-
ing the chemosensory properties of tastants (Rolls, 2006; Stapleton

et al., 2006; Accolla et al., 2007), it is required for associations to
be formed between taste and malaise (Braun et al., 1972; Lor-
den, 1976; Yamamoto et al., 1980; Bermudez-Rattoni et al., 1991;
Accolla and Carleton, 2008). Thus, in conditioned taste aversion
(CTA) paradigms, pharmacological manipulations (Bermudez-
Rattoni et al., 1991; Gutierrez et al., 1999), protein synthesis
inhibition (Rosenblum et al., 1993) or irreversible lesions (Braun
et al., 1972; Lorden, 1976; Yamamoto et al., 1980) in the GC dis-
rupt the formation of a“memory trace” linking a conditioned taste
cue to ensuing visceral malaise. Here we have identified two new
functions for the IC in the integration of postingestive sensory
information. First, we showed that the IC can represent positive
postingestive outcomes related to the caloric value of a sucrose
solution (Figures 2–4) and second, that this brain area plays a rel-
evant role in the modulation of learned behavior toward positive
postingestive outcomes, even in the absence of orosensory taste
input (Figure 6).

While our results support the concept that postingestive reward
is represented in the IC, it is important to mention that, in
Trpm5−/− mice with bilateral IC lesions, unconditioned responses
to sucrose were conserved. In fact, during conditioning sessions,
both lesioned and sham-operated mice consumed more sucrose
than water (Figures 6B and 7), showing that the IC is not necessary
for detection of the reinforcing postingestive effects of sucrose.
Clearly, other brain areas must participate in this process (de
Araujo et al., 2008; Touzani et al., 2008; Oliveira-Maia et al., 2011).
Nevertheless, the effects of IC lesion on postingestive dependent
conditioning seem to reflect a deficit in the capacity to associate
between postingestive effects and the side of the behavioral box
where they were obtained (Figures 6C,D). Our results thus con-
tribute additional evidence toward the view that a primary role of
the IC in CTA (Braun et al., 1972; Lorden, 1976; Yamamoto et al.,
1980; Accolla and Carleton, 2008), and possibly other taste-guided
learning (Cubero and Puerto, 2000), is the association between
stimuli (such as spout-side and postingestive reward).

A broad role for the insula in the representation of aversive
outcomes, even in the absence of gustatory-related stimulation,
has previously been extensively reported (Phillips et al., 1997;
Ploghaus et al., 1999; O’Doherty et al., 2003; Wicker et al., 2003;
Simmons et al., 2004; Singer et al., 2004; Contreras et al., 2007).
In fact, aversion-related representation in the IC has been sug-
gested as a potential explanation for the effects of insula lesions
on addictive behaviors (Contreras et al., 2007; Naqvi et al., 2007)
and affective decision-making (Clark et al., 2008). Insular rep-
resentation of positive emotions has also been described, mostly
in association with food-related stimuli (Small et al., 2001; de
Araujo et al., 2006; Stoeckel et al., 2008; Wagner et al., 2008),
but is not as well established (Jabbi et al., 2007). One study
demonstrated that hypocretin transmission in the dorsal insula
regulates the reinforcing effects of nicotine infusions (Hollan-
der et al., 2008). Here we further show that the same area of
the insula is involved in the representation of a positive out-
come that, while being food-related, occurs independently of oral
chemosensation.

In summary, we have shown that insular IC neurons
are modulated during feeding and can exert control on
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feeding behaviors even when no oral chemosensory inputs
are present. This novel finding could underlie the reorgani-
zation of neuronal representations of taste cues in the GC
following changes in internal state (Buresova et al., 1979;
Accolla and Carleton, 2008; Grossman et al., 2008). Addition-
ally, our findings indicate that the IC performs previously
unidentified functions in representing the rewarding postinges-
tive consequences of consuming calorie-dense foods, possi-
bly underlying the proposed involvement of the insula in
pathological feeding behaviors (Stoeckel et al., 2008; Wagner et al.,
2008).
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